Kingdom: API Abuse

An API is a contract between a caller and a callee. The most common forms of API abuse are caused by the caller failing to honor its end of this contract. For example, if a program fails to call chdir() after calling chroot(), it violates the contract that specifies how to change the active root directory in a secure fashion. Another good example of library abuse is expecting the callee to return trustworthy DNS information to the caller. In this case, the caller abuses the callee API by making certain assumptions about its behavior (that the return value can be used for authentication purposes). One can also violate the caller-callee contract from the other side. For example, if a coder subclasses SecureRandom and returns a non-random value, the contract is violated.

5 items found
Weaknesses
Abstract
The program violates the Enterprise JavaBeans specification by using AWT/Swing.
Explanation
The Enterprise JavaBeans specification requires that every bean provider follow a set of programming guidelines designed to ensure that the bean will be portable and behave consistently in any EJB container [1].

In this case, the program violates the following EJB guideline:

"An enterprise bean must not use the AWT functionality to attempt to output information to a display, or to input information from a keyboard."

A requirement that the specification justifies in the following way:

"Most servers do not allow direct interaction between an application program and a keyboard/display attached to the server system."
References
[1] The Enterprise JavaBeans 2.1 Specification Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 575
desc.structural.java.ejb_bad_practices_use_of_awt_swing
Abstract
The program violates the Enterprise JavaBeans specification by using the class loader.
Explanation
The Enterprise JavaBeans specification requires that every bean provider follow a set of programming guidelines designed to ensure that the bean will be portable and behave consistently in any EJB container [1].

In this case, the program violates the following EJB guideline:

"The enterprise bean must not attempt to create a class loader; obtain the current class loader; set the context class loader; set security manager; create a new security manager; stop the JVM; or change the input, output, and error streams."

A requirement that the specification justifies in the following way:

"These functions are reserved for the EJB container. Allowing the enterprise bean to use these functions could compromise security and decrease the container's ability to properly manage the runtime environment."
References
[1] The Enterprise JavaBeans 2.1 Specification Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 578
desc.structural.java.ejb_bad_practices_use_of_classloader
Abstract
The program violates the Enterprise JavaBeans specification by using the java.io package.
Explanation
The Enterprise JavaBeans specification requires that every bean provider follow a set of programming guidelines designed to ensure that the bean will be portable and behave consistently in any EJB container [1].

In this case, the program violates the following EJB guideline:

"An enterprise bean must not use the java.io package to attempt to access files and directories in the file system."

A requirement that the specification justifies in the following way:

"The file system APIs are not well-suited for business components to access data. Business components should use a resource manager API, such as JDBC, to store data."
References
[1] The Enterprise JavaBeans 2.1 Specification Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 576
desc.structural.java.ejb_bad_practices_use_of_java_io
Abstract
The program violates the Enterprise JavaBeans specification by using sockets.
Explanation
The Enterprise JavaBeans specification requires that every bean provider follow a set of programming guidelines designed to ensure that the bean will be portable and behave consistently in any EJB container [1].

In this case, the program violates the following EJB guideline:

"An enterprise bean must not attempt to listen on a socket, accept connections on a socket, or use a socket for multicast."

A requirement that the specification justifies in the following way:

"The EJB architecture allows an enterprise bean instance to be a network socket client, but it does not allow it to be a network server. Allowing the instance to become a network server would conflict with the basic function of the enterprise bean-- to serve the EJB clients."
References
[1] The Enterprise JavaBeans 2.1 Specification Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 577
desc.structural.java.ejb_bad_practices_use_of_sockets
Abstract
The program violates the Enterprise JavaBeans specification by using thread synchronization primitives.
Explanation
The Enterprise JavaBeans specification requires that every bean provider follow a set of programming guidelines designed to ensure that the bean will be portable and behave consistently in any EJB container [1].

In this case, the program violates the following EJB guideline:

"An enterprise bean must not use thread synchronization primitives to synchronize execution of multiple instances."

A requirement that the specification justifies in the following way:

"This rule is required to ensure consistent runtime semantics because while some EJB containers may use a single JVM to execute all enterprise bean's instances, others may distribute the instances across multiple JVMs."
References
[1] The Enterprise JavaBeans 2.1 Specification Sun Microsystems
[2] THI01-J. Do not invoke ThreadGroup methods CERT
[3] Standards Mapping - Common Weakness Enumeration CWE ID 574
desc.structural.java.ejb_bad_practices_use_of_synchronization_primitives