界: Time and State

分散型計算とは、時間と状態に関するものです。つまり、複数のコンポーネントが通信するためには、状態を共有しなければならず、そのためには時間がかかります。

ほとんどのプログラマーは、自分の仕事を人であるかのように考えています。彼らは、自分で仕事をしなければならない場合、自分がするのと同じように、1 つのスレッドのコントロールでプログラム全体を実行することを考えます。しかし、最近のコンピュータは、タスクの切り替えが非常に速く、マルチコア、マルチ CPU、分散システムなどでは、2 つのイベントが全く同時に発生することもあります。不具合は、プログラマーが考えたプログラムの実行方法のモデルと、現実に起きていることとのギャップを埋めるために押し寄せます。これらの欠陥は、スレッド、プロセス、時間、および情報の間の予期せぬ相互作用に関連しています。これらの相互作用は、セマフォ、変数、ファイル システムなど、基本的には情報を保存できるあらゆるものを含む共有状態を通じて行われます。

Race Condition: Signal Handling

Abstract
複数のシグナルについて同じシグナルハンドラをインストールしている場合、立て続けに異なるシグナルを受信すると Race Condition が引き起こされる場合があります。
Explanation
シグナルハンドラとしてインストールされた関数が再入可能ではない場合、つまり、内部状態を維持するまたは内部状態を維持する別の関数をコールする場合に、シグナル処理で Race Condition が発生する場合があります。このような Race Condition は、複数のシグナルを処理するために同じ関数がインストールされている場合にさらに発生しやすくなります。

シグナル処理における Race Condition は以下のような場合に発生しやすくなります。

1. 複数のシグナルについて単一のシグナルハンドラがプログラムによりインストールされる場合。

2. ハンドラがインストールされている 2 つの異なるシグナルが立て続けに到着する場合。この状況では Race Condition がシグナルハンドラで発生します。

例: 次のコードでは、2 つの異なるシグナルについて同一の簡易な再入不能なシグナルハンドラがインストールされています。攻撃者が適切なタイミングでシグナルを送信すると、シグナルハンドラで Double Free の脆弱性が発生します。free() を同じ値で 2 回コールすると、Buffer Overflow が発生する可能性があります。プログラムが free() を同じ引数で 2 回コールすると、プログラムのメモリ管理データ構造が破損します。これにより、プログラムがクラッシュするか、一部の環境では、その後に malloc() を 2 回コールして同じポインタを戻すことになります。malloc() が同じ値を 2 回戻し、その後に攻撃者が、この二重に割り当てられたメモリに書き込まれたデータの制御をプログラムから得た場合、プログラムは Buffer Overflow 攻撃に対して脆弱になります。


void sh(int dummy) {
...
free(global2);
free(global1);
...
}

int main(int argc,char* argv[]) {
...
signal(SIGHUP,sh);
signal(SIGTERM,sh);
...
}
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 4
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[6] Standards Mapping - Common Weakness Enumeration CWE ID 362, CWE ID 364
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [22] CWE ID 362
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [21] CWE ID 362
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-003178
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.5
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-7-1
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.11.2 Business Logic Architectural Requirements (L2 L3)
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[23] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 362
[24] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 362
[25] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3630.1 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3630.1 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3630.1 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3630.1 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3630.1 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3630.1 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3630.1 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001995 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001995 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001995 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001995 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001995 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001995 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001995 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001995 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001995 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001995 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001995 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001995 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001995 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001995 CAT II
desc.structural.cpp.race_condition_signal_handling