Kingdom: Input Validation and Representation
Input validation and representation problems ares caused by metacharacters, alternate encodings and numeric representations. Security problems result from trusting input. The issues include: "Buffer Overflows," "Cross-Site Scripting" attacks, "SQL Injection," and many others.
Memcached Injection
Abstract
Invoking a Memcached operation with input from an untrusted source might allow an attacker to introduce new key/value pairs in Memcached cache.
Explanation
Memcached injection errors occur when:
1. Data enters a program from an untrusted source.
2. The data is used to dynamically construct a Memcached key or value.
Example 1: The following code dynamically constructs a Memcached key.
The operation that this code intends to execute follows:
Where
However, because the operation is constructed dynamically by concatenating a constant key prefix and a user input string, an attacker may send the string
The preceding key will successfully add a new key/value pair in the cache
1. Data enters a program from an untrusted source.
2. The data is used to dynamically construct a Memcached key or value.
Example 1: The following code dynamically constructs a Memcached key.
...
TextClient tc = (TextClient)Client.GetInstance("127.0.0.1", 11211, MemcachedFlags.TextProtocol);
tc.Open();
string id = txtID.Text;
var result = get_page_from_somewhere();
var response = Http_Response(result);
tc.Set("req-" + id, response, TimeSpan.FromSeconds(1000));
tc.Close();
tc = null;
...
The operation that this code intends to execute follows:
set req-1233 0 1000 n
<serialized_response_instance>
Where
n
is length of the response.However, because the operation is constructed dynamically by concatenating a constant key prefix and a user input string, an attacker may send the string
ignore 0 0 1\r\n1\r\nset injected 0 3600 10\r\n0123456789\r\nset req-
, then the operation becomes the following:
set req-ignore 0 0 1
1
set injected 0 3600 10
0123456789
set req-1233 0 0 n
<serialized_response_instance>
The preceding key will successfully add a new key/value pair in the cache
injected=0123456789
and the attackers will be able to poison the cache.References
[1] Novikov The New Page Of Injections Book: Memcached Injections
[2] Standards Mapping - Common Weakness Enumeration CWE ID 20
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.memcached_injection
Abstract
Invoking a Memcached operation with input coming from an untrusted source might allow an attacker to introduce new key/value pairs in Memcached cache.
Explanation
Memcached injection errors occur when:
1. Data enters a program from an untrusted source.
2. The data is used to dynamically construct a Memcached key or value.
Example 1: The following code dynamically constructs a Memcached key.
The operation that this code intends to execute follows:
However, because the operation is constructed dynamically by concatenating a constant key prefix and a user input string, an attacker may send the string
The preceding key will successfully add a new key/value pair in the cache
1. Data enters a program from an untrusted source.
2. The data is used to dynamically construct a Memcached key or value.
Example 1: The following code dynamically constructs a Memcached key.
...
def store(request):
id = request.GET['id']
result = get_page_from_somewhere()
response = HttpResponse(result)
cache_time = 1800
cache.set("req-" % id, response, cache_time)
return response
...
The operation that this code intends to execute follows:
set req-1233 0 0 n
<serialized_response_instance>
However, because the operation is constructed dynamically by concatenating a constant key prefix and a user input string, an attacker may send the string
ignore 0 0 1\r\n1\r\nset injected 0 3600 10\r\n0123456789\r\nset req-
, then the operation becomes the following:
set req-ignore 0 0 1
1
set injected 0 3600 10
0123456789
set req-1233 0 0 n
<serialized_response_instance>
The preceding key will successfully add a new key/value pair in the cache
injected=0123456789
. Depending on the payload, attackers will be able to poison the cache or execute arbitrary code by injecting a Pickle-serialized payload that will execute arbitrary code upon deserialization.References
[1] Novikov The New Page Of Injections Book: Memcached Injections
[2] Standards Mapping - Common Weakness Enumeration CWE ID 20
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.memcached_injection