var yamlString = getYAMLFromUser();
// Setup the input
var input = new StringReader(yamlString);
// Load the stream
var yaml = new YamlStream();
yaml.Load(input);
var yaml = require('js-yaml');
var untrusted_yaml = getYAMLFromUser();
yaml.load(untrusted_yaml)
import yaml
yamlString = getYamlFromUser()
yaml.load(yamlString)
Example 2: The following ASPX code enables the automatic redirect of all ASP.NET framework script requests to the Microsoft Ajax CDN:
...
<script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js" type="text/javascript"></script>
...
...
<asp:ScriptManager
ID="ScriptManager1"
EnableCdn="true"
Runat="Server" />
...
Example 2
, the ScriptManager
control configures its ASPX page to automatically redirect any script requests to the appropriate CDN.=cmd|'/C calc.exe'!Z0
. If the user who opens the spreadsheet trusts the origin of the document, they might accept all the security prompts presented by the spreadsheet processor and let the payload (in this example, opening the Windows calculator) run on their system.
public void Service()
{
string name = HttpContext.Request["name"];
string data = GenerateCSVFor(name);
HttpContext.Response.Clear();
HttpContext.Response.Buffer = true;
HttpContext.Response.AddHeader("content-disposition", "attachment;filename=file.csv");
HttpContext.Response.Charset = "";
HttpContext.Response.ContentType = "application/csv";
HttpContext.Response.Output.Write(tainted);
HttpContext.Response.Flush();
HttpContext.Response.End();
}
=cmd|'/C calc.exe'!Z0
. If the user who opens the spreadsheet trusts the origin of the document, they might accept all the security prompts presented by the spreadsheet processor and let the payload (in this example, opening the Windows calculator) run on their system.
func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
foo := r.FormValue("foo")
...
w := csv.NewWriter(file)
w.Write(foo)
}
=cmd|'/C calc.exe'!Z0
. If the user who opens the spreadsheet trusts the origin of the document, they might accept all the security prompts presented by the spreadsheet processor and let the payload (in this example, opening the Windows calculator) run on their system.
@RequestMapping(value = "/api/service.csv")
public ResponseEntity<String> service(@RequestParam("name") String name) {
HttpHeaders responseHeaders = new HttpHeaders();
responseHeaders.add("Content-Type", "application/csv; charset=utf-8");
responseHeaders.add("Content-Disposition", "attachment;filename=file.csv");
String data = generateCSVFor(name);
return new ResponseEntity<>(data, responseHeaders, HttpStatus.OK);
}
=cmd|'/C calc.exe'!Z0
. If the user who opens the spreadsheet trusts the origin of the document, they might accept all the security prompts presented by the spreadsheet processor and let the payload (in this example, opening the Windows calculator) run on their system.
@RequestMapping(value = "/api/service.csv")
fun service(@RequestParam("name") name: String): ResponseEntity<String> {
val responseHeaders = HttpHeaders()
responseHeaders.add("Content-Type", "application/csv; charset=utf-8")
responseHeaders.add("Content-Disposition", "attachment;filename=file.csv")
val data: String = generateCSVFor(name)
return ResponseEntity(data, responseHeaders, HttpStatus.OK)
}
services
.AddGraphQLServer()
.AddQueryType<Query>()
.AddMutationType<Mutation>();
spring.graphql.schema.introspection.enabled=true
app.use('/graphql', graphqlHTTP({
schema
}));
app.add_url_rule('/graphql', view_func=GraphQLView.as_view(
'graphql',
schema = schema
))
Metadata
object is created from an untrusted source, which might enable an attacker to control critical protocol fields.Metadata
class is often used to house header data for an underlying protocol used by Google Remote Procedure Call (gRPC). When the underlying protocol is HTTP, control of the data in a Metadata
object can make the system vulnerable to HTTP Header Manipulation. Other attack vectors are possible and are primarily based on the underlying protocol.Metadata
object.
...
String? evnVar = System.Environment.GetEnvironmentVariable("evnVar ");
Metadata headers = new Metadata();
headers.Add("field", evnVar);
CallOptions callOptions = new CallOptions(headers);
...
Metadata
object is created from an untrusted source, which might allow an attacker to control critical protocol fields.Metadata
class is often used to house header data for an underlying protocol used by Google Remote Procedure Call (gRPC). When the underlying protocol is HTTP, control of the data in a Metadata
object can make the system vulnerable to HTTP Header Manipulation. Other attack vectors are possible and are primarily based on the underlying protocol.Metadata
object.
...
String badData = getUserInput();
Metadata headers = new Metadata();
headers.put(Metadata.Key.of("sample", Metadata.ASCII_STRING_MARSHALLER), badData);
...
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
@HttpGet
global static void doGet() {
...
Map<String, String> params = ApexPages.currentPage().getParameters();
RestResponse res = RestContext.response;
res.addHeader(params.get('name'), params.get('value'));
...
}
author
and Jane Smith
, the HTTP response including this header might take the following form:
HTTP/1.1 200 OK
...
author:Jane Smith
...
HTTP/1.1 200 OK\r\n...foo
and bar
, then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
HTTP/1.1 200 OK
...
foo:bar
HttpResponse.AddHeader()
method. If you are using the latest .NET framework that prevents setting headers with new line characters, then your application might not be vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
Author.Text
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
author
, from an HTML form and sets it in a cookie header of an HTTP response.
...
EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(AUTHOR)
...
END-EXEC.
EXEC CICS
WEB WRITE
HTTPHEADER(COOKIE)
VALUE(AUTHOR)
...
END-EXEC.
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from a web form and sets it in a cookie header of an HTTP response.
<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1/1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final contentType = headers.value('content-type');
final client = HttpClient();
final clientRequest = await client.getUrl(Uri.parse('https://example.com'));
clientRequest.headers.add('Content-Type', contentType as Object);
});
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.name
and value
may be controlled by an attacker. The code sets an HTTP header whose name and value may be controlled by an attacker:
...
NSURLSessionConfiguration * config = [[NSURLSessionConfiguration alloc] init];
NSMutableDictionary *dict = @{};
[dict setObject:value forKey:name];
[config setHTTPAdditionalHeaders:dict];
...
author
and Jane Smith
, the HTTP response including this header might take the following form:
HTTP/1.1 200 OK
...
author:Jane Smith
...
HTTP/1.1 200 OK\r\n...foo
and bar
, then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
HTTP/1.1 200 OK
...
foo:bar
header()
function. If your version of PHP prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
<?php
$location = $_GET['some_location'];
...
header("location: $location");
?>
HTTP/1.1 200 OK
...
location: index.html
...
some_location
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
location: index.html
HTTP/1.1 200 OK
...
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
-- Assume QUERY_STRING looks like AUTHOR_PARAM=Name
author := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 14);
OWA_UTIL.mime_header('text/html', false);
OWA_COOKE.send('author', author);
OWA_UTIL.http_header_close;
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
location = req.field('some_location')
...
response.addHeader("location",location)
HTTP/1.1 200 OK
...
location: index.html
...
some_location
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
location: index.html
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and uses this in a get request to another part of the site.
author = req.params[AUTHOR_PARAM]
http = Net::HTTP.new(URI("http://www.mysite.com"))
http.post('/index.php', "author=#{author}")
POST /index.php HTTP/1.1
Host: www.mysite.com
author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nPOST /index.php HTTP/1.1\r\n...", then the HTTP response would be split into two responses of the following form:
POST /index.php HTTP/1.1
Host: www.mysite.com
author=Wiley Hacker
POST /index.php HTTP/1.1
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.name
and value
may be controlled by an attacker. The code sets an HTTP header whose name and value may be controlled by an attacker:
...
var headers = []
headers[name] = value
let config = NSURLSessionConfiguration.backgroundSessionConfigurationWithIdentifier("com.acme")
config.HTTPAdditionalHeaders = headers
...
author
and Jane Smith
, the HTTP response including this header might take the following form:
HTTP/1.1 200 OK
...
author:Jane Smith
...
HTTP/1.1 200 OK\r\n...foo
and bar
, then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
HTTP/1.1 200 OK
...
foo:bar
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
Cookie cookie = new Cookie('author', author, '/', -1, false);
ApexPages.currentPage().setCookies(new Cookie[] {cookie});
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
author
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response is split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
Example 1
to the Android platform.Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.
...
CookieManager webCookieManager = CookieManager.getInstance();
String author = this.getIntent().getExtras().getString(AUTHOR_PARAM);
String setCookie = "author=" + author + "; max-age=" + cookieExpiration;
webCookieManager.setCookie(url, setCookie);
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
<?php
$author = $_GET['AUTHOR_PARAM'];
...
header("author: $author");
?>
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
location = req.field('some_location')
...
response.addHeader("location",location)
HTTP/1.1 200 OK
...
location: index.html
...
some_location
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
location: index.html
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
HtmlInputHidden hidden = new HtmlInputHidden();
Hidden hidden = new Hidden(element);
<input>
tag of type hidden
indicates the use of a hidden field.
<input type="hidden">
X-XSS-Protection
header is typically enabled by default in modern browsers. When the header value is set to false (0), cross-site scripting protection is disabled.X-XSS-Protection
header is explicitly disabled which might increase the risk of cross-site scripting attacks.X-XSS-Protection
header is typically enabled by default in modern browsers. When the header value is set to false (0), cross-site scripting protection is disabled.
<http auto-config="true">
...
<headers>
...
<xss-protection xss-protection-enabled="false" />
</headers>
</http>
X-XSS-Protection
header is explicitly disabled which may increase the risk of cross-site scripting attacks.X-XSS-Protection
header is typically enabled by default in modern browsers. When the header value is set to false (0), cross-site scripting protection is disabled.X-XSS-Protection
header is explicitly disabled which may increase the risk of cross-site scripting attacks.X-XSS-Protection
header is typically enabled by default in modern browsers. When the header value is set to false (0), cross-site scripting protection is disabled.Application_BeginRequest
is either empty or does not include a function call to set the X-Content-Type-Options
to nosniff
or attempts to remove that header.X-Content-Type-Options: nosniff
.X-Content-Type-Options
to nosniff
.X-Content-Type-Options: nosniff
for each page that could contain user-controllable content.net.http.DetectContentType()
to determine the response Content-Type:
...
resp, err := http.Get("http://example.com/")
if err != nil {
// handle error
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
content_type := DetectContentType(body)
...
X-Content-Type-Options
to nosniff
or explicitly disables this security header.X-Content-Type-Options: nosniff
.
<http auto-config="true">
...
<headers>
...
<content-type-options disabled="true"/>
</headers>
</http>
X-Content-Type-Options
to nosniff
or explicitly disables this security header.X-Content-Type-Options: nosniff
.X-Content-Type-Options
to nosniff
or explicitly disables this security header.X-Content-Type-Options: nosniff
.Access-Control-Allow-Origin
is defined. With this header, a Web server defines which other domains are allowed to access its domain using cross-origin requests. However, exercise caution when defining the header because an overly permissive CORS policy can enable a malicious application to inappropriately communicate with the victim application, which can lead to spoofing, data theft, relay, and other attacks.
Response.AppendHeader("Access-Control-Allow-Origin", "*");
*
as the value of the Access-Control-Allow-Origin
header indicates that the application's data is accessible to JavaScript running on any domain.Access-Control-Allow-Origin
is defined. With this header, a Web server defines which other domains are allowed to access its domain using cross-origin requests. However, exercise caution when defining the header because an overly permissive CORS policy can enable a malicious application to inappropriately communicate with the victim application, which can lead to spoofing, data theft, relay, and other attacks.
<websocket:handlers allowed-origins="*">
<websocket:mapping path="/myHandler" handler="myHandler" />
</websocket:handlers>
*
as the value of the Access-Control-Allow-Origin
header indicates that the application's data is accessible to JavaScript running on any domain.Access-Control-Allow-Origin
is defined. With this header, a Web server defines which other domains are allowed to access its domain using cross-origin requests. However, exercise caution when defining the header because an overly permissive CORS policy can enable a malicious application to inappropriately communicate with the victim application, which can lead to spoofing, data theft, relay, and other attacks.
<?php
header('Access-Control-Allow-Origin: *');
?>
*
as the value of the Access-Control-Allow-Origin
header indicates that the application's data is accessible to JavaScript running on any domain.Access-Control-Allow-Origin
is defined. With this header, a Web server defines which other domains are allowed to access its domain using cross-origin requests. However, exercise caution when defining the header because an overly permissive CORS policy can enable a malicious application to inappropriately communicate with the victim application, which can lead to spoofing, data theft, relay, and other attacks.
response.addHeader("Access-Control-Allow-Origin", "*")
*
as the value of the Access-Control-Allow-Origin
header indicates that the application's data is accessible to JavaScript running on any domain.Access-Control-Allow-Origin
is defined. With this header, a Web server defines which other domains are allowed to access its domain using cross-origin requests. However, exercise caution when defining the header because an overly permissive CORS policy can enable a malicious application to inappropriately communicate with the victim application, which can lead to spoofing, data theft, relay, and other attacks.
play.filters.cors {
pathPrefixes = ["/some/path", ...]
allowedOrigins = ["*"]
allowedHttpMethods = ["GET", "POST"]
allowedHttpHeaders = ["Accept"]
preflightMaxAge = 3 days
}
*
as the value of the Access-Control-Allow-Origin
header indicates that the application's data is accessible to JavaScript running on any domain.Access-Control-Allow-Origin
is defined. With this header, a Web server defines which other domains are allowed to access its domain using cross-origin requests. However, exercise caution when defining the header because an overly permissive CORS policy can enable a malicious application to inappropriately communicate with the victim application, which can lead to spoofing, data theft, relay, and other attacks.
Response.AddHeader "Access-Control-Allow-Origin", "*"
*
as the value of the Access-Control-Allow-Origin
header indicates that the application's data is accessible to JavaScript running on any domain.
...
String lang = Request.Form["lang"];
WebClient client = new WebClient();
client.BaseAddress = url;
NameValueCollection myQueryStringCollection = new NameValueCollection();
myQueryStringCollection.Add("q", lang);
client.QueryString = myQueryStringCollection;
Stream data = client.OpenRead(url);
...
lang
such as en&poll_id=1
, and then the attacker may be able to change the poll_id
at will.
...
String lang = request.getParameter("lang");
GetMethod get = new GetMethod("http://www.example.com");
get.setQueryString("lang=" + lang + "&poll_id=" + poll_id);
get.execute();
...
lang
such as en&poll_id=1
, and then the attacker will be able to change the poll_id
at will.
<%
...
$id = $_GET["id"];
header("Location: http://www.host.com/election.php?poll_id=" . $id);
...
%>
name=alice
specified, but they have added an additional name=alice&
, and if this is being used on a server that takes the first occurrence, then this may impersonate alice
in order to get further information regarding her account.
<authorization>
<allow verbs="GET,POST" users="admin"/>
<deny verbs="GET,POST"users="*" />
</authorization>
<security-constraint>
<display-name>Admin Constraint</display-name>
<web-resource-collection>
<web-resource-name>Admin Area</web-resource-name>
<url-pattern>/pages/index.jsp</url-pattern>
<url-pattern>/admin/*.do</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>only admin</description>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>
<http-method>
tag in this configuration, it might be possible to exercise administrative functionality by substituting GET or POST requests with HEAD requests. For HEAD requests to exercise administrative functionality, condition 3 must hold - the application must carry out commands based on verbs other than POST. Some web/application servers will accept arbitrary non-standard HTTP verbs and respond as if they were given a GET request. If that is the case, an attacker would be able to view administrative pages by using an arbitrary verb in a request.
GET /admin/viewUsers.do HTTP/1.1
Host: www.example.com
FOO /admin/viewUsers.do HTTP/1.1
Host: www.example.com
FORM GenerateReceiptURL CHANGING baseUrl TYPE string.
DATA: r TYPE REF TO cl_abap_random,
var1 TYPE i,
var2 TYPE i,
var3 TYPE n.
GET TIME.
var1 = sy-uzeit.
r = cl_abap_random=>create( seed = var1 ).
r->int31( RECEIVING value = var2 ).
var3 = var2.
CONCATENATE baseUrl var3 ".html" INTO baseUrl.
ENDFORM.
CL_ABAP_RANDOM->INT31
function to generate "unique" identifiers for the receipt pages it generates. Since CL_ABAP_RANDOM
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
string GenerateReceiptURL(string baseUrl) {
Random Gen = new Random();
return (baseUrl + Gen.Next().toString() + ".html");
}
Random.Next()
function to generate "unique" identifiers for the receipt pages it generates. Since Random.Next()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
char* CreateReceiptURL() {
int num;
time_t t1;
char *URL = (char*) malloc(MAX_URL);
if (URL) {
(void) time(&t1);
srand48((long) t1); /* use time to set seed */
sprintf(URL, "%s%d%s", "http://test.com/", lrand48(), ".html");
}
return URL;
}
lrand48()
function to generate "unique" identifiers for the receipt pages it generates. Since lrand48()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers.
<cfoutput>
Receipt: #baseUrl##Rand()#.cfm
</cfoutput>
Rand()
function to generate "unique" identifiers for the receipt pages it generates. Since Rand()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
import "math/rand"
...
var mathRand = rand.New(rand.NewSource(1))
rsa.GenerateKey(mathRand, 2048)
rand.New()
function to generate randomness for an RSA key. Since rand.New()
is a statistical PRNG, it is easy for an attacker to guess the value it generates.
String GenerateReceiptURL(String baseUrl) {
Random ranGen = new Random();
ranGen.setSeed((new Date()).getTime());
return (baseUrl + ranGen.nextInt(400000000) + ".html");
}
Random.nextInt()
function to generate "unique" identifiers for the receipt pages it generates. Since Random.nextInt()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
function genReceiptURL (baseURL){
var randNum = Math.random();
var receiptURL = baseURL + randNum + ".html";
return receiptURL;
}
Math.random()
function to generate "unique" identifiers for the receipt pages it generates. Since Math.random()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
fun GenerateReceiptURL(baseUrl: String): String {
val ranGen = Random(Date().getTime())
return baseUrl + ranGen.nextInt(400000000).toString() + ".html"
}
Random.nextInt()
function to generate "unique" identifiers for the receipt pages it generates. Since Random.nextInt()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
function genReceiptURL($baseURL) {
$randNum = rand();
$receiptURL = $baseURL . $randNum . ".html";
return $receiptURL;
}
rand()
function to generate "unique" identifiers for the receipt pages it generates. Since rand()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
CREATE or REPLACE FUNCTION CREATE_RECEIPT_URL
RETURN VARCHAR2
AS
rnum VARCHAR2(48);
time TIMESTAMP;
url VARCHAR2(MAX_URL)
BEGIN
time := SYSTIMESTAMP;
DBMS_RANDOM.SEED(time);
rnum := DBMS_RANDOM.STRING('x', 48);
url := 'http://test.com/' || rnum || '.html';
RETURN url;
END
DBMS_RANDOM.SEED()
function to generate "unique" identifiers for the receipt pages it generates. Since DBMS_RANDOM.SEED()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers.
def genReceiptURL(self,baseURL):
randNum = random.random()
receiptURL = baseURL + randNum + ".html"
return receiptURL
rand()
function to generate "unique" identifiers for the receipt pages it generates. Since rand()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
def generateReceiptURL(baseUrl) {
randNum = rand(400000000)
return ("#{baseUrl}#{randNum}.html");
}
Kernel.rand()
function to generate "unique" identifiers for the receipt pages it generates. Since Kernel.rand()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates.
def GenerateReceiptURL(baseUrl : String) : String {
val ranGen = new scala.util.Random()
ranGen.setSeed((new Date()).getTime())
return (baseUrl + ranGen.nextInt(400000000) + ".html")
}
Random.nextInt()
function to generate "unique" identifiers for the receipt pages it generates. Since Random.nextInt()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
sqlite3_randomness(10, &reset_token)
...
Function genReceiptURL(baseURL)
dim randNum
randNum = Rnd()
genReceiptURL = baseURL & randNum & ".html"
End Function
...
Rnd()
function to generate "unique" identifiers for the receipt pages it generates. Since Rnd()
is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.
...
private bool CertificateCheck(object sender, X509Certificate certificate, X509Chain chain, SslPolicyErrors sslPolicyErrors)
{
...
return true;
}
...
HttpWebRequest webRequest = (HttpWebRequest) WebRequest.Create("https://www.myTrustedSite.com");
webRequest.ServerCertificateValidationCallback = CertificateCheck;
WebResponse response = webRequest.GetResponse();
...
...
SSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, verify_callback);
...
...
config := &tls.Config{
// Set InsecureSkipVerify to skip the default validation
InsecureSkipVerify: true,
...
}
conn, err := tls.Dial("tcp", "example.com:443", conf)
..
...
Email email = new SimpleEmail();
email.setHostName("smtp.servermail.com");
email.setSmtpPort(465);
email.setAuthenticator(new DefaultAuthenticator(username, password));
email.setSSLOnConnect(true);
email.setFrom("user@gmail.com");
email.setSubject("TestMail");
email.setMsg("This is a test mail ... :-)");
email.addTo("foo@bar.com");
email.send();
...
smtp.mailserver.com:465
, this application would readily accept a certificate issued to "hackedserver.com
". The application would now potentially leak sensitive user information on a broken SSL connection to the hacked server.
...
var options = {
key : fs.readFileSync('my-server-key.pem'),
cert : fs.readFileSync('server-cert.pem'),
requestCert: true,
...
}
https.createServer(options);
...
https.Server
object is created, the setting requestCert
is specified to true
, but rejectUnauthorized
is not set, which defaults to false
. This means that although the server was created with the intention of verifying clients over SSL, connections will still be accepted even if the certificate is not authorized with the list of supplied CAs.
var tls = require('tls');
...
tls.connect({
host: 'https://www.hackersite.com',
port: '443',
...
rejectUnauthorized: false,
...
});
rejectUnauthorized
was set to false, it means that unauthorized certificates will be accepted, and a secure connection to the unidentified server will still be created. The application would now potentially leak sensitive user information on a broken SSL connection to the hacked server.NSURLConnectionDelegate
to accept any HTTPS certificate:
implementation NSURLRequest (IgnoreSSL)
+ (BOOL)allowsAnyHTTPSCertificateForHost:(NSString *)host
{
return YES;
}
@end
NSURLRequest
from Example 1
, no warnings or errors will result if the requested server's certificate is self-signed (and therefore unverified). As a result, the application would now potentially leak sensitive user information over the broken SSL connection.
...
import ssl
ssl_sock = ssl.wrap_socket(s)
...
require 'openssl'
...
ctx = OpenSSL::SSL::SSLContext.new
ctx.verify_mode=OpenSSL::SSL::VERIFY_NONE
...
NSURLConnectionDelegate
to accept any HTTPS certificate:
class Delegate: NSObject, NSURLConnectionDelegate {
...
func connection(connection: NSURLConnection, canAuthenticateAgainstProtectionSpace protectionSpace: NSURLProtectionSpace?) -> Bool {
return protectionSpace?.authenticationMethod == NSURLAuthenticationMethodServerTrust
}
func connection(connection: NSURLConnection, willSendRequestForAuthenticationChallenge challenge: NSURLAuthenticationChallenge) {
challenge.sender?.useCredential(NSURLCredential(forTrust: challenge.protectionSpace.serverTrust!), forAuthenticationChallenge: challenge)
challenge.sender?.continueWithoutCredentialForAuthenticationChallenge(challenge)
}
}
NSURLConnectionDelegate
from Example 1
, no warnings or errors will result if the requested server's certificate is self-signed (and therefore unverified). As a result, the application would now potentially leak sensitive user information over the broken SSL connection.NSURLSession
class, the SSL/TLS chain validation is handled by your app's authentication delegate method, but instead of providing credentials to authenticate the user (or your app) to the server, your app instead checks the credentials that the server provides during the SSL/TLS handshake, then tells the URL loading system whether it should accept or reject those credentials. The following code shows an NSURLSessionDelgate
that just passes proposedCredential
of the challenge received back as a credential for the session, effectively bypassing the server verification:
class MySessionDelegate : NSObject, NSURLSessionDelegate {
...
func URLSession(session: NSURLSession, didReceiveChallenge challenge: NSURLAuthenticationChallenge, completionHandler: (NSURLSessionAuthChallengeDisposition, NSURLCredential?) -> Void) {
...
completionHandler(NSURLSessionAuthChallengeDisposition.UseCredential, challenge.proposedCredential)
...
}
...
}
...
FINAL(client) = cl_apc_tcp_client_manager=>create(
i_host = ip_adress
i_port = port
i_frame = VALUE apc_tcp_frame(
frame_type =
if_apc_tcp_frame_types=>co_frame_type_terminator
terminator =
terminator )
i_event_handler = event_handler ).
...
client
object and the remote server is vulnerable to compromise, because it is transmitted over an unencrypted and unauthenticated channel.
...
HttpRequest req = new HttpRequest();
req.setEndpoint('http://example.com');
HTTPResponse res = new Http().send(req);
...
HttpResponse
object, res
, might be compromised as it is delivered over an unencrypted and unauthenticated channel.
var account = new CloudStorageAccount(storageCredentials, false);
...
String url = 'http://10.0.2.2:11005/v1/key';
Response response = await get(url, headers: headers);
...
response
, might have been compromised as it is delivered over an unencrypted and unauthenticated channel.
helloHandler := func(w http.ResponseWriter, req *http.Request) {
io.WriteString(w, "Hello, world!\n")
}
http.HandleFunc("/hello", helloHandler)
log.Fatal(http.ListenAndServe(":8080", nil))
URL url = new URL("http://www.android.com/");
HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
try {
InputStream in = new BufferedInputStream(urlConnection.getInputStream());
readStream(in);
...
}
instream
, may have been compromised as it is delivered over an unencrypted and unauthenticated channel.
var http = require('http');
...
http.request(options, function(res){
...
});
...
http.IncomingMessage
object,res
, may have been compromised as it is delivered over an unencrypted and unauthenticated channel.
NSString * const USER_URL = @"http://localhost:8080/igoat/user";
NSMutableURLRequest *request = [NSMutableURLRequest requestWithURL:[NSURL URLWithString:USER_URL]];
[[NSURLConnection alloc] initWithRequest:request delegate:self];
...
stream_socket_enable_crypto($fp, false);
...
require 'net/http'
conn = Net::HTTP.new(URI("http://www.website.com/"))
in = conn.get('/index.html')
...
in
, may have been compromised as it is delivered over an unencrypted and unauthenticated channel.
val url = Uri.from(scheme = "http", host = "192.0.2.16", port = 80, path = "/")
val responseFuture: Future[HttpResponse] = Http().singleRequest(HttpRequest(uri = url))
responseFuture
, may have been compromised as it is delivered over an unencrypted and unauthenticated channel.
let USER_URL = "http://localhost:8080/igoat/user"
let request : NSMutableURLRequest = NSMutableURLRequest(URL:NSURL(string:USER_URL))
let conn : NSURLConnection = NSURLConnection(request:request, delegate:self)
...
Using(SqlConnection DBconn = new SqlConnection("Data Source=210.10.20.10,1433; Initial Catalog=myDataBase;User ID=myUsername;Password=myPassword;"))
{
...
}
...
...
insecure_config = {
'user': username,
'password': retrievedPassword,
'host': databaseHost,
'port': "3306",
'ssl_disabled': True
}
mysql.connector.connect(**insecure_config)
...
...
using var channel = GrpcChannel.ForAddress("https://grpcserver.com", new GrpcChannelOptions {
Credentials = ChannelCredentials.Insecure
});
...
...
ManagedChannel channel = Grpc.newChannelBuilder("hostname", InsecureChannelCredentials.create()).build();
...
None
. Data sent with insecure channel credential settings cannot be trusted.root_certificates
parameter will be set to None
, the value of the private_key
parameter will be set to None
, and the value of the certificate_chain
parameter will be set to None
.
...
channel_creds = grpc.ssl_channel_credentials()
...
SmtpClient
is configured incorrectly, not using SSL/TLS to communicate with an SMTP server:
string to = "bob@acme.com";
string from = "alice@acme.com";
MailMessage message = new MailMessage(from, to);
message.Subject = "SMTP client.";
message.Body = @"You can send an email message from an application very easily.";
SmtpClient client = new SmtpClient("smtp.acme.com");
client.UseDefaultCredentials = true;
client.Send(message);
<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
<property name="host" value="smtp.acme.com" />
<property name="port" value="25" />
<property name="javaMailProperties">
<props>
<prop key="mail.smtp.auth">true</prop>
</props>
</property>
</bean>
session = smtplib.SMTP(smtp_server, smtp_port)
session.ehlo()
session.login(username, password)
session.sendmail(frm, to, content)