Kingdom: API Abuse

An API is a contract between a caller and a callee. The most common forms of API abuse are caused by the caller failing to honor its end of this contract. For example, if a program fails to call chdir() after calling chroot(), it violates the contract that specifies how to change the active root directory in a secure fashion. Another good example of library abuse is expecting the callee to return trustworthy DNS information to the caller. In this case, the caller abuses the callee API by making certain assumptions about its behavior (that the return value can be used for authentication purposes). One can also violate the caller-callee contract from the other side. For example, if a coder subclasses SecureRandom and returns a non-random value, the contract is violated.

93 items found
Weaknesses
Abstract
The model class has a required non-nullable property and therefore may be susceptible to under-posting attacks.
Explanation
Using a model class that has non-nullable properties that are required (as marked with the [Required] attribute) can lead to problems if an attacker communicates a request that contains less data than is expected.

The ASP.NET MVC framework will try to bind request parameters to model properties.

If a model has a required non-nullable parameter and an attacker does not communicate that required parameter in a request -- that is, the attacker uses an under-posting attack -- then the property will have the default value (usually zero) which will satisfy the [Required] validation attribute. This may produce unexpected application behavior.

The following code defines a possible model class that has a required enum, which is non-nullable:


public enum ArgumentOptions
{
OptionA = 1,
OptionB = 2
}

public class Model
{
[Required]
public String Argument { get; set; }

[Required]
public ArgumentOptions Rounding { get; set; }
}
References
[1] Input Validation vs. Model Validation in ASP.NET MVC
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 345
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002422
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 13.2.6 RESTful Web Service Verification Requirements (L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[22] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002470 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002470 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002470 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002470 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002470 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002470 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002470 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002470 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002470 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002470 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002470 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002470 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002470 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002470 CAT II
[36] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.structural.dotnet.aspnet_mvc_bad_practices_required_non_nullable_in_model
Abstract
The model class has a required property and is the type of an optional member of a parent model type and therefore may be susceptible to under-posting attacks.
Explanation
If a model class has required property and is the type of an optional member of a parent model class, it may be susceptible to under-posting attacks if an attacker communicates a request that contains less data than is expected.

The ASP.NET MVC framework will try to bind request parameters to model properties, including submodels.

If a submodel is optional -- that is, the parent model has a property without the [Required] attribute -- and if an attacker does not communicate that submodel, then the parent property will have a null value and the required fields of the child model will not be asserted by model validation. This is one form of an under-posting attack.

Consider the following the model class definitions:


public class ChildModel
{
public ChildModel()
{
}

[Required]
public String RequiredProperty { get; set; }
}

public class ParentModel
{
public ParentModel()
{
}

public ChildModel Child { get; set; }
}


If an attacker does not communicate a value for the ParentModel.Child property, then the ChildModel.RequiredProperty property will have a [Required] which is not asserted. This may produce unexpected and undesirable results.
References
[1] Input Validation vs. Model Validation in ASP.NET MVC
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 345
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002422
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 13.2.6 RESTful Web Service Verification Requirements (L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[22] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002470 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002470 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002470 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002470 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002470 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002470 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002470 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002470 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002470 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002470 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002470 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002470 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002470 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002470 CAT II
[36] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.structural.dotnet.aspnet_mvc_bad_practices_optional_submodel_with_required_property
Abstract
The application asks the users to enter their fingerprints without providing a justification.
Explanation
According to Apple's policy, the application should always explain to users why their fingerprints are required. Failing to do so may confuse the user or even get your app rejected from the AppStore.

Example 1: The following code uses Touch ID to authenticate the user but fails to provide a localized reason that explains why the authentication is required:


[context evaluatePolicy:LAPolicyDeviceOwnerAuthenticationWithBiometrics localizedReason:nil
reply:^(BOOL success, NSError *error) {
if (success) {
NSLog(@"Auth was OK");
}
}];
References
[1] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[2] Keychain and Authentication with Touch ID Apple
[3] https://developer.apple.com/reference/localauthentication/lacontext Apple
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1, MASVS-AUTH-2
desc.structural.objc.biometric_authentication_missing_operation_message
Abstract
The application asks the user to enter their fingerprints without providing a justification.
Explanation
According to Apple's policy, the application should always explain to users why their fingerprints are required. Failing to do so may confuse the user or even get your app rejected from the AppStore.

Example 1: The following code uses Touch ID to authenticate the user but fails to provide a localized reason that explains why the authentication is required:


context.evaluatePolicy(LAPolicy.DeviceOwnerAuthenticationWithBiometrics, localizedReason: "", reply: { (success, error) -> Void in
if (success) {
print("Auth was OK");
}
else {
print("Error received: %d", error!);
}
})
References
[1] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[2] Keychain and Authentication with Touch ID Apple
[3] https://developer.apple.com/reference/localauthentication/lacontext Apple
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1, MASVS-AUTH-2
desc.structural.swift.biometric_authentication_missing_operation_message
Abstract
A Castor query that is not read-only can have performance implications.
Explanation
Even if castor creates a lock on an object it does not prevent other threads from reading or writing to it. Read-only queries are also about 7 times faster compared with default shared mode.

Example 1: The following example specifies the query mode as SHARED which allows both read and write access.

results = query.execute(Database.SHARED);
References
[1] ExoLab Group Castor JDO - Best practice
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - Common Weakness Enumeration CWE ID 265
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.5 Configuration Architectural Requirements (L2 L3)
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 7.1.1
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 7.1.1
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 7.1.2
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 7.1.2
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 7.1.2
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 7.1.2
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 7.2.2
[16] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[19] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3500 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3500 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3500 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3500 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3500 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3500 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3500 CAT II
desc.structural.java.castor_bad_practices_query_mode_not_read_only
Abstract
The Castor query does not explicitly define a query mode.
Explanation
By default Castor executes queries in shared mode. Since shared mode allows both read and write access, it is unclear what kind of operation the query is intended for. If the object is going to be used in a read-only context, shared access adds unnecessary performance overhead.

Example 1: The following example does not specify a query mode.

results = query.execute(); //missing query mode
References
[1] ExoLab Group Castor JDO - Best practice
[2] ExoLab Group, Intalio Inc., and Contributors Database (Castor JavaDoc)
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - Common Weakness Enumeration CWE ID 265
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.5 Configuration Architectural Requirements (L2 L3)
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 7.1.1
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 7.1.1
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 7.1.2
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 7.1.2
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 7.1.2
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 7.1.2
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 7.2.2
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[20] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3500 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3500 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3500 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3500 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3500 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3500 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3500 CAT II
desc.semantic.java.castor_bad_practices_unspecified_query_mode
Abstract
Explicit requests for garbage collection are a bellwether indicating likely performance problems.
Explanation
At some point in every .NET developer's career, a problem surfaces that appears to be so mysterious, impenetrable, and impervious to debugging that there seems to be no alternative but to blame the garbage collector. Especially when the bug is related to time and state, there may be a hint of empirical evidence to support this theory: inserting a call to GC.Collect() sometimes seems to make the problem go away.

In almost every case we have seen, calling GC.Collect() is the wrong thing to do. In fact, calling GC.Collect() can cause performance problems if it is invoked too often.
References
[1] Scott Holden The perils of GC.Collect()
[2] Rico Mariani Performance Tidbits
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 730
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[13] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[34] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[35] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.dotnet.code_correctness_call_to_gc_collect
Abstract
Explicit requests for garbage collection are a bellwether indicating likely performance problems.
Explanation
At some point in every Java developer's career, a problem surfaces that appears to be so mysterious, impenetrable, and impervious to debugging that there seems to be no alternative but to blame the garbage collector. Especially when the bug is related to time and state, there may be a hint of empirical evidence to support this theory: inserting a call to System.gc() sometimes seems to make the problem go away.

In almost every case we have seen, calling System.gc() is the wrong thing to do. In fact, calling System.gc() can cause performance problems if it is invoked too often.
References
[1] D. H. Hovermeyer FindBugs User Manual
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[6] Standards Mapping - Common Weakness Enumeration CWE ID 730
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[10] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[12] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[33] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[34] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.java.code_correctness_call_to_system_gc