Kingdom: Encapsulation

Encapsulation is about drawing strong boundaries. In a web browser that might mean ensuring that your mobile code cannot be abused by other mobile code. On the server it might mean differentiation between validated data and unvalidated data, between one user's data and another's, or between data users are allowed to see and data that they are not.

118 items found
Weaknesses
Abstract
Automatically generated JavaScript proxy files can leak system information as they list all the exposed methods in the Hubs.
Explanation
If you do not want to include all of the hubs and methods in the JavaScript proxy file for each user, you can disable the automatic generation of the file. You might choose this option if you have multiple hubs and methods, but do not want every user to be aware of all of the methods.
References
[1] Introduction to SignalR Security
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 497
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[15] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[16] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[17] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[20] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.dotnet.system_information_leak_signalr_exposed_javascript_proxy
Abstract
Enabling Spring Boot Actuators may reveal system data and debugging information which may help an adversary learn about the system and form a plan of attack.
Explanation
Spring Boot Actuators allow users to monitor and interact with the application. There are different built-in Actuators which expose system data and debugging information through HTTP endpoints, JMX or even by remote shell (SSH or Telnet). Attackers may benefit from this information to learn about the system and gather information that could be used to attack the application.
References
[1] Spring Boot Reference Guide Spring
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 497
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420, CCI-003272
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), SI-11 Error Handling (P2)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, SI-11 Error Handling
[16] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[17] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[18] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[20] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[21] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[22] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[24] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.config.java.system_information_leak_spring_boot_actuators_enabled
Abstract
Disclosing SQL queries used by an application to communicate with the backend database could allow an attacker to steal sensitive information, manipulate the application's behavior or interrupt the database operation.
Explanation
Information stored in the database is a prime target for attackers. Revealing information about the database structure through SQL queries will expose the application to severe threats like information theft and denial of service. Disclosure of SQL queries, at a minimum, reveals details about the database technology used by the application. It could also provide specifics like the database, table or column names.
An attacker can use this information to conduct SQL injection attacks.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[2] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[3] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[4] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[5] Standards Mapping - Common Weakness Enumeration CWE ID 74, CWE ID 89, CWE ID 943
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), SC-28 Protection of Information at Rest (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, SC-28 Protection of Information at Rest
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[17] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[18] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.5.3
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention, Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention, Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention, Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 209
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dynamic.xtended_preview.system_information_leak_sql_query
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An information leak occurs when system data or debug information leaves the program through an output stream or logging function.

In this case, the Struts 2 Config Browser is configured in the maven pom.xml file and so it is available and deployed along the application.

The Config Browser plugin is a debugging tool to help view an application's configuration at runtime. It is very useful when debugging problems that could be related to configuration issues but it exposes too many details that may help an attacker to map and model the application.
References
[1] Struts Config Browser Plugin Apache Software Foundation
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 497
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420, CCI-003272
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), SI-11 Error Handling (P2)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, SI-11 Error Handling
[16] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[17] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[18] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[20] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[21] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[22] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[24] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.config.java.system_information_leak_apache_struts2
Abstract
Revealing detailed error messages could allow an attacker to learn about the application and form a plan of attack.
Explanation
XPath error messages can reveal details about the structure of XPath queries used by an application to interact with XML documents. The foremost defense that applications can use against malicious attacks is minimizing the application knowledge revealed to the attacker. Most prominent vulnerabilities occur as a result of unintended application behavior triggered by unexpected user input.

Attackers exploit this fact to force applications into disclosing details about their functionality. Error messages act as a primary source of this knowledge. Details revealed via XPath error messages could allow an attacker to effectively craft XPath injection payloads.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[2] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[3] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[4] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[5] Standards Mapping - Common Weakness Enumeration CWE ID 209, CWE ID 215
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420, CCI-003272
[10] Standards Mapping - FIPS200 CM
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), SI-11 Error Handling (P2)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, SI-11 Error Handling
[14] Standards Mapping - OWASP Top 10 2004 A7 Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.1 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.7
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 209
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 209
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3120 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3120 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3120 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3120 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3120 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3120 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3120 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dynamic.xtended_preview.system_information_leak_xpath_error
Abstract
Disclosing XPath queries used by an application to interact with XML documents could allow an attacker to steal sensitive information or disrupt the execution of the application.
Explanation
Applications using backend XML databases are prone to XPath injection issues. Revealing information about structure of the XML documents through XPath queries will expose the application to severe threats like information theft and denial of service. Disclosure of XPath queries could provide attackers with specifics like datatype information or the XML components used for storing sensitive information.
An attacker can use this information to orchestrate XPath injection attacks.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[2] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[3] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[4] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[5] Standards Mapping - Common Weakness Enumeration CWE ID 91
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), SC-28 Protection of Information at Rest (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, SC-28 Protection of Information at Rest
[10] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[11] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[12] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[13] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[19] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 209
[20] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[42] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dynamic.xtended_preview.system_information_leak_xpath_query
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.
Example: The following C# code accepts an HTTP request and stores the usrname parameter in the HTTP session object before checking to ensure that the user has been authenticated.


usrname = request.Item("usrname");
if (session.Item(ATTR_USR) == null) {
session.Add(ATTR_USR, usrname);
}


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
desc.dataflow.dotnet.trust_boundary_violation
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.

Example: The following Java code accepts an HTTP request and stores the usrname parameter in the HTTP session object before checking to ensure that the user has been authenticated.


usrname = request.getParameter("usrname");
if (session.getAttribute(ATTR_USR) != null) {
session.setAttribute(ATTR_USR, usrname);
}


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[2] FUNDAMENTALS-4: Establish trust boundaries Oracle
desc.dataflow.java.trust_boundary_violation
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.

Example: The following code passes an untrusted item (URL) from an iOS extension JavaScript script to the iOS Extension code.


var GetURL = function() {};
GetURL.prototype = {
run: function(arguments) {
...
arguments.completionFunction({ "URL": document.location.href });
}
...
};
var ExtensionPreprocessingJS = new GetURL;


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[2] FUNDAMENTALS-4: Establish trust boundaries Oracle
desc.dataflow.javascript.trust_boundary_violation
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.

Example: The following Kotlin code accepts an HTTP request and stores the usrname parameter in the HTTP session object before checking to ensure that the user has been authenticated.


val usrname: String = request.getParameter("usrname")
if (session.getAttribute(ATTR_USR) != null) {
session.setAttribute(ATTR_USR, usrname)
}


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[2] FUNDAMENTALS-4: Establish trust boundaries Oracle
desc.dataflow.kotlin.trust_boundary_violation
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as a line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.

Example: The following code passes an untrusted item from an iOS extension to the host webview.


#import <MobileCoreServices/MobileCoreServices.h>

- (IBAction)done {
...
[self.extensionContext completeRequestReturningItems:@[untrustedItem] completionHandler:nil];
}


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
desc.dataflow.objc.trust_boundary_violation
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.
Example: The following code accepts a usrname cookie and stores its value in the HTTP DB session before it verifies that the user has been authenticated.


...
IF (OWA_COOKIE.get('usrname').num_vals != 0) THEN
usrname := OWA_COOKIE.get('usrname').vals(1);
END IF;
IF (v('ATTR_USR') IS null) THEN
HTMLDB_UTIL.set_session_state('ATTR_USR', usrname);
END IF;
...


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
desc.dataflow.sql.trust_boundary_violation
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.

Example: The following Python code accepts an HTTP request and stores the username parameter in the HTTP session object before checking to ensure that the user has been authenticated.


uname = request.GET['username']
request.session['username'] = uname


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
desc.dataflow.python.trust_boundary_violation
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as a line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.

Example: The following code passes an untrusted item from an iOS extension to the host webview.


import MobileCoreServices

@IBAction func done() {
...
self.extensionContext!.completeRequestReturningItems([unstrustedItem], completionHandler: nil)
}


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
desc.dataflow.swift.trust_boundary_violation
Abstract
Commingling trusted and untrusted data in the same data structure encourages programmers to mistakenly trust unvalidated data.
Explanation
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary--to move from untrusted to trusted.

A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. The most common way to make this mistake is to allow trusted and untrusted data to commingle in the same data structure.

Example: The following code accepts an HTTP request and stores the usrname parameter in the HTTP session object before checking to ensure that the user has been authenticated.


...
Dim Response As Response
Dim Request As Request
Dim Session As Session
Dim Application As Application
Dim Server As Server
Dim usrname as Variant
Set Response = objContext("Response")
Set Request = objContext("Request")
Set Session = objContext("Session")
Set Application = objContext("Application")

usrname = Request.Form("usrname")
If IsNull(Session("ATTR_USR")) Then
Session("ATTR_USR") = usrname
End If
...


Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion eventually allows some data to be used without first being validated.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
desc.dataflow.vb.trust_boundary_violation