Kingdom: Security Features
Software security is not security software. Here we're concerned with topics like authentication, access control, confidentiality, cryptography, and privilege management.
Key Management: Hardcoded Encryption Key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
encryptionKey = "lakdsljkalkjlksdfkl".
...
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.abap.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
var encryptionKey:String = "lakdsljkalkjlksdfkl";
var key:ByteArray = Hex.toArray(Hex.fromString(encryptionKey));
...
var aes.ICipher = Crypto.getCipher("aes-cbc", key, padding);
...
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.actionscript.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
Never hardcode an encryption key because it makes the encryption key visible to all of the project's developers, and makes fixing the problem extremely difficult. Changing the encryption key after the code is in production requires a software patch. If the account that the encryption key protects is compromised, the organization must choose between security and system availability.
Example 1: The following code performs AES encryption using a hardcoded encryption key:
Anyone with access to the code can see the encryption key. After the application has shipped, there is no way to change the encryption key without a software patch. An employee with access to this information can use it to break into the system. Any attacker with access to the application executable can extract the encryption key value.
Example 1: The following code performs AES encryption using a hardcoded encryption key:
...
Blob encKey = Blob.valueOf('YELLOW_SUBMARINE');
Blob encrypted = Crypto.encrypt('AES128', encKey, iv, input);
...
Anyone with access to the code can see the encryption key. After the application has shipped, there is no way to change the encryption key without a software patch. An employee with access to this information can use it to break into the system. Any attacker with access to the application executable can extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.apex.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
using (SymmetricAlgorithm algorithm = SymmetricAlgorithm.Create("AES"))
{
string encryptionKey = "lakdsljkalkjlksdfkl";
byte[] keyBytes = Encoding.ASCII.GetBytes(encryptionKey);
algorithm.Key = keyBytes;
...
}
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.dotnet.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key. Not only does hardcoding an encryption key allow all of the project's developers to view the encryption key, it also makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the program ships, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers have access to the executable for the application they can disassemble the code, which will contain the value of the encryption key used.
Example 1: The following code uses a hardcoded encryption key:
...
char encryptionKey[] = "lakdsljkalkjlksdfkl";
...
Anyone with access to the code has access to the encryption key. After the program ships, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers have access to the executable for the application they can disassemble the code, which will contain the value of the encryption key used.
References
[1] Windows Data Protection Microsoft
[2] Encrypting Your App's Files Apple
[3] Standards Mapping - Common Weakness Enumeration CWE ID 321
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[11] Standards Mapping - FIPS200 IA
[12] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[16] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[17] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[38] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[39] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.cpp.hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
<cfset encryptionKey = "lakdsljkalkjlksdfkl" />
<cfset encryptedMsg = encrypt(msg, encryptionKey, 'AES', 'Hex') />
...
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.cfml.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because all of the project's developers can view the encryption key, and fixing the problem is extremely difficult. After the code is in production, changing the encryption key requires a software patch. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
key := []byte("lakdsljkalkjlksd");
block, err := aes.NewCipher(key)
...
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] MSC03-J. Never hard code sensitive information CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 321
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.golang.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
private static final String encryptionKey = "lakdsljkalkjlksdfkl";
byte[] keyBytes = encryptionKey.getBytes();
SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher encryptCipher = Cipher.getInstance("AES");
encryptCipher.init(Cipher.ENCRYPT_MODE, key);
...
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] MSC03-J. Never hard code sensitive information CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 321
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.java.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
var crypto = require('crypto');
var encryptionKey = "lakdsljkalkjlksdfkl";
var algorithm = 'aes-256-ctr';
var cipher = crypto.createCipher(algorithm, encryptionKey);
...
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.javascript.key_management_hardcoded_encryption_key
Abstract
Hardcoded passwords can compromise system security in a way that is difficult to remedy.
Explanation
Never hardcode passwords. Not only does it expose the password to all of the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, a program patch is probably the only way to change the password. If the account the password protects is compromised, the system owners must choose between security and availability.
Example 1: The following JSON uses a hardcoded password:
This configuration may be valid, but anyone who has access to the configuration will have access to the password. After the program is released, changing the default user account "scott" with a password of "tiger" is difficult. Anyone with access to this information can use it to break into the system.
Example 1: The following JSON uses a hardcoded password:
...
{
"username":"scott"
"password":"tiger"
}
...
This configuration may be valid, but anyone who has access to the configuration will have access to the password. After the program is released, changing the default user account "scott" with a password of "tiger" is difficult. Anyone with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.json.password_management_hardcoded_password
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
NSString encryptionKey = "lakdsljkalkjlksdfkl";
...
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] Encrypting Your App's Files Apple
[2] Standards Mapping - Common Weakness Enumeration CWE ID 321
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.objc.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys could compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key. Not only does hardcoding an encryption key allow all of the project's developers to view the encryption key, it also makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key to encrypt information:
This code will run successfully, but anyone who has access to it will have access to the encryption key. After the program ships, there is likely no way to change the hardcoded encryption key ('hardcoded_encryption_key') unless the program is patched. A devious employee with access to this information can use it to compromise data encrypted by the system.
Example 1: The following code uses a hardcoded encryption key to encrypt information:
...
$encryption_key = 'hardcoded_encryption_key';
//$filter = new Zend_Filter_Encrypt('hardcoded_encryption_key');
$filter = new Zend_Filter_Encrypt($encryption_key);
$filter->setVector('myIV');
$encrypted = $filter->filter('text_to_be_encrypted');
print $encrypted;
...
This code will run successfully, but anyone who has access to it will have access to the encryption key. After the program ships, there is likely no way to change the hardcoded encryption key ('hardcoded_encryption_key') unless the program is patched. A devious employee with access to this information can use it to compromise data encrypted by the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.php.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.sql.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys could compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key. Not only does hardcoding an encryption key allow all of the project's developers to view the encryption key, it also makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key to encrypt information:
This code will run successfully, but anyone who has access to it will have access to the encryption key. After the program ships, there is likely no way to change the hardcoded encryption key
Example 1: The following code uses a hardcoded encryption key to encrypt information:
...
from Crypto.Ciphers import AES
encryption_key = b'_hardcoded__key_'
cipher = AES.new(encryption_key, AES.MODE_CFB, iv)
msg = iv + cipher.encrypt(b'Attack at dawn')
...
This code will run successfully, but anyone who has access to it will have access to the encryption key. After the program ships, there is likely no way to change the hardcoded encryption key
_hardcoded__key_
unless the program is patched. A devious employee with access to this information can use it to compromise data encrypted by the system.References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.python.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys could compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key. Not only does hardcoding an encryption key allow all of the project's developers to view the encryption key, it also makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
This code will run successfully, but anyone who has access to it will have access to the encryption key. After the program ships, there is likely no way to change the hardcoded encryption key "hardcoded_encryption_key" unless the program is patched. A devious employee with access to this information can use it to compromise data encrypted by the system.
Example 1: The following code uses a hardcoded encryption key:
require 'openssl'
...
encryption_key = 'hardcoded_encryption_key'
...
cipher = OpenSSL::Cipher::AES.new(256, 'GCM')
cipher.encrypt
...
cipher.key=encryption_key
...
This code will run successfully, but anyone who has access to it will have access to the encryption key. After the program ships, there is likely no way to change the hardcoded encryption key "hardcoded_encryption_key" unless the program is patched. A devious employee with access to this information can use it to compromise data encrypted by the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.ruby.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key. Not only does hardcoding an encryption key allow all of the project's developers to view the encryption key, it also makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the program ships, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
Example 2: The following code performs AES encryption using a hardcoded encryption key:
...
let encryptionKey = "YELLOW_SUBMARINE"
...
...
CCCrypt(UInt32(kCCEncrypt),
UInt32(kCCAlgorithmAES128),
UInt32(kCCOptionPKCS7Padding),
"YELLOW_SUBMARINE",
16,
iv,
plaintext,
plaintext.length,
ciphertext.mutableBytes,
ciphertext.length,
&numBytesEncrypted)
...
Anyone with access to the code has access to the encryption key. After the program ships, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application they could extract the encryption key value.
References
[1] Encrypting Your App's Files Apple
[2] Standards Mapping - Common Weakness Enumeration CWE ID 321
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.swift.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
Never hardcode an encryption key because it makes the encryption key visible to all of the project's developers, and makes fixing the problem extremely difficult. Changing the encryption key after the code is in production requires a software patch. If the account that the encryption key protects is compromised, the organization must choose between security and system availability.
Example 1: The following example shows an encryption key inside a .pem file:
Anyone with access to the code can see the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. Any attacker with access to the application executable can extract the encryption key value.
Example 1: The following example shows an encryption key inside a .pem file:
...
-----BEGIN RSA PRIVATE KEY-----
MIICXwIBAAKBgQCtVacMo+w+TFOm0p8MlBWvwXtVRpF28V+o0RNPx5x/1TJTlKEl
...
DiJPJY2LNBQ7jS685mb6650JdvH8uQl6oeJ/aUmq63o2zOw=
-----END RSA PRIVATE KEY-----
...
Anyone with access to the code can see the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. Any attacker with access to the application executable can extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.regex.universal.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode an encryption key because it allows all of the project's developers to view the encryption key, and makes fixing the problem extremely difficult. After the code is in production, a software patch is required to change the encryption key. If the account that is protected by the encryption key is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded encryption key:
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
Example 1: The following code uses a hardcoded encryption key:
...
Dim encryptionKey As String
Set encryptionKey = "lakdsljkalkjlksdfkl"
Dim AES As New System.Security.Cryptography.RijndaelManaged
On Error GoTo ErrorHandler
AES.Key = System.Text.Encoding.ASCII.GetBytes(encryptionKey)
...
Exit Sub
...
Anyone with access to the code has access to the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. If attackers had access to the executable for the application, they could extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.vb.key_management_hardcoded_encryption_key
Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.
Explanation
Never hardcode an encryption key because it makes the encryption key visible to all of the project's developers, and makes fixing the problem extremely difficult. Changing the encryption key after the code is in production requires a software patch. If the account that the encryption key protects is compromised, the organization must choose between security and system availability.
Example 1: The following example shows an encryption key inside the secrets.yml file of a Ruby on Rails configuration:
Anyone with access to the code can see the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. Any attacker with access to the application executable can extract the encryption key value.
Example 1: The following example shows an encryption key inside the secrets.yml file of a Ruby on Rails configuration:
...
production:
secret_key_base: 0ab25e26286c4fb9f7335947994d83f19861354f19702b7bbb84e85310b287ba3cdc348f1f19c8cdc08a7c6c5ad2c20ad31ecda177d2c74aa2d48ec4a346c40e
...
Anyone with access to the code can see the encryption key. After the application has shipped, there is no way to change the encryption key unless the program is patched. An employee with access to this information can use it to break into the system. Any attacker with access to the application executable can extract the encryption key value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 321
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1), SC-13 Cryptographic Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management, SC-13 Cryptographic Protection
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.yaml.key_management_hardcoded_encryption_key