545 items found
Weaknesses
Abstract
The application fails to adhere to the principle of least privilege, which greatly amplifies the risk posed by other vulnerabilities.
Explanation
An application should only have the minimum permissions required for its proper execution. Extra permissions might deter users from installing the application. This permission might be unnecessary for this program.
References
[1] Security guidelines - Permissions
[2] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner Android Permissions Demystified
[3] Standards Mapping - Common Weakness Enumeration CWE ID 250
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [22] CWE ID 269
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [15] CWE ID 269
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000381, CCI-002233, CCI-002235
[7] Standards Mapping - FIPS200 AC
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-6 Least Privilege (P1), CM-7 Least Functionality (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-6 Least Privilege, CM-7 Least Functionality
[11] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 10.2.2 Malicious Code Search (L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[16] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[17] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 7.1.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 7.1.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 7.1.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 7.1.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 7.1.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 7.1.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 7.2.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 7.2.2
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[33] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 285
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 285
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3500 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3500 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3500 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3500 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3500 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3500 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.configuration.java.privilege_management_unnecessary_permission
Abstract
Transferring program control to an untrusted program or a transaction, or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the program or the code of the transaction being invoked: the attacker explicitly controls what the program name or transaction code is.

- An attacker can change the environment in which the program or the transaction is invoked: the attacker implicitly controls a communication area made available to the invoked program or the transaction.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the program or the code of the transaction that is invoked. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a program name or a transaction code that is invoked.



3. By executing code from the invoked program or the transaction, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code excerpt from a privileged system utility reads a value from an HTTP request to determine the code of the transaction to call.


...
tid = request->get_form_field( 'tid' ).

CALL TRANSACTION tid USING bdcdata MODE 'N'
MESSAGES INTO messtab.
...


This code excerpt allows an attacker to call any transaction and potentially execute arbitrary code with the elevated privilege of the application. Because the program does not validate the value read from the HTTP request, if an attacker can control this value, then they can fool the application into running malicious code and take control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[22] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[23] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[24] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[26] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.abap.process_control
Abstract
Loading libraries or executables from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the library or executable that the program loads: the attacker explicitly controls what the name of the library or executable is.

- An attacker can change the environment in which the library or executable loads: the attacker implicitly controls what the library or executable name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library or an executable that is loaded by the application.



3. By executing code from the library or executable, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged system utility uses the application configuration property APPHOME and then loads a native library based on a relative path from the specified directory.


...
string lib = ConfigurationManager.AppSettings["APPHOME"];
Environment.ExitCode = AppDomain.CurrentDomain.ExecuteAssembly(lib);
...


This code allows an attacker to load a library or an executable and potentially execute arbitrary code with the elevated privilege of the application by modifying the application configuration property APPHOME to point to a different path containing a malicious version of LIBNAME. Because the program does not validate the value read from the environment, if attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.
References
[1] Dotnet 4.6 API Documentation Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.dotnet.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious code on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the library that the program executes: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as part of a string representing a library name that is loaded by the application.

3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged application uses a registry entry to determine the directory in which it is installed and loads a library file based on a relative path from the specified directory.


...
RegQueryValueEx(hkey, "APPHOME",
0, 0, (BYTE*)home, &size);
char* lib=(char*)malloc(strlen(home)+strlen(INITLIB));
if (lib) {
strcpy(lib,home);
strcat(lib,INITCMD);
LoadLibrary(lib);
}
...


The code in this example allows an attacker to load an arbitrary library, from which code will be executed with the elevated privilege of the application, by modifying a registry key to specify a different path containing a malicious version of INITLIB. Because the program does not validate the value read from the environment, if an attacker can control the value of APPHOME, they can fool the application into running malicious code.

Example 2: The following code is from a web-based administration utility that allows users access to an interface through which they can update their profile on the system. The utility uses a library named liberty.dll, which is intended to be found in a standard system directory.


LoadLibrary("liberty.dll");


However, the program does not specify an absolute path for liberty.dll. If an attacker places a malicious library named liberty.dll higher in the search order than the intended file and has a way to execute the program in their environment rather than the web server's environment, then the application will load the malicious library instead of the trusted one. Because this type of application runs with elevated privileges, the contents of the attacker's liberty.dll is now be run with elevated privileges, potentially giving them complete control of the system.

This type of attack is possible due to the search order used by LoadLibrary() when an absolute path is not specified. If the current directory is searched before system directories, as was the case up until the most recent versions of Windows, then this type of attack becomes trivial if the attacker may execute the program locally. The search order is operating system version dependent, and is controlled on newer operating systems by the value of this registry key:


HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode


This key is not defined on Windows 2000/NT and Windows Me/98/95 systems.

On systems where the key does exist, LoadLibrary() behaves as follows:
If SafeDllSearchMode is 1, the search order is as follows:
(Default setting for Windows XP-SP1 and later, as well as Windows Server 2003.)
1. The directory from which the application was loaded.
2. The system directory.
3. The 16-bit system directory, if it exists.
4. The Windows directory.
5. The current directory.
6. The directories that are listed in the PATH environment variable.
If SafeDllSearchMode is 0, the search order is as follows:
1. The directory from which the application was loaded.
2. The current directory.
3. The system directory.
4. The 16-bit system directory, if it exists.
5. The Windows directory.
6. The directories that are listed in the PATH environment variable.
References
[1] LoadLibraryW function Microsoft
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[23] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[24] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[25] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[27] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[28] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.cpp.process_control
Abstract
Transferring program control to an untrusted application program or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the program being invoked: the attacker explicitly controls what the name of the application program is.

- An attacker can change the environment in which the program is invoked: the attacker implicitly controls a communication area made available to the invoked program.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker might control the name of the program that is invoked. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as part of, or the entire string representing a program that is invoked or determines some control over the environment in which the program is invoked.



3. By executing code from the invoked program, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged system utility reads a value from the terminal to determine the name of the program to transfer control to.


...
ACCEPT PROGNAME.
EXEC CICS
LINK PROGRAM(PROGNAME)
COMMAREA(COMA)
LENGTH(LENA)
DATALENGTH(LENI)
SYSID('CONX')
END-EXEC.
...


This code allows an attacker to transfer control to a program and potentially execute arbitrary code with the elevated privilege of the application. Because the program does not validate the value read from the terminal, if an attacker can control this value, then they can fool the application into running malicious code and take control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[22] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[23] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[24] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[26] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.cobol.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the library that the program loads: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library that is loaded by the application.



3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged system utility uses the system property APPHOME to determine the directory in which it is installed and then loads a native library based on a relative path from the specified directory.


...
String home = System.getProperty("APPHOME");
String lib = home + LIBNAME;
java.lang.Runtime.getRuntime().load(lib);
...


This code allows an attacker to load a library and potentially execute arbitrary code with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of LIBNAME. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code uses System.loadLibrary() to load code from a native library named library.dll, which is normally found in a standard system directory.


...
System.loadLibrary("library.dll");
...


The problem here is that System.loadLibrary() accepts a library name, not a path, for the library to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]:

A file containing native code is loaded from the local file system from a place where library files are conventionally obtained. The details of this process are implementation-dependent. The mapping from a library name to a specific filename is done in a system-specific manner.

If an attacker is able to place a malicious copy of library.dll higher in the search order than file the application intends to load, then the application will load the malicious copy instead of the intended file. Because of the nature of the application, it runs with elevated privileges, which means the contents of the attacker's library.dll will now be run with elevated privileges, possibly giving them complete control of the system.
References
[1] Java 1.4.2 API Documentation Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.java.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the library that the program loads: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library that is loaded by the application.



3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code uses a currently undocumented "feature" of Express to dynamically load a library file. Node.js will then continue to search through its regular library load path for a file or directory containing this library[1].


var express = require('express');
var app = express();

app.get('/', function(req, res, next) {
res.render('tutorial/' + req.params.page);
});


In Express, the page passed to Response.render() will load a library of the extension when previously unknown. This is usually fine for input such as "foo.pug", as this will mean loading the pug library, a well known templating engine. However, if an attacker can control the page and thus the extension, then they can choose to load any library within the Node.js module loading paths. Since the program does not validate the information received from the URL parameter, the attacker may fool the application into running malicious code and take control of the system.
References
[1] Node.js Modules Documentation Node.js
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.javascript.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the library that the program loads: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library that is loaded by the application.



3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged system utility uses the system property APPHOME to determine the directory in which it is installed and then loads a native library based on a relative path from the specified directory.


...
$home = getenv("APPHOME");
$lib = $home + $LIBNAME;
dl($lib);
...


This code allows an attacker to load a library and potentially execute arbitrary code with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of LIBNAME. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code uses dl() to load code from a library named sockets.dll, which can be loaded from various places depending on your installation and configuration.


...
dl("sockets");
...


The problem here is that dl() accepts a library name, not a path, for the library to be loaded.

If an attacker is able to place a malicious copy of sockets.dll higher in the search order than file the application intends to load, then the application will load the malicious copy instead of the intended file. Because of the nature of the application, it runs with elevated privileges, which means the contents of the attacker's sockets.dll will now be run with elevated privileges, possibly giving them complete control of the system.
References
[1] M. Achour et al. PHP Manual
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.php.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker. Within Ruby there are commonly places where both Process Control and Command Injection attacks can occur.
Explanation
Within Ruby, Process Control can commonly occur when a command is being executed, which enables two different attacks:

1. Process Control
Process Control vulnerabilities take two forms:

- An attacker can change the name of the library that the program loads: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the second scenario, the possibility that an attacker may be able to control the environment in such a way that the program loads a malicious version of the named library.

1. An attacker provides a malicious library to an application.

2. The application loads the malicious library because it fails to specify an absolute path or verify the file being loaded.

3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Note that Process Control can occur on Windows platforms when running an external program as the shell used to run the commands is chosen via the environment variables RUBYSHELL or COMSPEC. If an attacker is able to modify either of these environment variables within the current environment, it means that the program pointed by these environment variables will be run with the permission or the running Ruby program.

2. Command Injection
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the second scenario, the possibility that an attacker may be able to change the meaning of the command by changing an environment variable or by putting a malicious executable early in the search path. Command injection vulnerabilities of this type occur when:

1. An attacker modifies an application's environment.

2. The application executes a command without specifying an absolute path or verifying the binary being executed.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code runs Kernel.system() to run an executable called program.exe, which is normally found within a standard system directory.


...
system("program.exe")
...


The problem here is twofold:
1. On Windows platforms, Kernel.system() executes something via a shell. If an attacker can manipulate environment variables RUBYSHELL or COMSPEC, they may be able to point to a malicious executable which will be called with the command given to Kernel.system(). Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's program.exe will now be run with these privileges, possibly giving them complete control of the system.
2. On all platforms in this scenario, the problem is that the program does not specify an absolute path and fails to clean its environment prior to executing the call to Kernel.system(). If an attacker can modify the $PATH variable to point to a malicious binary called program.exe and then execute the application in their environment, the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's program.exe will now be run with these privileges, possibly giving them complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[22] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[23] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[24] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[26] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.structural.ruby.process_control
Abstract
The InvokerServlet class can allow attackers to invoke any class on the server.
Explanation
The deprecated InvokerServlet class can be used to invoke any class available to the server's virtual machine. By guessing the fully qualified name of a class, an attacker may load not only Servlet classes, but also POJO classes or any other class available to the JVM.
References
[1] Invocation is EVIL
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001764, CCI-001774
[3] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[12] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[13] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[14] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[15] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II
desc.semantic.java.process_control_invoker_servlet
Abstract
Sending unvalidated data to system prompts in AI models enables attackers to manipulate outputs or execute unauthorized actions, compromising system integrity and data security.
Explanation
In AI applications, system prompts provide pre-processing instructions or context that guide the AI responses. Attackers can craft inputs that, when embedded as system prompts, alter the behavior of the AI model to execute unauthorized operations or disclose sensitive information.

Example 1: The following code illustrates a system prompt injection to an AI chat client that uses Spring AI:

@GetMapping("/prompt_injection")
String generation(String userInput1, ...) {
return this.clientBuilder.build().prompt()
.system(userInput1)
.user(...)
.call()
.content();
}


In this example, the attacker manipulates unvalidated input to a system prompt, which can lead to a security breach.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 1427
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
desc.dataflow.java.prompt_injection
Abstract
Sending unvalidated data to system prompts in AI models enables attackers to manipulate outputs or execute unauthorized actions, compromising system integrity and data security.
Explanation
In AI applications, system prompts provide pre-processing instructions or context that guide the AI responses. Attackers can craft inputs that, when embedded as system prompts, alter the behavior of the AI model to execute unauthorized operations or disclose sensitive information.

Example 1: The following code illustrates a system prompt injection to the Anthropic AI model:

client = new Anthropic();

# Simulated attacker's input attempting to inject a malicious system prompt
attacker_input = ...

response = client.messages.create(
model = "claude-3-5-sonnet-20240620",
max_tokens=2048,
system = attacker_input,
messages = [
{"role": "user", "content": "Analyze this dataset for anomalies: ..."}
]
);
...


In this example, the attacker manipulates unvalidated input to a system prompt, which can lead to a security breach.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 1427
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
desc.dataflow.javascript.prompt_injection
Abstract
Sending unvalidated data to system prompts in AI models enables attackers to manipulate outputs or execute unauthorized actions, compromising system integrity and data security.
Explanation
In AI applications, system prompts provide pre-processing instructions or context that guide the AI responses. Attackers can craft inputs that, when embedded as system prompts, alter the behavior of the AI model to execute unauthorized operations or disclose sensitive information.

Example 1: The following Python code illustrates a system prompt injection to the OpenAI AI model:

client = OpenAI()

# Simulated attacker's input attempting to inject a malicious system prompt
attacker_input = ...

completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": attacker_input},
{"role": "user", "content": "Compose a poem that explains the concept of recursion in programming."}
]
)


In this example, the attacker manipulates unvalidated input to a system prompt, which can lead to a security breach.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 1427
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
desc.dataflow.python.prompt_injection
Abstract
Sending unvalidated data to system prompts in AI models enables attackers to manipulate outputs or execute unauthorized actions, compromising system integrity and data security.
Explanation
In AI applications, system prompts provide pre-processing instructions or context that guide the AI responses. Attackers can craft inputs that, when embedded as system prompts, alter the behavior of the AI model to execute unauthorized operations or disclose sensitive information. In the case of persistent prompt injection this untrusted input typically comes from database or a back-end data store as opposed to a web request.

Example 1: The following code illustrates a system prompt injection to an AI chat client that uses Spring AI:

@GetMapping("/prompt_injection_persistent")
String generation(String userInput1, ...) {
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM users WHERE ...");
String userName = "";

if (rs != null) {
rs.next();
userName = rs.getString("userName");
}

return this.clientBuilder.build().prompt()
.system("Assist the user " + userName)
.user(userInput1)
.call()
.content();
}


In this example, the attacker manipulates unvalidated input to a system prompt, which can lead to a security breach.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 1427
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
desc.dataflow.java.prompt_injection_persistent
Abstract
Sending unvalidated data to system prompts in AI models enables attackers to manipulate outputs or execute unauthorized actions, compromising system integrity and data security.
Explanation
In AI applications, system prompts provide pre-processing instructions or context that guide the AI responses. Attackers can craft inputs that, when embedded as system prompts, alter the behavior of the AI model to execute unauthorized operations or disclose sensitive information. In the case of persistent prompt injection this untrusted input typically comes from database or a back-end data store as opposed to a web request.

Example 1: The following code illustrates a system prompt injection to the Anthropic AI model:

client = new Anthropic();

# Simulated attacker's input attempting to inject a malicious system prompt
attacker_query = ...;
attacker_name = db.qyery('SELECT name FROM user_profiles WHERE ...');

response = client.messages.create(
model = "claude-3-5-sonnet-20240620",
max_tokens=2048,
system = "Provide assistance to the user " + attacker_name,
messages = [
{"role": "user", "content": attacker_query}
]
);
...


In this example, the attacker manipulates unvalidated input to a system prompt, which can lead to a security breach.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 1427
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
desc.dataflow.javascript.prompt_injection_persistent
Abstract
Sending unvalidated data to system prompts in AI models enables attackers to manipulate outputs or execute unauthorized actions, compromising system integrity and data security.
Explanation
In AI applications, system prompts provide pre-processing instructions or context that guide the AI responses. Attackers can craft inputs that, when embedded as system prompts, alter the behavior of the AI model to execute unauthorized operations or disclose sensitive information. In the case of persistent prompt injection this untrusted input typically comes from database or a back-end data store as opposed to a web request.

Example 1: The following Python code illustrates a system prompt injection to the OpenAI AI model:

client = OpenAI()

# Simulated attacker's input attempting to inject a malicious system prompt
attacker_name = cursor.fetchone()['name']
attacker_query = ...

completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "Provide assistance to the user " + attacker_name},
{"role": "user", "content": attacker_query}
]
)


In this example, the attacker manipulates unvalidated input to a system prompt, which can lead to a security breach.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 1427
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
desc.dataflow.python.prompt_injection_persistent
Abstract
Constructing a SimpleDB select statement that contains user input can allow an attacker to view unauthorized records.
Explanation
Query string injection vulnerabilities occur when:
1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SimpleDB query string.

Example 1: The following code dynamically constructs and executes a SimpleDB select() query that searches for invoices that match a user-specified product category. The user can also specify the column by which the results are sorted. Assume that the application has already properly authenticated and set the value of customerID prior to this code segment.


...
String customerID = getAuthenticatedCustomerID(customerName, customerCredentials);
...
AmazonSimpleDBClient sdbc = new AmazonSimpleDBClient(appAWSCredentials);
String query = "select * from invoices where productCategory = '"
+ productCategory + "' and customerID = '"
+ customerID + "' order by '"
+ sortColumn + "' asc";
SelectResult sdbResult = sdbc.select(new SelectRequest(query));
...


The query that this code intends to execute looks like:


select * from invoices
where productCategory = 'Fax Machines'
and customerID = '12345678'
order by 'price' asc


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if productCategory and price do not contain single-quote characters. If, however, an attacker provides the string "Fax Machines' or productCategory = \"" for productCategory, and the string "\" order by 'price" for sortColumn, then the query becomes the following:


select * from invoices
where productCategory = 'Fax Machines' or productCategory = "'
and customerID = '12345678'
order by '" order by 'price' asc


or, in a more human-readable form,


select * from invoices
where productCategory = 'Fax Machines'
or productCategory = "' and customerID = '12345678' order by '"
order by 'price' asc


These inputs allow an attacker to bypass the required authentication for customerID, and allows the attacker to view invoice records matching 'Fax Machines' for all customers.
References
[1] Secure Use of Cloud Storage
[2] Standards Mapping - Common Weakness Enumeration CWE ID 89
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[18] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.java.query_string_injection_amazon_web_services
Abstract
Constructing a SQLite query statement that contains user input can allow an attacker to view unauthorized records.
Explanation
Query string injection vulnerabilities occur when:
1. Data enters a program from an untrusted source.



In this case Fortify Static Code Analyzer could not determine that the source of the data is trusted.

2. The data is used to dynamically construct a SQLite query.

The SQLite query string injection allows malicious users to view unauthorized records, but does not allow them to alter the state of the database in any way.

Example 1: The following code dynamically constructs and executes a SQLite query that searches for invoices associated with a customer and a user-specified product category. The user can also specify the column by which the results should be sorted. Assume that the program has already properly authenticated and set the value of customerID prior to this code segment.


...
productCategory = this.getIntent().getExtras().getString("productCategory");
sortColumn = this.getIntent().getExtras().getString("sortColumn");
customerID = getAuthenticatedCustomerID(customerName, customerCredentials);
c = invoicesDB.query(Uri.parse(invoices), columns, "productCategory = '" + productCategory + "' and customerID = '" + customerID + "'", null, null, null, "'" + sortColumn + "'asc", null);
...


The query that this code intends to execute looks like:


select * from invoices
where productCategory = 'Fax Machines'
and customerID = '12345678'
order by 'price' asc


However, the query is constructed dynamically by concatenating a constant base query string and a user input string productCategory. So the query behaves correctly only if productCategory and sortColumn do not contain single-quote characters. If an attacker provides the string "Fax Machines' or productCategory = \"" for productCategory, and the string "\" order by 'price" for sortColumn, then the query becomes:


select * from invoices
where productCategory = 'Fax Machines' or productCategory = "'
and customerID = '12345678'
order by '" order by 'price' asc


or, in a more readable form,


select * from invoices
where productCategory = 'Fax Machines'
or productCategory = "' and customerID = '12345678' order by '"
order by 'price' asc


These inputs allow an attacker to bypass the required authentication for customerID and allows the attacker to view invoice records matching 'Fax Machines' for all customers.
References
[1] Android Developers-Reference: SQLite Database
[2] SQL as Understood by SQLite
[3] Standards Mapping - Common Weakness Enumeration CWE ID 89
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.semantic.java.query_string_injection_android_provider
Abstract
The application installs an application from shared storage, allowing a malicious app to replace the package to be installed.
Explanation
The app installs an application from shared storage where any application with external storage read/write permissions can write to. Due to a race condition, the malicious app monitoring the folder can swap a downloaded APK file for an alternate APK file, which the installation process will use in place of the legitimate update.

Example 1: The following code installs an applications from the shared storage:


Intent intent = new Intent(Intent.ACTION_VIEW);
intent.setDataAndType(Uri.fromFile(new File(Environment.getExternalStorageDirectory() + "/download/" + "app.apk")), "application/vnd.android.package-archive");
intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
startActivity(intent);
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 362, CWE ID 367
[2] Standards Mapping - Common Weakness Enumeration Top 25 2022 [22] CWE ID 362
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [21] CWE ID 362
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000366, CCI-003178
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-6 Configuration Settings (P1), SA-11 Developer Security Testing and Evaluation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-6 Configuration Settings, SA-11 Developer Testing and Evaluation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.11.2 Business Logic Architectural Requirements (L2 L3), 1.11.3 Business Logic Architectural Requirements (L3), 11.1.6 Business Logic Security Requirements (L2 L3)
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-RESILIENCE-2
[11] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[21] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 362
[22] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 362
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3630.1 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3630.1 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3630.1 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3630.1 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3630.1 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3630.1 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3630.1 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001995 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001995 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001995 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001995 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001995 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001995 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001995 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001995 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001995 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001995 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001995 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001995 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001995 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001995 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001995 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001995 CAT II
desc.dataflow.java.race_condition_app_download
Abstract
Assigning a static field to a new object calls the constructor even if it is dependent on other variables initialization, which may lead to objects being initialized incorrectly.
Explanation
When a Java class is initialized, it calls the initializers for static fields declared in the class prior to the class constructor. This means that a constructor assigned to this will be called prior to other code, and if this constructor is then dependent on other fields or variables being initialized, it may lead to partially initialized objects, or objects initialized with incorrect values.

Example 1: The following class declares a static field and assigns it to a new object.


...
public class Box{
public int area;
public static final int width = 10;
public static final Box box = new Box();
public static final int height = (int) (Math.random() * 100);

public Box(){
area = width * height;
}
...
}
...


In Example 1, the developer would expect that box.area would be a random integer that happens to be a multiple of 10, due to width being equal to 10. In reality however, this will always have a hardcoded value of 0. Static final fields declared with a compile-time constant are initialized first, and then each one is executed in order. This means that since height is not a compile-time constant, it is declared after the declaration of box, and therefore the constructor is called prior to the field height being initialized.

Example 2: The following classes declare static fields that rely on each other.


...
class Foo{
public static final int f = Bar.b - 1;
...
}
...
class Bar{
public static final int b = Foo.f + 1;
...
}

This example is perhaps easier to identify, but would be dependent on which class is loaded first by the JVM. In this example Foo.f could be either -1 or 0, and Bar.b could be either 0 or 1.
References
[1] DCL00-J. Prevent class initialization cycles CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 362, CWE ID 367
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [22] CWE ID 362
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [21] CWE ID 362
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000366, CCI-003178
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-6 Configuration Settings (P1), SA-11 Developer Security Testing and Evaluation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-6 Configuration Settings, SA-11 Developer Testing and Evaluation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.11.2 Business Logic Architectural Requirements (L2 L3), 1.11.3 Business Logic Architectural Requirements (L3), 11.1.6 Business Logic Security Requirements (L2 L3)
[10] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[20] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 362
[21] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 362
[22] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3630.1 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3630.1 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3630.1 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3630.1 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3630.1 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3630.1 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3630.1 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001995 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001995 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001995 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001995 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001995 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001995 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001995 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001995 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001995 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001995 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001995 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001995 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001995 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001995 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001995 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001995 CAT II
desc.structural.java.race_condition_class_initialization_cycle
Abstract
The methods parse() and format() in java.text.Format contain a design flaw that can cause one user to see another user's data.
Explanation
The methods parse() and format() in java.text.Format contains a race condition that can cause one user to see another user's data.

Example 1: The following code shows how this design flaw can manifest itself.


public class Common {

private static SimpleDateFormat dateFormat;
...

public String format(Date date) {
return dateFormat.format(date);
}
...

final OtherClass dateFormatAccess=new OtherClass();
...

public void function_running_in_thread1(){
System.out.println("Time in thread 1 should be 12/31/69 4:00 PM, found: "+ dateFormatAccess.format(new Date(0)));
}

public void function_running_in_thread2(){
System.out.println("Time in thread 2 should be around 12/29/09 6:26 AM, found: "+ dateFormatAccess.format(new Date(System.currentTimeMillis())));
}
}


While this code will behave correctly in a single-user environment, if two threads run it at the same time they could produce the following output:

Time in thread 1 should be 12/31/69 4:00 PM, found: 12/31/69 4:00 PM
Time in thread 2 should be around 12/29/09 6:26 AM, found: 12/31/69 4:00 PM

In this case, the date from the first thread is shown in the output from the second thread due a race condition in the implementation of format().
References
[1] Bug 4228335 : SimpleDateFormat is not threadsafe Sun Microsystems
[2] The Java Servlet Specification Sun Microsystems
[3] Standards Mapping - Common Weakness Enumeration CWE ID 362, CWE ID 488
[4] Standards Mapping - Common Weakness Enumeration Top 25 2022 [22] CWE ID 362
[5] Standards Mapping - Common Weakness Enumeration Top 25 2023 [21] CWE ID 362
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001090, CCI-003178
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-6 Configuration Settings (P1), SA-11 Developer Security Testing and Evaluation (P1), SC-4 Information in Shared Resources (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-6 Configuration Settings, SA-11 Developer Testing and Evaluation, SC-4 Information in Shared System Resources
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.11.2 Business Logic Architectural Requirements (L2 L3)
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 7.3.2
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 7.3.2
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective B.3.3 - Terminal Software Attack Mitigation
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective B.3.3 - Terminal Software Attack Mitigation
[19] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 362
[20] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 362
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3630.1 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3630.1 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3630.1 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3630.1 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3630.1 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3630.1 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3630.1 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
desc.structural.java.race_condition_format_flaw
Abstract
Servlet member fields might allow one user to see another user's data.
Explanation
Many Servlet developers do not understand that a Servlet is a singleton. There is only one instance of the Servlet, and that single instance is used and re-used to handle multiple requests that are processed simultaneously by different threads.

A common result of this misunderstanding is that developers use Servlet member fields in such a way that one user may inadvertently see another user's data. In other words, storing user data in Servlet member fields introduces a data access race condition.

Example 1: The following Servlet stores the value of a request parameter in a member field and then later echoes the parameter value to the response output stream.


public class GuestBook extends HttpServlet {

String name;

protected void doPost (HttpServletRequest req, HttpServletResponse res) {
name = req.getParameter("name");
...
out.println(name + ", thanks for visiting!");
}
}


While this code will work perfectly in a single-user environment, if two users access the Servlet at approximately the same time, it is possible for the two request handler threads to interleave in the following way:

Thread 1: assign "Dick" to name
Thread 2: assign "Jane" to name
Thread 1: print "Jane, thanks for visiting!"
Thread 2: print "Jane, thanks for visiting!"

Thereby showing the first user the second user's name.
References
[1] The Java Servlet Specification Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 362, CWE ID 488
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [22] CWE ID 362
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [21] CWE ID 362
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001090, CCI-003178
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-6 Configuration Settings (P1), SA-11 Developer Security Testing and Evaluation (P1), SC-4 Information in Shared Resources (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-6 Configuration Settings, SA-11 Developer Testing and Evaluation, SC-4 Information in Shared System Resources
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.11.2 Business Logic Architectural Requirements (L2 L3)
[10] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[11] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[23] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 362
[24] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 362
[25] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3630.1 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3630.1 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3630.1 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3630.1 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3630.1 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3630.1 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3630.1 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[48] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.java.singleton_member_field_race_condition
Abstract
Database connections stored in static fields will be shared between threads.
Explanation
A transactional resource object such as database connection can only be associated with one transaction at a time. For this reason, a connection should not be shared between threads and should not be stored in a static field. See Section 4.2.3 of the J2EE Specification for more details.

Example 1:

public class ConnectionManager {

private static Connection conn = initDbConn();
...
}
References
[1] Java 2 Platform Enterprise Edition Specification, v1.4 Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 362, CWE ID 567
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [22] CWE ID 362
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [21] CWE ID 362
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001090, CCI-003178
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-6 Configuration Settings (P1), SA-11 Developer Security Testing and Evaluation (P1), SC-4 Information in Shared Resources (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-6 Configuration Settings, SA-11 Developer Testing and Evaluation, SC-4 Information in Shared System Resources
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.11.2 Business Logic Architectural Requirements (L2 L3)
[10] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[20] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 362
[21] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 362
[22] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3630.1 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3630.1 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3630.1 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3630.1 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3630.1 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3630.1 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3630.1 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001995 CAT II, APSC-DV-002380 CAT II
desc.structural.java.race.dbconn
Abstract
The program can potentially dereference a null-pointer, which can cause a segmentation fault.
Explanation
Null-pointer exceptions usually occur when one or more of the programmer's assumptions is violated. There are at least three flavors of this problem: check-after-dereference, dereference-after-check, and dereference-after-store. A check-after-dereference error occurs when a program dereferences a pointer that can be null before checking if the pointer is null. Dereference-after-check errors occur when a program makes an explicit check for null, but proceeds to dereference the pointer when it is known to be null. Errors of this type are often the result of a typo or programmer oversight. A dereference-after-store error occurs when a program explicitly sets a pointer to null and dereferences it later. This error is often the result of a programmer initializing a variable to null when it is declared.

Most null-pointer issues result in general software reliability problems, but if an attacker can intentionally trigger a null-pointer dereference, the attacker might be able to use the resulting exception to bypass security logic in order to mount a denial of service attack, or to cause the application to reveal debugging information that will be valuable in planning subsequent attacks.

Example 1: In the following code, the programmer confirms that the object foo is null and subsequently dereferences it erroneously. If foo is null when it is checked in the if statement, then a null dereference occurs, which causes a null-pointer exception.


if (foo is null) {
foo.SetBar(val);
...
}
Example 2: In the following code, the programmer assumes that the variable foo is not null and confirms this assumption by dereferencing the object. However, the programmer later contradicts the assumption by checking foo against null. If foo can be null when it is checked in the if statement then it can also be null when it is dereferenced and might cause a null-pointer exception. Either the dereference is unsafe or the subsequent check is unnecessary.


foo.SetBar(val);
...
if (foo is not null) {
...
}
Example 3: In the following code, the programmer explicitly sets the variable foo to null. Later, the programmer dereferences foo before checking the object for a null value.


Foo foo = null;
...
foo.SetBar(val);
...
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 476
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [14] CWE ID 476
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [13] CWE ID 476
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [15] CWE ID 476
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [11] CWE ID 476
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [12] CWE ID 476
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [21] CWE ID 476
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 11.1.7 Business Logic Security Requirements (L2 L3)
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[38] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.dotnet.redundant_null_check
Abstract
The program can potentially dereference a null-pointer, thereby causing a segmentation fault.
Explanation
Null-pointer exceptions usually occur when one or more of the programmer's assumptions is violated. There are at least three flavors of this problem: check-after-dereference, dereference-after-check, and dereference-after-store. A check-after-dereference error occurs when a program dereferences a pointer that can be null before checking if the pointer is null. Dereference-after-check errors occur when a program makes an explicit check for null, but proceeds to dereference the pointer when it is known to be null. Errors of this type are often the result of a typo or programmer oversight. A dereference-after-store error occurs when a program explicitly sets a pointer to null and dereferences it later. This error is often the result of a programmer initializing a variable to null when it is declared.

Most null-pointer issues result in general software reliability problems, but if an attacker can intentionally trigger a null-pointer dereference, the attacker may be able to use the resulting exception to bypass security logic in order to mount a denial of service attack, or to cause the application to reveal debugging information that will be valuable in planning subsequent attacks.

Example 1: In the following code, the programmer assumes that the variable ptr is not NULL. That assumption is made explicit when the programmer dereferences the pointer. This assumption is later contradicted when the programmer checks ptr against NULL. If ptr can be NULL when it is checked in the if statement then it can also be NULL when it dereferenced and may cause a segmentation fault.


ptr->field = val;
...
if (ptr != NULL) {
...
}
Example 2: In the following code, the programmer confirms that the variable ptr is NULL and subsequently dereferences it erroneously. If ptr is NULL when it is checked in the if statement, then a null dereference will occur, thereby causing a segmentation fault.


if (ptr == null) {
ptr->field = val;
...
}
Example 3: In the following code, the programmer forgets that the string '\0' is actually 0 or NULL, thereby dereferencing a null-pointer and causing a segmentation fault.


if (ptr == '\0') {
*ptr = val;
...
}
Example 4: In the following code, the programmer explicitly sets the variable ptr to NULL. Later, the programmer dereferences ptr before checking the object for a null value.


*ptr = NULL;
...
ptr->field = val;
...
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 476
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [14] CWE ID 476
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [13] CWE ID 476
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [15] CWE ID 476
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [11] CWE ID 476
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [12] CWE ID 476
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [21] CWE ID 476
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 11.1.7 Business Logic Security Requirements (L2 L3)
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[38] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.redundant_null_check
Abstract
The program can dereference a null-pointer, thereby causing a null-pointer exception.
Explanation
Null-pointer exceptions usually occur when one or more of the programmer's assumptions is violated. Specifically, dereference-after-check errors occur when a program makes an explicit check for null, but proceeds to dereference the object when it is known to be null. Errors of this type are often the result of a typo or programmer oversight.

Most null-pointer issues result in general software reliability problems, but if attackers can intentionally cause the program to dereference a null-pointer, they can use the resulting exception to mount a denial of service attack or to cause the application to reveal debugging information that will be valuable in planning subsequent attacks.

Example 1: In the following code, the programmer confirms that the variable foo is null and subsequently dereferences it erroneously. If foo is null when it is checked in the if statement, then a null dereference will occur, thereby causing a null-pointer exception.


if (foo == null) {
foo.setBar(val);
...
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 476
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [14] CWE ID 476
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [13] CWE ID 476
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [15] CWE ID 476
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [11] CWE ID 476
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [12] CWE ID 476
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [21] CWE ID 476
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 11.1.7 Business Logic Security Requirements (L2 L3)
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[38] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.internal.java.null_dereference_dereference_after_check
Abstract
The application allows an attacker to craft a URL that forces a download of arbitrary content that appears to have originated from a trusted domain.
Explanation
Reflected File Download (RFD) is a vulnerability that allows an attacker to craft a phishing URL or page that, when visited, initiates a download of a file containing arbitrary content appearing to have originated from a trusted domain. Because the user has trust in the given domain, he or she is likely to open the downloaded file, potentially resulting in malicious code execution.

In order for an attacker to run a successful RFD attack, the following requirements need to be met:
- The target application reflects user input without proper validation or encoding. This is used to inject a payload.
- The target application allows permissive URLs. The attacker may therefore control the downloaded file's name and extension.
- The target application has a misconfigured Content-Disposition header, allows the attacker to control the Content-Type and/or Content-Disposition headers in the HTTP response, or the target application includes a Content-Type that is not rendered by default in the browser.

For example, if the application uses a Spring Web MVC ContentNegotiationManager to dynamically produce different response formats, it meets the conditions necessary to make an RFD attack possible.

The ContentNegotiationManager is configured to decide the response format based on the request path extension and to use Java Activation Framework (JAF) to find a Content-Type that better matches the client's requested format. It also allows the client to specify the response content type through the media type that is sent in the request's Accept header.

Example 1: In the following example, the application is configured to allow path extension strategy and Java Activation Framework to determine the response's content type:


<bean id="contentNegotiationManager" class="org.springframework.web.accept.ContentNegotiationManagerFactoryBean">
<property name="favorPathExtension" value="true" />
<property name="useJaf" value="true" />
</bean>
Example 2: In the following example, the application is configured to allow the request's Accept header to determine the response's content type:


<bean id="contentNegotiationManager" class="org.springframework.web.accept.ContentNegotiationManagerFactoryBean">
<property name="ignoreAcceptHeader" value="false" />
</bean>


Note that the ContentNegotiationManagerFactoryBean property defaults in Spring 4.2.1 are:

- useJaf: true
- favorPathExtension: true
- ignoreAcceptHeader: false

The configuration shown in Example 1 allows an attacker to craft a malicious URL such as:

http://server/some/resource/endpoint/foo.bat?input=payload

such that the ContentNegotiationManager will use Java Activation Framework (if activation.jar is found in the classpath) to try to resolve the media type for the given file extension and set the response's ContentType header accordingly. In this example, the file extension is "bat", resulting in a Content-Type header of application/x-msdownload (although the exact Content-Type may vary depending on the server OS and JAF configuration). As a result, once the victim visits this malicious URL, his or her machine will automatically initiate the download of a ".bat" file containing attacker-controlled content. If this file is then executed, the victims machine will run any commands specified by the attacker's payload.
References
[1] Oren Hafif Reflected File Download - A New Web Attack Vector
[2] Alvaro Munoz Reflected File Download in Spring MVC
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 233
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.config.java.reflected_file_download
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a host name read from an HTTP request to create an FTP connection.


...
host_name = request->get_form_field( 'host' ).
CALL FUNCTION 'FTP_CONNECT'
EXPORTING
USER = user
PASSWORD = password
HOST = host_name
RFC_DESTINATION = 'SAPFTP'
IMPORTING
HANDLE = mi_handle
EXCEPTIONS
NOT_CONNECTED = 1
OTHERS = 2.
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.abap.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a port number read from an HTTP request to create a socket.


int rPort = Int32.Parse(Request.Item("rPort"));
...
IPEndPoint endpoint = new IPEndPoint(address,rPort);
socket = new Socket(endpoint.AddressFamily,
SocketType.Stream, ProtocolType.Tcp);
socket.Connect(endpoint);
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a port number read from a CGI request to create a socket.


...
char* rPort = getenv("rPort");
...
serv_addr.sin_port = htons(atoi(rPort));
if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)
error("ERROR connecting");
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cpp.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker might specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses the value read from the terminal to access a record from the CICS queue of that name.


...
ACCEPT QNAME.
EXEC CICS
READQ TD
QUEUE(QNAME)
INTO(DATA)
LENGTH(LDATA)
END-EXEC.
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cobol.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify part of the name of a file to be opened or a port number to be used.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.

Example 1: The following ColdFusion code creates a Java ServerSocket object and uses a port number read from an HTTP request to create a socket.


<cfobject action="create" type="java" class="java.net.ServerSocket" name="myObj">
<cfset srvr = myObj.init(#url.port#)>
<cfset socket = srvr.accept()>

Passing user input to objects imported from other languages can be very dangerous.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.semantic.cfml.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker can specify the identifier used to access a system resource.

For example, an attacker might be able to specify a port number and use it to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for additional details of this vulnerability.

Example 1: The following code uses a port number read from an HTTP request to create a socket.


final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final remotePort = headers.value('port');
final serverSocket = await ServerSocket.bind(host, remotePort as int);
final httpServer = HttpServer.listenOn(serverSocket);
});
...


Some think that in the mobile world, classic web application vulnerabilities, such as resource injection, do not make sense -- why would users attack themselves? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 99
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[17] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dart.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a device name read from a HTTP request to connect to bind the socket associated with fd to the device.


func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
deviceName := r.FormValue("device")
...
syscall.BindToDevice(fd, deviceName)
}


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections where a user can manipulate the location of resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a port number read from an HTTP request to create a socket.


String remotePort = request.getParameter("remotePort");
...
ServerSocket srvr = new ServerSocket(remotePort);
Socket skt = srvr.accept();
...


Some think that in the mobile world, classic web application vulnerabilities, such as resource injection, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 2: The following code uses a URL read from an Android intent to load the page in WebView.


...
WebView webview = new WebView(this);
setContentView(webview);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a URL read from an HTTP request to create a socket.


var socket = new WebSocket(document.URL.indexOf("url=")+20);


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.resource_injection
Abstract
Attackers are able to control the resource identifier argument which could enable them to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource or source location for input files.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a host read from a request:


...
char* rHost = getenv("host");
...
CFReadStreamRef readStream;
CFWriteStreamRef writeStream;
CFStreamCreatePairWithSocketToHost(NULL, (CFStringRef)rHost, 80, &readStream, &writeStream);
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.objc.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a hostname read from an HTTP request to connect to a database, which determines the price for a ticket.


<?php
$host=$_GET['host'];
$dbconn = pg_connect("host=$host port=1234 dbname=ticketdb");
...
$result = pg_prepare($dbconn, "my_query", 'SELECT * FROM pricelist WHERE name = $1');
$result = pg_execute($dbconn, "my_query", array("ticket"));
?>


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.php.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker may specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example: The following code uses a CGI environment variable as a URL of a document to be downloaded.


...
filename := SUBSTR(OWA_UTIL.get_cgi_env('PATH_INFO'), 2);
WPG_DOCLOAD.download_file(filename);
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in functions that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.sql.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a hostname read from an HTTP request to connect to a database, which determines the price for a ticket.


host=request.GET['host']
dbconn = db.connect(host=host, port=1234, dbname=ticketdb)
c = dbconn.cursor()
...
result = c.execute('SELECT * FROM pricelist')
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a string read from an HTTP request as the key to cache the logged-in user data.


def controllerMethod = Action { request =>
val result = request.getQueryString("key").map { key =>
val user = db.getUser()
cache.set(key, user)
Ok("Cached Request")
}
Ok("Done")
}


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.scala.resource_injection
Abstract
Attackers are able to control the resource identifier argument which could enable them to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource or source location for input files.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a host read from a request:


...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
var inputStream : NSInputStream?
var outputStream : NSOutputStream?
...
var readStream : Unmanaged<CFReadStream>?
var writeStream : Unmanaged<CFWriteStream>?
let rHost = getQueryStringParameter(url.absoluteString, "host")
CFStreamCreatePairWithSocketToHost(kCFAllocatorDefault, rHost, 80, &readStream, &writeStream);
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.swift.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a port number read from an HTTP request to create a socket.


...
Begin MSWinsockLib.Winsock tcpServer
...
Dim Response As Response
Dim Request As Request
Dim Session As Session
Dim Application As Application
Dim Server As Server
Dim Port As Variant
Set Response = objContext("Response")
Set Request = objContext("Request")
Set Session = objContext("Session")
Set Application = objContext("Application")
Set Server = objContext("Server")
Set Port = Request.Form("port")
...
tcpServer.LocalPort = Port
tcpServer.Accept
...



The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.vb.resource_injection
Abstract
The method is restricted. Each use of this method is flagged as an issue.
Explanation
Within the Foreign Function and Memory API, some methods are considered restricted because using them incorrectly can lead to JVM crashes or memory corruption.
References
[1] Oracle Foreign Function and Memory API: Restricted Methods
[2] Standards Mapping - Common Weakness Enumeration CWE ID 749
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[5] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[6] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 676
desc.structural.java.ffr_restricted_methods
Abstract
The application reflects a user-controllable parameter as the JavaScript callback function to be executed by the browser that might enable an attacker to execute arbitrary JavaScript functions on any pages on the same endpoint's domain.
Explanation
The application uses a parameter under the attacker's control as the name of a JavaScript function that the browser will execute. An attacker may create a malicious site which first frames a target page on the same application's domain and then references the vulnerable page in order to execute an arbitrary JavaScript function on the target page. The impact of this attack is similar to the impact of Cross-Site Scripting, though there are some important exploitation restrictions. If alphanumeric and dot characters are allowed to be used as the callback name, the attacker will be able to reference and interact with the elements of the page.

Example 1: The following code constructs a JSONP response where the callback function name can be controlled by the user.


@ControllerAdvice
public class JsonpAdvice extends AbstractJsonpResponseBodyAdvice {
public JsonpAdvice() {
super("callback");
}
}


For a request such as GET /api/latest.json?callback=myCallbackFunction, the controller method will generate a response such as:


HTTP/1.1 200 Ok
Content-Type: application/json; charset=utf-8
Date: Tue, 12 Dec 2017 16:16:04 GMT
Server: nginx/1.12.1
Content-Length: 225
Connection: Close

myCallbackFunction({<json>})


The attacker can use a JavaScript Script tag to load the response from the JSONP endpoint, which will turn into the execution of the myCallbackFunction function. An attacker could use a different callback name to navigate and interact with the DOM. For example opener.document.body.someElemnt.firstChild.nextElementSibling.submit could be used to locate a form in the target page and submit it.
References
[1] Ben Hayak Same Origin Method Execution (SOME)
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[5] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[6] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[7] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[8] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[9] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II
desc.semantic.java.same_origin_method_execution
Abstract
The application reflects a user-controllable parameter as the JavaScript callback function to be executed by the browser that might enable an attacker to execute arbitrary JavaScript functions on any pages on the same endpoint's domain.
Explanation
The application uses a parameter under the attacker's control as the name of a JavaScript function that the browser will execute. An attacker may create a malicious site which first frames a target page on the same application's domain and then references the vulnerable page in order to execute an arbitrary JavaScript function on the target page. The impact of this attack is similar to the impact of Cross-Site Scripting, though there are some important exploitation restrictions. If alphanumeric and dot characters are allowed to be used as the callback name, the attacker will be able to reference and interact with the elements of the page.

Example 1: The following code constructs a JSONP response where the callback function name can be controlled by the user.


def myJSONPService(callback: String) = Action {
val json = getJSONToBeReturned()
Ok(Jsonp(callback, json))
}


For a request such as GET /api/latest.json?callback=myCallbackFunction, the controller method described in Example 1 will generate a response such as:


HTTP/1.1 200 Ok
Content-Type: application/json; charset=utf-8
Date: Tue, 12 Dec 2017 16:16:04 GMT
Server: nginx/1.12.1
Content-Length: 225
Connection: Close

myCallbackFunction({<json>})


The attacker can use a JavaScript Script tag to load the response from the JSONP endpoint, which will turn into the execution of the myCallbackFunction function. An attacker could use a different callback name to navigate and interact with the DOM. For example opener.document.body.someElemnt.firstChild.nextElementSibling.submit could be used to locate a form in the target page and submit it.
References
[1] Ben Hayak Same Origin Method Execution (SOME)
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[5] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[6] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[7] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[8] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[9] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II
desc.dataflow.scala.same_origin_method_execution
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker can influence a network connection made by the application server. The network connection originates from the application server's internal IP and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


...
lv_uri = request->get_form_field( 'uri' ).
CALL METHOD cl_http_utility=>set_request_uri
EXPORTING
request = lo_request
uri = lv_uri.
...


The attacker's ability to hijack the network connection depends on the specific part of the URI they can control, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https such as:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 918
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[17] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[20] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.abap.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker can influence a network connection made by the application server. The network connection will originate from the application server's internal IP and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


...
PageReference ref = ApexPages.currentPage();
Map<String,String> params = ref.getParameters();
HttpRequest req = new HttpRequest();
req.setEndpoint(params.get('url'));
HTTPResponse res = new Http().send(req);


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https such as:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following types of attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Perform a DNS cache poisoning attack.

References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 918
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[17] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[20] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.apex.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker can influence a network connection made by the application server. The network connection will originate from the application server's internal IP and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


string url = Request.Form["url"];
HttpClient client = new HttpClient();
HttpResponseMessage response = await client.GetAsync(url);


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.dotnet.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker can influence a network connection made by the application server. The network connection will originate from the application server's internal IP and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


char *url = maliciousInput();
CURL *curl = curl_easy_init();
curl_easy_setopt(curl, CURLOPT_URL, url);
CURLcode res = curl_easy_perform(curl);


An attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https such as:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using the file:// scheme.
- On Windows systems, using the file:// scheme and UNC paths can enable an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 918
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[17] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[20] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.cpp.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker can influence a network connection made by the application server. The network connection originates from the application server's internal IP and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


...
final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final url = headers.value('url');
final client = IOClient();
final response = await client.get(Uri.parse(url!));
...
}


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https such as:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 918
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[17] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[20] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.dart.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker might influence a network connection made by the application server. The network connection originates from the application server's internal IP address and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL the server is connecting to.


url := request.Form.Get("url")
res, err =: http.Get(url)
...


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and the libraries used to establish the connection. For example, controlling the URI scheme enables the attacker to use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- Scan and access internal shares on Windows systems with file:// scheme and UNC paths.
- Perform a DNS cache poisoning attack.

References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.golang.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker can influence a network connection made by the application server. The network connection will originate from the application server's internal IP and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


String url = request.getParameter("url");
CloseableHttpClient httpclient = HttpClients.createDefault();
HttpGet httpGet = new HttpGet(url);
CloseableHttpResponse response1 = httpclient.execute(httpGet);


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.java.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker may influence a network connection made by the application server. The network connection will originate from the application server's internal IP address and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


var http = require('http');
var url = require('url');

function listener(request, response){
var request_url = url.parse(request.url, true)['query']['url'];
http.request(request_url)
...
}
...
http.createServer(listener).listen(8080);
...


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.
References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.javascript.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker can influence a network connection made by the application server. The network connection will originate from the application server's internal IP and an attacker can use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


val url: String = request.getParameter("url")
val httpclient: CloseableHttpClient = HttpClients.createDefault()
val httpGet = HttpGet(url)
val response1: CloseableHttpResponse = httpclient.execute(httpGet)


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.kotlin.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker may influence a network connection made by the application server. The network connection will originate from the application server's internal IP address and an attacker will be able to use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


$url = $_GET['url'];
$c = curl_init();
curl_setopt($c, CURLOPT_POST, 0);
curl_setopt($c,CURLOPT_URL,$url);
$response=curl_exec($c);
curl_close($c);


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.php.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker may influence a network connection made by the application server. The network connection will originate from the application server's internal IP address and an attacker will be able to use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


url = request.GET['url']
handle = urllib.urlopen(url)


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.python.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker may influence a network connection made by the application server. The network connection will originate from the application server's internal IP address and an attacker will be able to use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


url = req['url']
Net::HTTP.get(url)


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 918
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[17] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[20] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.ruby.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker may influence a network connection made by the application server. The network connection will originate from the application server's internal IP address and an attacker will be able to use this connection to bypass network controls and scan or attack internal resources that are not otherwise exposed.

Example 1: In the following example, an attacker can control the URL to which the server is connecting.


def getFile(url: String) = Action { request =>
...
val url = request.body.asText.getOrElse("http://google.com")

ws.url(url).get().map { response =>
Ok(s"Request sent to $url")
}
...
}


The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Attack vulnerable programs running on the application server or on the intranet.
- Attack internal/external web applications using Injection attacks or CSRF.
- Access local files using file:// scheme.
- On Windows systems, file:// scheme and UNC paths can allow an attacker to scan and access internal shares.
- Perform a DNS cache poisoning attack.

References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.scala.server_side_request_forgery
Abstract
The application initiates a network connection to a third-party system using user-controlled data to craft the resource URI.
Explanation
A Server-Side Request Forgery occurs when an attacker can influence a network connection made by the application server. The network connection originates from the application server's internal IP and an attacker can use this connection to bypass network controls and scan or attack internal resources that are otherwise not exposed.

Example 1: Example of a user checking details of a given product.

POST /checkDetails HTTP/1.1

url=https://example.com/product/1
Example 2: A few examples of how an attacker that has control over the url parameter can tamper the request in Example 1.

POST /checkDetails HTTP/1.1

url=https://localhost.com/admin

POST /checkDetails HTTP/1.1

url=file:///etc/passwd



The attacker's ability to hijack the network connection depends on the specific part of the URI that can be controlled, and on the libraries used to establish the connection. For example, controlling the URI scheme lets the attacker use protocols different from http or https like:

- up://
- ldap://
- jar://
- gopher://
- mailto://
- ssh2://
- telnet://
- expect://

An attacker can leverage this hijacked network connection to perform the following attacks:

- Port Scanning of intranet resources.
- Bypass firewalls.
- Access authorization credentials.
- Attack vulnerable programs running on the application server or on the intranet.
- Gain remote code execution.
- Access local files.

References
[1] Alexander Polyakov SSRF vs. Business critical applications BlackHat 2012
[2] SSRF bible. Cheatsheet ONSec Labs
[3] Standards Mapping - Common Weakness Enumeration CWE ID 918
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [24] CWE ID 918
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [21] CWE ID 918
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [19] CWE ID 918
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [19] CWE ID 918
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API7 Server Side Request Forgery
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.6 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.6.1 SSRF Protection Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A10 Server-Side Request Forgery
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dynamic.xtended_preview.server_side_request_forgery
Abstract
User-controlled data is used as a template engine's template, allowing attackers to access the template context and in some cases inject and run arbitrary code on the application server.
Explanation
Template engines are used to render content using dynamic data. This context data is normally controlled by the user and formatted by the template to generate web pages, emails, and the like. Template engines allow powerful language expressions to be used in templates in order to render dynamic content, by processing the context data with code constructs such as conditionals, loops, etc. If an attacker is able to control the template to be rendered, they will be able to inject expressions that will expose context data or even run arbitrary commands on the server.

Example 1: The following example shows how a template is retrieved from an HTTP request and rendered.

// Set up the context data
VelocityContext context = new VelocityContext();
context.put( "name", user.name );

// Load the template
String template = getUserTemplateFromRequestBody(request);
RuntimeServices runtimeServices = RuntimeSingleton.getRuntimeServices();
StringReader reader = new StringReader(template);
SimpleNode node = runtimeServices.parse(reader, "myTemplate");
template = new Template();
template.setRuntimeServices(runtimeServices);
template.setData(node);
template.initDocument();

// Render the template with the context data
StringWriter sw = new StringWriter();
template.merge( context, sw );
Example 1 uses Velocity as the template engine. For that engine, an attacker could submit the following template to run arbitrary commands on the server:

$name.getClass().forName("java.lang.Runtime").getRuntime().exec(<COMMAND>)
References
[1] Server-Side Template Injection: RCE for the modern webapp
[2] Standards Mapping - Common Weakness Enumeration CWE ID 95
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [18] CWE ID 094
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [17] CWE ID 094
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [25] CWE ID 094
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [23] CWE ID 094
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [11] CWE ID 094
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.4 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.server_side_template_injection
Abstract
User-controlled data is used as a template engine's template, which allows attackers to access the template context and in some cases inject and run arbitrary code on the application server.
Explanation
Template engines are used to render content using dynamic data. This context data is normally controlled by the user and formatted by the template to generate web pages, emails, and so on. Template engines allow powerful language expressions to be used in templates to render dynamic content, by processing the context data with code constructs such as conditionals, loops, etc. If an attacker can control the template to be rendered, they can inject expressions that expose context data or even run arbitrary commands on the server.

Example 1: The following example shows how a template is retrieved from an HTTP request and rendered.

app.get('/', function(req, res){
var template = _.template(req.params['template']);
res.write("<html><body><h2>Hello World!</h2>" + template() + "</body></html>");
});
Example 1 uses Underscore.js as the template engine within a Node.js application. For that engine, an attacker could submit the following template to run arbitrary commands on the server:

<% cp = process.mainModule.require('child_process');cp.exec(<COMMAND>); %>
References
[1] Server-Side Template Injection: RCE for the modern webapp
[2] Standards Mapping - Common Weakness Enumeration CWE ID 95
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [18] CWE ID 094
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [17] CWE ID 094
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [25] CWE ID 094
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [23] CWE ID 094
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [11] CWE ID 094
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.4 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.server_side_template_injection
Abstract
User-controlled data is used as a template engine's template, allowing attackers to access the template context and in some cases inject and run arbitrary code on the application server.
Explanation
Template engines are used to render content using dynamic data. This context data is normally controlled by the user and formatted by the template to generate web pages, emails, and the like. Template engines allow powerful language expressions to be used in templates in order to render dynamic content, by processing the context data with code constructs such as conditionals, loops, etc. If an attacker can control the template to be rendered, they can inject expressions that expose context data or even run arbitrary commands on the server.

Example 1: The following example shows how a template is retrieved from an HTTP request and rendered using the Jinja2 template engine.

from django.http import HttpResponse
from jinja2 import Template as Jinja2_Template
from jinja2 import Environment, DictLoader, escape

def process_request(request):
# Load the template
template = request.GET['template']
t = Jinja2_Template(template)
name = source(request.GET['name'])
# Render the template with the context data
html = t.render(name=escape(name))
return HttpResponse(html)
Example 1 uses Jinja2 as the template engine. For that engine, an attacker could submit the following template to read arbitrary files from the server:

template={{''.__class__.__mro__[2].__subclasses__()[40]('/etc/passwd').read()}}
Example 2: The following example shows how a template is retrieved from an HTTP request and rendered using the Django template engine.

from django.http import HttpResponse
from django.template import Template, Context, Engine

def process_request(request):
# Load the template
template = source(request.GET['template'])
t = Template(template)
user = {"name": "John", "secret":getToken()}
ctx = Context(locals())
html = t.render(ctx)
return HttpResponse(html)
Example 2 uses Django as the template engine. For that engine, an attacker will not be able to execute arbitrary commands, but they will be able to access all the objects in the template context. In this example, a secret token is available in the context and could be leaked by the attacker.
References
[1] Server-Side Template Injection: RCE for the modern webapp BlackHat
[2] Standards Mapping - Common Weakness Enumeration CWE ID 95
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [18] CWE ID 094
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [17] CWE ID 094
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [25] CWE ID 094
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [23] CWE ID 094
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [11] CWE ID 094
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.4 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.server_side_template_injection
Abstract
Authenticating a user without invalidating any existing session identifier gives an attacker the opportunity to steal authenticated sessions
Explanation
Session fixation vulnerabilities occur when:

1. A web application authenticates a user without first invalidating the existing session, thereby continuing to use the session already associated with the user.
2. An attacker can force a known session identifier on a user so that, after the user authenticates, the attacker has access to the authenticated session.

In the generic exploit of session fixation vulnerabilities, an attacker creates a new session on a web application and records the associated session identifier. The attacker then causes the victim to authenticate against the server using that session identifier, giving the attacker access to the user's account through the active session.

Some frameworks such as Spring Security automatically invalidates existing sessions when creating a new one. This behaviour can be disabled leaving the application vulnerable to this attack.

Example 1: The following example shows a snippet of a Spring Security protected application where session fixation protection has been disabled.


<http auto-config="true">
...
<session-management session-fixation-protection="none"/>
</http>


Even given a vulnerable application, the success of the specific attack described here depends on several factors working in the attacker's favor: access to an unmonitored public terminal, the ability to keep the compromised session active, and a victim interested in logging into the vulnerable application on the public terminal. In most circumstances, the first two challenges are surmountable given a sufficient investment of time. Finding a victim who is both using a public terminal and interested in logging into the vulnerable application is possible as well, as long as the site is reasonably popular. The less popular the site, the lower the odds of an interested victim using the public terminal and the less chance of success for the attack vector previously described.

The biggest challenge an attacker faces in exploiting session fixation vulnerabilities is inducing victims to authenticate against the vulnerable application using a session identifier known to the attacker. In Example 1, the attacker does this through an obvious direct method that does not suitably scale for attacks involving less well-known web sites. However, do not be lulled into complacency; attackers have many tools in their belts that help bypass the limitations of this attack vector. The most common technique attackers use involves taking advantage of cross-site scripting or HTTP response splitting vulnerabilities in the target site [1]. By tricking the victim into submitting a malicious request to a vulnerable application that reflects JavaScript or other code back to the victim's browser, an attacker can create a cookie that causes the victim to reuse a session identifier controlled by the attacker.

It is worth noting that cookies are often tied to the top level domain associated with a given URL. If multiple applications reside on the same top level domain, such as bank.example.com and recipes.example.com, a vulnerability in one application can enable an attacker to set a cookie with a fixed session identifier that is used in all interactions with any application on the domain example.com [2].

Other attack vectors include DNS poisoning and related network-based attacks where an attacker causes the user to visit a malicious site by redirecting a request for a valid site. Network-based attacks typically involve a physical presence on the victim's network or control of a compromised machine on the network, which makes them harder to exploit remotely, but their significance should not be overlooked. Less secure session management mechanisms, such as the default implementation in Apache Tomcat, allow session identifiers normally expected in a cookie to be specified on the URL as well. This enables an attacker to cause a victim to use a fixed session identifier simply by emailing a malicious URL.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 384
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001664, CCI-001941, CCI-001942
[3] Standards Mapping - FIPS200 IA
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-10 Concurrent Session Control (P3), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-10 Concurrent Session Control, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[7] Standards Mapping - OWASP API 2023 API2 Broken Authentication
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.1 Session Binding Requirements (L1 L2 L3), 3.2.3 Session Binding Requirements (L1 L2 L3), 3.3.1 Session Logout and Timeout Requirements (L1 L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[10] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[11] Standards Mapping - OWASP Top 10 2004 A3 Broken Authentication and Session Management
[12] Standards Mapping - OWASP Top 10 2007 A7 Broken Authentication and Session Management
[13] Standards Mapping - OWASP Top 10 2010 A3 Broken Authentication and Session Management
[14] Standards Mapping - OWASP Top 10 2013 A2 Broken Authentication and Session Management
[15] Standards Mapping - OWASP Top 10 2017 A2 Broken Authentication
[16] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3405 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3405 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3405 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3405 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3405 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3405 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3405 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000010 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000010 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000010 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II, APSC-DV-002290 CAT II
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Session Fixation (WASC-37)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Session Fixation
desc.config.java.session_fixation
Abstract
Authenticating a user without invalidating any existing session identifier gives an attacker the opportunity to steal authenticated sessions.
Explanation
Session fixation vulnerabilities occur when:

1. A web application authenticates a user without first invalidating the existing session, thereby continuing to use the session already associated with the user.

2. An attacker is able to force a known session identifier on a user so that, after the user authenticates, the attacker has access to the authenticated session.

In the generic exploit of session fixation vulnerabilities, an attacker creates a new session on a web application and records the associated session identifier. The attacker then causes the victim to authenticate against the server using that session identifier, giving the attacker access to the user's account through the active session.

Example 1: The following code disables the use_strict_mode attribute for session cookies.

ini_set("session.use_strict_mode", "0");
References
[1] D. Whalen The Unofficial Cookie FAQ
[2] The PHP Group PHP Use Strict Mode Documentation
[3] Standards Mapping - Common Weakness Enumeration CWE ID 384
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001664, CCI-001941, CCI-001942
[5] Standards Mapping - FIPS200 IA
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-10 Concurrent Session Control (P3), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-10 Concurrent Session Control, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[9] Standards Mapping - OWASP API 2023 API2 Broken Authentication
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.1 Session Binding Requirements (L1 L2 L3), 3.2.3 Session Binding Requirements (L1 L2 L3), 3.3.1 Session Logout and Timeout Requirements (L1 L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Top 10 2004 A3 Broken Authentication and Session Management
[14] Standards Mapping - OWASP Top 10 2007 A7 Broken Authentication and Session Management
[15] Standards Mapping - OWASP Top 10 2010 A3 Broken Authentication and Session Management
[16] Standards Mapping - OWASP Top 10 2013 A2 Broken Authentication and Session Management
[17] Standards Mapping - OWASP Top 10 2017 A2 Broken Authentication
[18] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3405 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3405 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3405 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3405 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3405 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3405 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3405 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000010 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000010 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000010 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002250 CAT II, APSC-DV-002260 CAT II, APSC-DV-002270 CAT II, APSC-DV-002280 CAT II, APSC-DV-002290 CAT II
[54] Standards Mapping - Web Application Security Consortium Version 2.00 Session Fixation (WASC-37)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 Session Fixation
desc.structural.php.session_fixation