Kingdom: Security Features

Software security is not security software. Here we're concerned with topics like authentication, access control, confidentiality, cryptography, and privilege management.

Key Management: Null Encryption Key

Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account that is protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example 1: The following code performs AES encryption using a null encryption key:


...
var encryptionKey:ByteArray = null;
...
var aes.ICipher = Crypto.getCipher("aes-cbc", encryptionKey, padding);
...


Not only will anyone who has access to the code be able to determine that it uses a null encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 321
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[26] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[27] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.actionscript.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key. Not only does using a null encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example: The following code uses a null encryption key:


...
char encryptionKey[] = null;
...


Not only will anyone who has access to the code be able to determine that it uses a null encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Encrypting Your App's Files Apple
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 321
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[27] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.cpp.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key because it significantly reduces the protection afforded by a good encryption algorithm, and it is extremely difficult to fix the problem. After the offending code is in production, changing the null encryption key requires a software patch. If an account that is protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example 1: The following code performs AES encryption using a null encryption key:


...
aes.NewCipher(nil)
...


Anyone with access to the code can determine that it uses a null encryption key. Additionally, anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 321
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[26] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[27] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.golang.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account that is protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example 1: The following code performs AES encryption using a null encryption key:


...
SecretKeySpec key = null;
....
Cipher encryptCipher = Cipher.getInstance("AES");
encryptCipher.init(Cipher.ENCRYPT_MODE, key);
...


Not only will anyone who has access to the code be able to determine that it uses a null encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 321
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[26] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[27] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.java.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account that is protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example 1: The following code performs AES encryption using a null encryption key:


...
var crypto = require('crypto');
var encryptionKey = null;
var algorithm = 'aes-256-ctr';
var cipher = crypto.createCipher(algorithm, encryptionKey);
...


Not only will anyone who has access to the code be able to determine that it uses a null encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 321
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[26] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[27] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.javascript.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account that is protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example 1: The following code performs AES encryption using a null encryption key:


...
CCCrypt(kCCEncrypt,
kCCAlgorithmAES,
kCCOptionPKCS7Padding,
nil,
0,
iv,
plaintext,
sizeof(plaintext),
ciphertext,
sizeof(ciphertext),
&numBytesEncrypted);
...


Not only will anyone who has access to the code be able to determine that it uses a null encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Encrypting Your App's Files Apple
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 321
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[27] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.objc.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
Assigning null to encryption key variables is a bad idea because it can allow attackers to expose sensitive and encrypted information. Not only does using a null encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example: The following code initializes an encryption key variable to null.


...
$encryption_key = NULL;

$filter = new Zend_Filter_Encrypt($encryption_key);

$filter->setVector('myIV');

$encrypted = $filter->filter('text_to_be_encrypted');
print $encrypted;
...

Anyone who has access to the code would be able to determine that it uses a null encryption key, and anyone employing even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 321
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[27] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.php.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account that is protected by the null encryption key is compromised, the owners of the system must choose between security and availability.



Not only will anyone who has access to the code be able to determine that it uses a null encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 321
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[26] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[27] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.sql.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
Assigning None to encryption key variables is a bad idea because it can allow attackers to expose sensitive and encrypted information. Not only does using a null encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example: The following code initializes an encryption key variable to null.

...
from Crypto.Ciphers import AES
cipher = AES.new(None, AES.MODE_CFB, iv)
msg = iv + cipher.encrypt(b'Attack at dawn')
...


Anyone who has access to the code would be able to determine that it uses a null encryption key, and anyone employing even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 321
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[26] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[27] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.python.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key. Not only does using a null encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Anyone who has access to the code would be able to determine that it uses a null encryption key, and anyone employing even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 321
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[26] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[27] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.ruby.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key. Not only does using a null encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example 1: The following code performs AES encryption using a null encryption key:


...
CCCrypt(UInt32(kCCEncrypt),
UInt32(kCCAlgorithmAES128),
UInt32(kCCOptionPKCS7Padding),
nil,
0,
iv,
plaintext,
plaintext.length,
ciphertext.mutableBytes,
ciphertext.length,
&numBytesEncrypted)
...


Not only will anyone who has access to the code be able to determine that it uses a null encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Encrypting Your App's Files Apple
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 321
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[27] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.swift.key_management_null_encryption_key
Abstract
Null encryption keys can compromise security in a way that cannot be easily remedied.
Explanation
It is never a good idea to use a null encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null encryption key. If an account that is protected by the null encryption key is compromised, the owners of the system must choose between security and availability.

Example 1: The following code performs AES encryption using a null encryption key:


...
Dim encryptionKey As String
Set encryptionKey = vbNullString
Dim AES As New System.Security.Cryptography.RijndaelManaged
On Error GoTo ErrorHandler
AES.Key = System.Text.Encoding.ASCII.GetBytes(encryptionKey)
...
Exit Sub
...


Not only will anyone who has access to the code be able to determine that it uses a null encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null encryption key.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 321
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002450
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-12 Cryptographic Key Establishment and Management (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-12 Cryptographic Key Establishment and Management
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.9.1 Cryptographic Software and Devices Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 6.4.2 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[26] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[27] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.2 - Use of Cryptography
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[39] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002010 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002010 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002010 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002010 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002010 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002010 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002010 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002010 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002010 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002010 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002010 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002010 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002010 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002010 CAT II, APSC-DV-003100 CAT II, APSC-DV-003310 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.vb.key_management_null_encryption_key