539 items found
Weaknesses
Abstract
The program fails to set the SameSite attribute on session cookies.
Explanation
Browsers automatically append cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data such as session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appended the cookie to the request.

The SameSite parameter limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite parameter can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top-level navigation.
- Lax: When set to Lax, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe or href tags that link to the host site. If a user follows the link, the request will include the cookie.
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with the request.

Example 1: The following code sets the SameSite attribute to None for session cookies.

...
Cookie cookie = new Cookie('name', 'Foo', path, -1, true, 'None');
...
References
[1] SameSite Browser Compatibility Can I Use
[2] Standards Mapping - Common Weakness Enumeration CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[15] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[16] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[31] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.structural.apex.cookie_security_missing_samesite_attribute
Abstract
The program fails to set the SameSite attribute on session cookies.
Explanation
Browsers automatically append cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data such as session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appends the cookie to the request.

The SameSite attribute limits the scope of the cookie such that it will only be attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite attribute can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top-level navigation.
- Lax: When set to Lax, cookies are sent with top-level navigation from the same host as well as GET requests originating from third-party sites, including those that have either iframe or href tags that link to the host site. If a user follows the link, the request will include the cookie.
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with request.

Example 1: The following code disables the SameSite attribute for session cookies.

...
CookieOptions opt = new CookieOptions()
{
SameSite = SameSiteMode.None;
};
context.Response.Cookies.Append("name", "Foo", opt);
...
References
[1] HTTP State Management Mechanism Internet Engineering Task Force
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.controlflow.dotnet.cookie_security_missing_samesite_attribute
Abstract
The program fails to set the SameSite attribute on session cookies.
Explanation
Browsers automatically append cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data such as session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appended the cookie to the request.

The SameSite attribute limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite attribute can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top-level navigation.
- Lax: When set to Lax, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe or href tags that link to the host site. If a user follows the link, the request will include the cookie.
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with the request.

Example 1: The following code disables the SameSite attribute for session cookies.

c := &http.Cookie{
Name: "cookie",
Value: "samesite-none",
SameSite: http.SameSiteNoneMode,
}
References
[1] SameSite Browser Compatibility Can I Use
[2] Standards Mapping - Common Weakness Enumeration CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[15] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[16] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[31] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.golang.cookie_security_missing_samesite_attribute
Abstract
The program fails to set the SameSite attribute on session cookies.
Explanation
Browsers automatically append cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data such as session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appends the cookie to the request.

The SameSite attribute limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite attribute can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top-level navigation.
- Lax: When set to Lax, cookies are sent with top-level navigation from the same host as well as GET requests originating from third-party sites, including those that have either iframe or href tags that link to the host site. For example, suppose there is a third-party site that has either iframe or href tags that link to the host site. If a user follows the link, the request will include the cookie.
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with the request.

Example 1: The following code disables the SameSite attribute for session cookies.

ResponseCookie cookie = ResponseCookie.from("myCookie", "myCookieValue")
...
.sameSite("None")
...
References
[1] HTTP State Management Mechanism Internet Engineering Task Force
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.java.cookie_security_missing_samesite_attribute
Abstract
The program fails to set the SameSite attribute on session cookies.
Explanation
Browsers automatically append cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data such as session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appends the cookie to the request.

The SameSite attribute limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite attribute can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top-level navigation.
- Lax: When set to Lax, cookies are sent with top-level navigation from the same host as well as GET requests originating from third-party sites, including those that have either iframe or href tags that link to the host site. For example, suppose there is a third-party site that has either iframe or href tags that link to the host site. If a user follows the link, the request will include the cookie.
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with the request.

Example 1: The following code disables the SameSite attribute for session cookies.

app.get('/', function (req, res) {
...
res.cookie('name', 'Foo', { sameSite: false });
...
}
References
[1] HTTP State Management Mechanism Internet Engineering Task Force
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.dataflow.javascript.cookie_security_missing_samesite_attribute
Abstract
The program fails to set the SameSite attribute on session cookies.
Explanation
Browsers automatically append cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data such as session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appended the cookie to the request.

The SameSite attribute limits the scope of the cookie such that it will only be attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite attribute can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top-level navigation.
- Lax: When set to Lax, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe or href tags that link to the host site. If a user follows the link, the request will include the cookie.
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with request.

Example 1: The following code disables the SameSite attribute for session cookies.

ini_set("session.cookie_samesite", "None");
References
[1] Runtime Configuration The PHP Group
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.structural.php.cookie_security_missing_samesite_attribute
Abstract
The program fails to set the SameSite attribute on session cookies.
Explanation
Browsers automatically append cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data such as session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appended the cookie to the request.

The samesite parameter limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The samesite parameter can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top-level navigation.
- Lax: When set to Lax, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe or href tags that link to the host site. If a user follows the link, the request will include the cookie.
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with the request.

Example 1: The following code disables the SameSite attribute for session cookies.

response.set_cookie("cookie", value="samesite-none", samesite=None)
References
[1] SameSite Browser Compatibility Can I Use
[2] Standards Mapping - Common Weakness Enumeration CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[15] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[16] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[31] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.structural.python.cookie_security_missing_samesite_attribute
Abstract
A cookie was created without the SameSite attribute.
Explanation
The SameSite attribute protects cookies from Cross-Site Request Forgery (CSRF) attacks. The browser automatically appends cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data like session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appended the cookie to the request.
The SameSite attribute on a cookie allows sites to control that behaviour and prevents browsers from appending the cookie to request if the request is generated from a third-party site page load. The SameSite attribute can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top level navigation.
- Lax: When set to Lax, cookies are sent with top level navigation from the same host as well as GET requests originated to the host from third-party sites (for example, in iframe, link, href, and so on and the form tag with GET method only).
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with request.
Cookies that have the SameSite attribute with the value of None must be set with the Secure attribute otherwise the browser rejects the cookies. Additionally, a few specific browser versions reject the SameSite cookie with the None value for example, Chrome versions 51 to 66, versions of the UC Browser on Android prior to version 12.13.2, versions of Safari and embedded browsers on macOS 10.14, and all browsers on iOS 12 reject cookies set with SameSite=None. A suggested workaround for this issue is to set an alternate cookie with a prefix or suffix such as Legacy appended to cookiename. Sites can look for this legacy cookie if it does not find a cookie that was set with SameSite=None.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 352
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[9] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[15] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[16] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[30] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[31] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.dynamic.xtended_preview.Cookie_Security_Missing_SameSite_Attribute
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Suppose you have a secure application deployed at http://secure.example.com/, and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

HttpCookie cookie = new HttpCookie("sessionID", sessionID);
cookie.Domain = ".example.com";


Suppose you have another, less secure, application at http://insecure.example.com/ and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from secure.example.com.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[2] Standards Mapping - FIPS200 CM
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[6] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[7] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[8] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[9] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[10] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[11] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[12] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[13] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[42] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.controlflow.dotnet.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1: Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

cookie := http.Cookie{
Name: "sessionID",
Value: getSessionID(),
Domain: ".example.com",
}
...


Suppose you have another, less secure, application at http://insecure.example.com/, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, attackers can perform a "Cookie poisoning attack" by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from Secure.example.com.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[2] Standards Mapping - FIPS200 CM
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[6] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[7] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[8] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[9] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[10] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[11] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[12] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[13] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[42] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.golang.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

Cookie cookie = new Cookie("sessionID", sessionID);
cookie.setDomain(".example.com");


Suppose you have another, less secure, application at http://insecure.example.com/, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from secure.example.com.
References
[1] Class Cookie Sun Microsystems
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.java.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

cookie_options = {};
cookie_options.domain = '.example.com';
...
res.cookie('important_cookie', info, cookie_options);


Suppose you have another, less secure, application at http://insecure.example.com/, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from secure.example.com.
References
[1] Node.js Security Checklist
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.javascript.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

...
NSDictionary *cookieProperties = [NSDictionary dictionary];
...
[cookieProperties setValue:@".example.com" forKey:NSHTTPCookieDomain];
...
NSHTTPCookie *cookie = [NSHTTPCookie cookieWithProperties:cookieProperties];
...


Suppose you have another, less secure, application at http://insecure.example.com/, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from secure.example.com.
References
[1] Class NSHTTPCookie Apple
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.objc.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

setcookie("mySessionId", getSessionID(), 0, "/", ".example.com", true, true);


Suppose you have another, less secure, application at http://insecure.example.com/, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from secure.example.com.
References
[1] setcookie() documentation The PHP Group
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.php.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1: Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

from django.http.response import HttpResponse
...
def view_method(request):
res = HttpResponse()
res.set_cookie("mySessionId", getSessionID(), domain=".example.com")
return res
...


Suppose you have another, less secure, application at http://insecure.example.com/, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, it might be possible for attackers to perform a "Cookie poisoning attack" by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from secure.example.com.
References
[1] Request and Response documentation The Django Foundation Group
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.python.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1: Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

Ok(Html(command)).withCookies(Cookie("sessionID", sessionID, domain = Some(".example.com")))


Suppose you have another, less secure, application at http://insecure.example.com/, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from secure.example.com.
References
[1] Class Cookie Sun Microsystems
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.scala.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad domain opens an application to attack through other applications.
Explanation
Developers often set cookies to be active across a base domain such as ".example.com". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session ID cookie with the domain ".example.com" when a user logs in.

For example:

...
let properties = [
NSHTTPCookieDomain: ".example.com",
NSHTTPCookiePath: "/service",
NSHTTPCookieName: "foo",
NSHTTPCookieValue: "bar",
NSHTTPCookieSecure: true
]
let cookie : NSHTTPCookie? = NSHTTPCookie(properties:properties)
...


Suppose you have another, less secure, application at http://insecure.example.com/, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using insecure.example.com to create its own overly broad cookie that overwrites the cookie from secure.example.com.
References
[1] Class NSHTTPCookie Apple
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.swift.cookie_security_overly_broad_domain
Abstract
A cookie with an overly broad path can be accessed by other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum. For example:

...
String path = '/';
Cookie cookie = new Cookie('sessionID', sessionID, path, maxAge, true, 'Strict');
...


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[2] Standards Mapping - FIPS200 CM
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[6] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[7] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.apex.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be the root context path "/", however, doing so exposes the cookie to all web applications on the same domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

HttpCookie cookie = new HttpCookie("sessionID", sessionID);
cookie.Path = "/";


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[2] Standards Mapping - FIPS200 CM
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[6] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[7] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.dotnet.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Suppose you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

cookie := http.Cookie{
Name: "sessionID",
Value: sID,
Expires: time.Now().AddDate(0, 0, 1),
Path: "/",
}
...


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a forum user clicks this link, the browser sends the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, attackers can perform a "Cookie poisoning attack" by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Amit Klein Round-up: Ways to bypass HttpOnly (and HTTP Basic auth)
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[10] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[11] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[12] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[13] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.golang.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

Cookie cookie = new Cookie("sessionID", sessionID);
cookie.setPath("/");


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[2] Standards Mapping - FIPS200 CM
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[6] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[7] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.java.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

cookie_options = {};
cookie_options.path = '/';
...
res.cookie('important_cookie', info, cookie_options);


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Node.js Security Checklist
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[10] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[11] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[12] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[13] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.javascript.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

...
NSDictionary *cookieProperties = [NSDictionary dictionary];
...
[cookieProperties setValue:@"/" forKey:NSHTTPCookiePath];
...
NSHTTPCookie *cookie = [NSHTTPCookie cookieWithProperties:cookieProperties];
...


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Class NSHTTPCookie Apple
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[10] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[11] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[12] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[13] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.objc.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

setcookie("mySessionId", getSessionID(), 0, "/", "communitypages.example.com", true, true);


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] setcookie() documentation The PHP Group
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[10] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[11] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[12] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[13] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.php.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

from django.http.response import HttpResponse
...
def view_method(request):
res = HttpResponse()
res.set_cookie("sessionid", value) # Path defaults to "/"
return res
...


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a "Cookie poisoning attack" by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Request and Response documentation The Django Foundation Group
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[10] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[11] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[12] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[13] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.python.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1: Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

Ok(Html(command)).withCookies(Cookie("sessionID", sessionID, path = "/"))


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[2] Standards Mapping - FIPS200 CM
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[6] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[7] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.scala.cookie_security_overly_broad_path
Abstract
A cookie with an overly broad path can be accessed through other applications on the same domain.
Explanation
Developers often set cookies to be accessible from the root context path ("/"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session ID cookie with the path "/" when users log in to the forum.

For example:

...
let properties = [
NSHTTPCookieDomain: "www.example.com",
NSHTTPCookiePath: "/",
NSHTTPCookieName: "foo",
NSHTTPCookieValue: "bar",
NSHTTPCookieSecure: true
]
let cookie : NSHTTPCookie? = NSHTTPCookie(properties:properties)
...


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum to the application running at /EvilSite. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite.

In addition to reading a cookie, it might be possible for attackers to perform a Cookie Poisoning attack by using /EvilSite to create its own overly broad cookie that overwrites the cookie from /MyForum.
References
[1] Class NSHTTPCookie Apple
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.5 Cookie-based Session Management (L1 L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[10] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[11] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[12] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[13] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.swift.cookie_security_overly_broad_path
Abstract
A session cookie with an overly broad domain can be accessed by applications that share the same base domain.
Explanation
Developers often set session cookies to be a base domain such as ".example.com". However, doing so exposes the session cookie to all web applications on the base domain name and any sub-domains. Leaking session cookies can lead to account compromises.

Example 1: Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session cookie with the domain ".example.com" when users log in.

The application's configuration file would have the following entry:

server.servlet.session.cookie.domain=.example.com


Suppose you have another less secure application at http://insecure.example.com/ and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[2] Standards Mapping - FIPS200 CM
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[6] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[7] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[8] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[9] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[10] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[11] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[12] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[13] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[42] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.config.java.cookie_security_overly_broad_session_cookie_domain
Abstract
A session cookie with an overly broad domain can be attacked through other applications that share the same base domain.
Explanation
Developers often set session cookies to be a base domain such as ".example.com". This exposes the session cookie to all web applications on the base domain and any sub-domains. Sharing session cookies across applications can lead to a vulnerability in one application causing a compromise in another.

Example 1:
Suppose you have a secure application deployed at http://secure.example.com/ and the application sets a session cookie with the domain ".example.com" when users log in.

For example:

session_set_cookie_params(0, "/", ".example.com", true, true);


Suppose you have another less secure application at http://insecure.example.com/ and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com that browses to http://insecure.example.com risks exposing their session cookie from http://secure.example.com.
References
[1] session_set_cookie_params The PHP Group
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.php.cookie_security_overly_broad_session_cookie_domain
Abstract
A session cookie with an overly broad path can be compromised through applications that share the same domain.
Explanation
Developers often set session cookies to be the root context path ("/"). This exposes the cookie to all web applications on the same domain. Leaking session cookies can lead to account compromises because an attacker may steal the session cookie using a vulnerability in any of the applications on the domain.

Example 1: Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session cookie with the path "/" when users log in to the forum. For example:

server.servlet.session.cookie.path=/


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a forum user clicks this link, their browser will send the session cookie set by /MyForum to the application running at /EvilSite. By using the session cookie provided from the user on /MyForum, the attacker can compromise the account of any forum user that browses to /EvilSite.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[2] Standards Mapping - FIPS200 CM
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[6] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[7] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[8] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[9] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[10] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[11] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[12] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[13] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[42] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.config.java.cookie_security_overly_broad_session_cookie_path
Abstract
A session cookie with an overly broad path can be compromised through applications that share the same domain.
Explanation
Developers often set session cookies to be the root context path ("/"). This exposes the cookie to all web applications on the same domain. Leaking session cookies can lead to account compromises because an attacker may steal the session cookie using a vulnerability in any of the applications on the domain.

Example 1:
Imagine you have a forum application deployed at http://communitypages.example.com/MyForum and the application sets a session cookie with the path "/" when users log in to the forum.

For example:

session_set_cookie_params(0, "/", "communitypages.example.com", true, true);


Suppose an attacker creates another application at http://communitypages.example.com/EvilSite and posts a link to this site on the forum. When a forum user clicks this link, their browser will send the session cookie set by /MyForum to the application running at /EvilSite. By stealing the session cookie, the attacker can compromise the account of any forum user that browsed to /EvilSite.
References
[1] session_set_cookie_params The PHP Group
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001368, CCI-001414
[3] Standards Mapping - FIPS200 CM
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[9] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[10] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[11] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[12] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.7
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000480 CAT II, APSC-DV-000490 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.php.cookie_security_overly_broad_session_cookie_path
Abstract
The SameSite parameter on session cookies is not set to Strict.
Explanation
Browsers automatically append cookies to every HTTP request made to the site that sets the cookie. Cookies might store sensitive data such as session ID and authorization token or site data that is shared between different requests to the same site during a session. An attacker can perform an impersonation attack by generating a request to the authenticated site from a third-party site page loaded on the client machine because the browser automatically appended the cookie to the request.

The SameSite parameter limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite parameter can have the following three values:

- Strict: When set to Strict, cookies are only sent along with requests upon top-level navigation.
- Lax: When set to Lax, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe or href tags that link to the host site. If a user follows the link, the request will include the cookie.
- None: Cookies are sent in all requests made to the site within the path and domain scope set for the cookie. Requests generated due to form submissions using the POST method are also allowed to send cookies with the request.

Example 1: The following code sets the SameSite parameter to Lax for session cookies.

...
Cookie cookie = new Cookie('name', 'Foo', path, -1, true, 'Lax');
...
References
[1] HTTP State Management Mechanism Internet Engineering Task Force
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.apex.cookie_security_overly_permissive_samesite_attribute
Abstract
The SameSite attribute on session cookies is not set to Strict.
Explanation
The SameSite attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href and src attribute of tags such as link and iframe in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.
Set the value of the SameSite attribute to Strict in session cookies. This restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe, img, and form do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.

Example 1: The following code sets the value of the SameSite attribute to Lax for session cookies.

...
CookieOptions opt = new CookieOptions()
{
SameSite = SameSiteMode.Lax;
};
context.Response.Cookies.Append("name", "Foo", opt);
...
References
[1] HTTP State Management Mechanism Internet Engineering Task Force
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.dotnet.cookie_security_overly_permissive_samesite_attribute
Abstract
The SameSite attribute on session cookies is not set to SameSiteStrictMode.
Explanation
The SameSite attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href and src attribute of tags such as link and iframe in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.
Set session cookies with SameSiteStrictMode for the SameSite attribute, which restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe, img, and form do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.

Example 1: The following code enables SameSiteLaxMode in the SameSite attribute for session cookies.

c := &http.Cookie{
Name: "cookie",
Value: "samesite-lax",
SameSite: http.SameSiteLaxMode,
}
References
[1] SameSite Browser Compatibility Can I Use
[2] Standards Mapping - Common Weakness Enumeration CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[15] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[16] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[31] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.golang.cookie_security_overly_permissive_samesite_attribute
Abstract
The SameSite attribute on session cookies is not set to Strict.
Explanation
The SameSite attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href and src attribute of tags such as link and iframe in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.
Set the value of the SameSite attribute to Strict in session cookies. This restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe, img, and form do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.

Example 1: The following code sets the value of the SameSite attribute to Lax for session cookies.

ResponseCookie cookie = ResponseCookie.from("myCookie", "myCookieValue")
...
.sameSite("Lax")
...
}
References
[1] HTTP State Management Mechanism Internet Engineering Task Force
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.java.cookie_security_overly_permissive_samesite_attribute
Abstract
The SameSite attribute on session cookies is not set to Strict.
Explanation
The SameSite attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href and src attribute of tags such as link and iframe in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.
Set the value of the SameSite attribute to Strict in session cookies. This restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe, img, and form do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.

Example 1: The following code sets the value of the SameSite attribute to Lax for session cookies.

app.get('/', function (req, res) {
...
res.cookie('name', 'Foo', { sameSite: "Lax" });
...
}
References
[1] HTTP State Management Mechanism Internet Engineering Task Force
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.dataflow.javascript.cookie_security_overly_permissive_samesite_attribute
Abstract
The SameSite attribute on session cookies is not set to Strict.
Explanation
The SameSite attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href and src attribute of tags such as link and iframe in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.
Set session cookies with Strict for the SameSite attribute, which restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe, img, and form do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.

Example 1: The following code enables the Lax mode in the SameSite attribute for session cookies.

ini_set("session.cookie_samesite", "Lax");
References
[1] Runtime Configuration The PHP Group
[2] SameSite Browser Compatibility Can I Use
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.structural.php.cookie_security_overly_permissive_samesite_attribute
Abstract
The SameSite attribute on session cookies is not set to Strict.
Explanation
The SameSite attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href and src attribute of tags such as link and iframe in third-party site pages that an attacker controls. If an attacker lures an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie with user authorization. This effectively gives the attacker access with the user's authorization.
Set session cookies to Strict for the SameSite parameter, which restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe, img, and form do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.

Example 1: The following code enables Lax in the samesite attribute for session cookies.

response.set_cookie("cookie", value="samesite-lax", samesite="Lax")
References
[1] SameSite Browser Compatibility Can I Use
[2] Standards Mapping - Common Weakness Enumeration CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[15] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[16] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[31] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.python.cookie_security_overly_permissive_samesite_attribute
Abstract
The SameSite attribute value on Session Cookies is not set to Strict.
Explanation
The SameSite attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so they can perform authorized actions. However, the browser automatically sends the cookies and therefore user and web sites put an implicit trust on the browser for authorization. An attacker can misuse this trust and make a requests to the site on behalf of the user by embedding links inside the href and src attribute of tags such as link and iframe in third-party site pages that an attacker controls. With this, an attacker can trick an unsuspecting user to load this third-party site page in the browser while the user still has authorization to the site that the attacker intends to exploit.
Set session cookies with the Strict value for the SameSite attribute, which restricts the browser to append cookies only to requests that are either top level navigation or originate from the same site. Requests that originate from third-party site via links in various tags such as iframe, img, and form do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 352
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[9] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.4.3 Cookie-based Session Management (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[15] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[16] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[30] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[31] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.dynamic.xtended_preview.Cookie_Security_Overly_Permissive_SameSite_Attribute
Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.
Explanation
Most Web programming environments default to creating non-persistent cookies. These cookies reside only in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can specify that cookies be persisted across browser sessions until some future date. Such cookies are written to disk and survive across browser sessions and computer restarts.

If private information is stored in persistent cookies, attackers have a larger time window in which to steal this data - especially since persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile users as they interact with a site. Depending on what is done with this tracking data, it is possible to use persistent cookies to violate users' privacy.

Example 1: The following code sets a cookie to expire in 10 years.

...
Integer maxAge = 60*60*24*365*10;
Cookie cookie = new Cookie('emailCookie', emailCookie, path, maxAge, true, 'Strict');
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 539
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[6] Standards Mapping - FIPS200 MP
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[10] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[13] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[14] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[15] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[16] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[18] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.apex.cookie_security_persistent_cookie
Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.
Explanation
Most Web programming environments default to creating non-persistent cookies. These cookies reside only in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can specify that cookies be persisted across browser sessions until some future date. Such cookies are written to disk and survive across browser sessions and computer restarts.

If private information is stored in persistent cookies, attackers have a larger time window in which to steal this data - especially since persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile users as they interact with a site. Depending on what is done with this tracking data, it is possible to use persistent cookies to violate users' privacy.
Example 1: The following code sets a cookie to expire in 10 years.

HttpCookie cookie = new HttpCookie("emailCookie", email);
cookie.Expires = DateTime.Now.AddYears(10);;
References
[1] HttpCookie.Expires Property Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 539
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[7] Standards Mapping - FIPS200 MP
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[11] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[14] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[15] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[16] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.dotnet.cookie_security_persistent_cookie
Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.
Explanation
Most Web programming environments default to creating non-persistent cookies. These cookies reside only in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can specify that cookies be persisted across browser sessions until some future date. Such cookies are written to disk and survive across browser sessions and computer restarts.

If private information is stored in persistent cookies, attackers have a larger time window in which to steal this data - especially since persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile users as they interact with a site. Depending on what is done with this tracking data, it is possible to use persistent cookies to violate users' privacy.
Example 1: The following code sets a cookie to expire in 10 years.

Cookie cookie = new Cookie("emailCookie", email);
cookie.setMaxAge(60*60*24*365*10);
References
[1] Class Cookie Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 539
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[7] Standards Mapping - FIPS200 MP
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[11] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[14] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[15] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[16] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.java.cookie_security_persistent_cookie
Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.
Explanation
Most Web programming environments default to creating non-persistent cookies. These cookies reside only in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can specify that cookies be persisted across browser sessions until some future date. Such cookies are written to disk and survive across browser sessions and device restarts.

If private information is stored in persistent cookies, attackers have a larger time window in which to steal this data - especially since persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile users as they interact with a site. Depending on what is done with this tracking data, it is possible to use persistent cookies to violate users' privacy.
Example 1: The following code sets a cookie to expire in 10 years.

...
NSDictionary *cookieProperties = [NSDictionary dictionary];
...
[cookieProperties setValue:[[NSDate date] dateByAddingTimeInterval:(60*60*24*365*10)] forKey:NSHTTPCookieExpires];
...
NSHTTPCookie *cookie = [NSHTTPCookie cookieWithProperties:cookieProperties];
...
References
[1] Class NSHTTPCookie Apple
[2] Standards Mapping - Common Weakness Enumeration CWE ID 539
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[7] Standards Mapping - FIPS200 MP
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[11] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[14] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[15] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[16] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.objc.cookie_security_persistent_cookie
Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.
Explanation
Most web programming environments default to creating non-persistent cookies. These cookies reside only in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can specify that cookies be persisted across browser sessions until some future date. Such cookies are written to disk and survive across browser sessions and computer restarts.

If private information is stored in persistent cookies, attackers have a larger time window in which to steal this data - especially since persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile users as they interact with a site. Depending on what is done with this tracking data, it is possible to use persistent cookies to violate users' privacy.
Example 1: The following code sets a cookie to expire in 10 years.

setcookie("emailCookie", $email, time()+60*60*24*365*10);
References
[1] setcookie() documentation The PHP Group
[2] Standards Mapping - Common Weakness Enumeration CWE ID 539
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[7] Standards Mapping - FIPS200 MP
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[11] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[14] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[15] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[16] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.php.cookie_security_persistent_cookie
Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.
Explanation
Most web programming environments default to creating non-persistent cookies. These cookies reside only in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can specify that cookies be persisted across browser sessions until some future date. Such cookies are written to disk and survive across browser sessions and computer restarts.

If private information is stored in persistent cookies, attackers have a larger time window in which to steal this data - especially since persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile users as they interact with a site. Depending on what is done with this tracking data, it is possible to use persistent cookies to violate users' privacy.
Example 1: The following code sets a cookie to expire in 10 years.

from django.http.response import HttpResponse
...
def view_method(request):
res = HttpResponse()
res.set_cookie("emailCookie", email, expires=time()+60*60*24*365*10, secure=True, httponly=True)
return res
...
References
[1] Request and Response documentation The Django Foundation Group
[2] Standards Mapping - Common Weakness Enumeration CWE ID 539
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[7] Standards Mapping - FIPS200 MP
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[11] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[14] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[15] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[16] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.python.cookie_security_persistent_cookie
Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.
Explanation
Most Web programming environments default to creating non-persistent cookies. These cookies reside only in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can specify that cookies be persisted across browser sessions until some future date. Such cookies are written to disk and survive across browser sessions and computer restarts.

If private information is stored in persistent cookies, attackers have a larger time window in which to steal this data - especially since persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile users as they interact with a site. Depending on what is done with this tracking data, it is possible to use persistent cookies to violate users' privacy.
Example 1: The following code sets a cookie to expire in 10 years.

Ok(Html(command)).withCookies(Cookie("sessionID", sessionID, maxAge = Some(60*60*24*365*10)))
References
[1] Class Cookie Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 539
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[7] Standards Mapping - FIPS200 MP
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[11] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[14] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[15] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[16] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.scala.cookie_security_persistent_cookie
Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.
Explanation
Most Web programming environments default to creating non-persistent cookies. These cookies reside only in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can specify that cookies be persisted across browser sessions until some future date. Such cookies are written to disk and survive across browser sessions and device restarts.

If private information is stored in persistent cookies, attackers have a larger time window in which to steal this data - especially since persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile users as they interact with a site. Depending on what is done with this tracking data, it is possible to use persistent cookies to violate users' privacy.
Example 1: The following code sets a cookie to expire in 10 years.

...
let properties = [
NSHTTPCookieDomain: "www.example.com",
NSHTTPCookiePath: "/service",
NSHTTPCookieName: "foo",
NSHTTPCookieValue: "bar",
NSHTTPCookieSecure: true,
NSHTTPCookieExpires : NSDate(timeIntervalSinceNow: (60*60*24*365*10))
]
let cookie : NSHTTPCookie? = NSHTTPCookie(properties:properties)
...
References
[1] Class NSHTTPCookie Apple
[2] Standards Mapping - Common Weakness Enumeration CWE ID 539
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[7] Standards Mapping - FIPS200 MP
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[11] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[14] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[15] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[16] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.swift.cookie_security_persistent_cookie
Abstract
Persistent session cookies can lead to account compromise.
Explanation
A persistent session cookie remains valid even after a user closes the browser and is often used as part of a "Remember Me" feature. Consequently, a persistent session cookie allows users to remain authenticated to an application even after closing their browsers - assuming they did not explicitly log out. This means the next person that opens the browser will automatically be logged in as the last user. Unless your application is deployed in a controlled environment where users are not allowed to log on from shared machines, it is possible for attackers to compromise your users' accounts even after they have closed their browsers.

Example 1: The following code sets the session cookie to be persistent.

server.servlet.session.cookie.persistent=true
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 539
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[6] Standards Mapping - FIPS200 MP
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[10] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[13] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[14] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[15] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[16] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[18] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.config.java.cookie_security_persistent_session_cookie
Abstract
Persistent session cookies can lead to account compromise.
Explanation
A persistent session cookie remains valid even after a user closes the browser and is often used as part of a "Remember Me" feature. Consequently, a persistent session cookie allows users to remain authenticated to an application even after closing their browsers - assuming they did not explicitly log out. This means the next person that opens the browser will automatically be logged in as the last user. Unless your application is deployed in a controlled environment where users are not allowed to log on from shared machines, it is possible for attackers to compromise your users' accounts even after they have closed their browsers.
Example 1: The following code sets the session cookie to expire in 10 years.

session_set_cookie_params(time()+60*60*24*365*10, "/", "www.example.com", false, true);
References
[1] session_set_cookie_params The PHP Group
[2] Standards Mapping - Common Weakness Enumeration CWE ID 539
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001185, CCI-001941, CCI-001942, CCI-002361
[7] Standards Mapping - FIPS200 MP
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-12 Session Termination (P2), IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-12 Session Termination, IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity
[11] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.2.3 Session Binding Requirements (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M9 Improper Session Handling
[14] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[15] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[16] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.3, Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.7, Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.3
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3, Requirement 6.5.10
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3, Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000060 CAT II, APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002240 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.php.cookie_security_persistent_session_cookie
Abstract
The application session cookie is created without the Secure flag set to true.
Explanation
Modern web browsers support a Secure flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.
Example 1: A configuration that results in the session cookie being added to the response without setting the Secure flag.

...
<configuration>
<system.web>
<authentication mode="Forms">
<forms requireSSL="false" loginUrl="login.aspx">
</forms>
</authentication>
</system.web>
</configuration>
...


If your application uses both HTTPS and HTTP but does not set the Secure flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Sniffing network traffic over unencrypted wireless connections is a trivial task for attackers, so sending cookies (especially those with session IDs) over HTTP can result in application compromise.
References
[1] HttpCookie Class Microsoft
[2] Mike Perry Automated HTTPS Cookie Hijacking
[3] Standards Mapping - Common Weakness Enumeration CWE ID 614
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001184, CCI-002418, CCI-002420, CCI-002421, CCI-002422
[5] Standards Mapping - FIPS200 CM, SC
[6] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1), SC-23 Session Authenticity (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity, SC-23 Session Authenticity
[9] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 3.2.3 Session Binding Requirements (L1 L2 L3), 3.4.1 Cookie-based Session Management (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[11] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[14] Standards Mapping - OWASP Top 10 2007 A9 Insecure Communications
[15] Standards Mapping - OWASP Top 10 2010 A9 Insufficient Transport Layer Protection
[16] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[17] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[18] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 4.1, Requirement 6.5.3
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 4.1, Requirement 6.3.1.4, Requirement 6.5.7, Requirement 6.5.9
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 4.1, Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 4.2.1, Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 4.2.1, Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.4.1 - Web Software Communications
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01), Insufficient Transport Layer Protection (WASC-04)
[54] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication, Insufficient Session Expiration
desc.config.dotnet.cookie_security_session_cookie_not_sent_over_ssl
Abstract
The application may send the session cookie over unencrypted channels.
Explanation
Modern web browsers support a Secure flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.

Example 1: The following configuration entry turns off the Secure flag for session cookies.

server.servlet.session.cookie.secure=false


If an application uses both HTTPS and HTTP, but does not set the Secure flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 614
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001184, CCI-002418, CCI-002420, CCI-002421, CCI-002422
[3] Standards Mapping - FIPS200 CM, SC
[4] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1), SC-23 Session Authenticity (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity, SC-23 Session Authenticity
[7] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 3.2.3 Session Binding Requirements (L1 L2 L3), 3.4.1 Cookie-based Session Management (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[9] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[10] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[11] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[12] Standards Mapping - OWASP Top 10 2007 A9 Insecure Communications
[13] Standards Mapping - OWASP Top 10 2010 A9 Insufficient Transport Layer Protection
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 4.1, Requirement 6.5.3
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 4.1, Requirement 6.3.1.4, Requirement 6.5.7, Requirement 6.5.9
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 4.1, Requirement 6.5.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 4.2.1, Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 4.2.1, Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.4.1 - Web Software Communications
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01), Insufficient Transport Layer Protection (WASC-04)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication, Insufficient Session Expiration
desc.config.java.cookie_security_session_cookie_not_sent_over_ssl
Abstract
The program creates a session cookie without setting the Secure flag to true
Explanation
Modern web browsers support a Secure flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.
Example 1: The following code adds a cookie to the response without setting the Secure flag.

...
setcookie("emailCookie", $email, 0, "/", "www.example.com");
...


If an application uses both HTTPS and HTTP, but does not set the Secure flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.
References
[1] setcookie() documentation The PHP Group
[2] Standards Mapping - Common Weakness Enumeration CWE ID 614
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001184, CCI-002418, CCI-002420, CCI-002421, CCI-002422
[4] Standards Mapping - FIPS200 CM, SC
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1), SC-23 Session Authenticity (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity, SC-23 Session Authenticity
[8] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 3.2.3 Session Binding Requirements (L1 L2 L3), 3.4.1 Cookie-based Session Management (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[10] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[11] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[12] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[13] Standards Mapping - OWASP Top 10 2007 A9 Insecure Communications
[14] Standards Mapping - OWASP Top 10 2010 A9 Insufficient Transport Layer Protection
[15] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[17] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 4.1, Requirement 6.5.3
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 4.1, Requirement 6.3.1.4, Requirement 6.5.7, Requirement 6.5.9
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 4.1, Requirement 6.5.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 4.2.1, Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 4.2.1, Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.4.1 - Web Software Communications
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01), Insufficient Transport Layer Protection (WASC-04)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication, Insufficient Session Expiration
desc.semantic.php.cookie_security_session_cookie_not_sent_over_ssl
Abstract
The program does not explicitly set the SESSION_COOKIE_SECURE property to True or set it to False.
Explanation
Modern web browsers support a Secure flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data, session identifiers, or carries a CSRF token.
Example 1: The following configuration entry does not explicitly set the Secure bit for session cookies.

...
MIDDLEWARE = (
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'csp.middleware.CSPMiddleware',
'django.middleware.security.SecurityMiddleware',
...
)
...


If an application uses both HTTPS and HTTP, but does not set the Secure flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.
References
[1] SESSION_COOKIE_SECURE documentation Django Foundation Group
[2] Standards Mapping - Common Weakness Enumeration CWE ID 614
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001184, CCI-002418, CCI-002420, CCI-002421, CCI-002422
[4] Standards Mapping - FIPS200 CM, SC
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1), SC-23 Session Authenticity (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity, SC-23 Session Authenticity
[8] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 3.2.3 Session Binding Requirements (L1 L2 L3), 3.4.1 Cookie-based Session Management (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[10] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[11] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[12] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[13] Standards Mapping - OWASP Top 10 2007 A9 Insecure Communications
[14] Standards Mapping - OWASP Top 10 2010 A9 Insufficient Transport Layer Protection
[15] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[17] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 4.1, Requirement 6.5.3
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 4.1, Requirement 6.3.1.4, Requirement 6.5.7, Requirement 6.5.9
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 4.1, Requirement 6.5.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 4.1, Requirement 6.5.4, Requirement 6.5.10
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 4.2.1, Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 4.2.1, Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.4.1 - Web Software Communications
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3250.1 CAT I, APP3250.2 CAT I, APP3250.3 CAT II, APP3250.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002230 CAT I, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01), Insufficient Transport Layer Protection (WASC-04)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication, Insufficient Session Expiration
desc.structural.python.cookie_security_session_cookie_not_sent_over_ssl
Abstract
Hardcoded usernames may compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a username. Not only does hardcoding a username allow all of the project's developers to view the username, it also makes fixing the problem extremely difficult. After the code is in production, the username cannot be changed without patching the software. If the account protected by the username is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded username to connect to a database:


...
<cfquery name = "GetSSNs" dataSource = "users"
username = "scott" password = "tiger">
SELECT SSN
FROM Users
</cfquery>
...


This code will run successfully, but anyone who has access to it will have access to the username. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 255
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001199, CCI-002367, CCI-003109
[3] Standards Mapping - FIPS200 MP
[4] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[7] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.10.2 Service Authentication Requirements (L2 L3)
[8] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.6.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.6.2
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective C.2.1.2 - Web Software Access Controls
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.cfml.credential_management_hardcoded_username
Abstract
Hardcoded usernames may compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a username. Not only does hardcoding a username allow all of the project's developers to view the username, it also makes fixing the problem extremely difficult. After the code is in production, the username cannot be changed without patching the software. If the account protected by the username is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded username to connect to a database:


...
Credentials.basic("hardcoded-username", password);
...


This code will run successfully, but anyone who has access to it will have access to the username. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 255
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001199, CCI-002367, CCI-003109
[3] Standards Mapping - FIPS200 MP
[4] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[7] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.10.2 Service Authentication Requirements (L2 L3)
[8] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.6.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.6.2
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective C.2.1.2 - Web Software Access Controls
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.java.credential_management_hardcoded_username
Abstract
The Visualforce page action method or controller constructor performs sensitive tasks without protection against unauthorized requests.
Explanation
A cross-site request forgery (CSRF) vulnerability occurs when:
1. A Web application uses session cookies.

2. The application acts on an HTTP request without verifying that the request was made with the user's consent.

By default, Visualforce pages are rendered with hidden form fields that serve as anti-CSRF tokens. These tokens are included in the requests that are sent from within the page, and the server checks the validity of the tokens before executing the corresponding action methods or commands. However, this built-in defense does not apply to page action methods and custom page controller constructors because they are executed before the anti-CSRF tokens are generated during page load.

Example 1: The following Visualforce page declares a custom contoller MyAccountActions and a page action method pageAction(). The pageAction() method is executed when visiting the page URL, and the server does not check for anti-CSRF tokens.


<apex:page controller="MyAccountActions" action="{!pageAction}">
...
</apex:page>

public class MyAccountActions {

...
public void pageAction() {
Map<String,String> reqParams = ApexPages.currentPage().getParameters();
if (params.containsKey('id')) {
Id id = reqParams.get('id');
Account acct = [SELECT Id,Name FROM Account WHERE Id = :id];
delete acct;
}
}
...
}


An attacker might set up a malicious website that contains the following code:

<img src="http://my-org.my.salesforce.com/apex/mypage?id=YellowSubmarine" height=1 width=1/>


If an administrator for the Visualforce page visits the malicious page while having an active session on the site, they will unwittingly delete accounts for the attacker.
References
[1] Salesforce Security Tips for Apex and Visualforce Development - Cross-Site Request Forgery (CSRF)
[2] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[3] OWASP Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
[4] Standards Mapping - Common Weakness Enumeration CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[12] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 4.2.2 Operation Level Access Control (L1 L2 L3), 13.2.3 RESTful Web Service Verification Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[17] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[18] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[21] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.structural.apex.csrf
Abstract
State-changing HTTP requests must contain a user-specific secret to prevent an attacker from making unauthorized requests
Explanation
A Cross-Site Request Forgery (CSRF) vulnerability occurs when:
1. A Web application uses session cookies.
2. The application acts on an HTTP request without verifying that the request was made with the user's consent.

Example 1: In the following example, a Web application allows administrators to create new accounts:


RequestBuilder rb = new RequestBuilder(RequestBuilder.POST, "/new_user");
body = addToPost(body, new_username);
body = addToPost(body, new_passwd);
rb.sendRequest(body, new NewAccountCallback(callback));


An attacker might set up a malicious Web site that contains the following code:


RequestBuilder rb = new RequestBuilder(RequestBuilder.POST, "http://www.example.com/new_user");
body = addToPost(body, "attacker";
body = addToPost(body, "haha");
rb.sendRequest(body, new NewAccountCallback(callback));


If an administrator for example.com visits the malicious page while they have an active session on the site, they will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.

Applications that pass the session identifier in the URL rather than as a cookie do not have CSRF issues because there is no way for the attacker to access the session identifier and include it as part of a bogus request.

Some frameworks automatically include CSRF nonces to help protect applications. Disabling this feature can leave the application at risk.

Example 2: This Spring Security protected application explicitly disables CSRF protection.


<http auto-config="true">
...
<csrf disabled="true"/>
</http>
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] OWASP Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 4.2.2 Operation Level Access Control (L1 L2 L3), 13.2.3 RESTful Web Service Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.config.java.csrf
Abstract
HTTP requests must contain a user-specific secret to prevent an attacker from making unauthorized requests.
Explanation
A cross-site request forgery (CSRF) vulnerability occurs when:
1. A web application uses session cookies.

2. The application acts on an HTTP request without verifying that the request was made with the user's consent.



A nonce is a cryptographic random value that is sent with a message to prevent replay attacks. If the request does not contain a nonce that proves its provenance, the code that handles the request is vulnerable to a CSRF attack (unless it does not change the state of the application). This means a web application that uses session cookies has to take special precautions to ensure that an attacker can't trick users into submitting bogus requests. Imagine a web application that allows administrators to create new accounts as follows:



var req = new XMLHttpRequest();
req.open("POST", "/new_user", true);
body = addToPost(body, new_username);
body = addToPost(body, new_passwd);
req.send(body);


An attacker might set up a malicious web site that contains the following code.


var req = new XMLHttpRequest();
req.open("POST", "http://www.example.com/new_user", true);
body = addToPost(body, "attacker");
body = addToPost(body, "haha");
req.send(body);


If an administrator for example.com visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.

Applications that pass the session identifier in the URL rather than as a cookie do not have CSRF problems because there is no way for the attacker to access the session identifier and include it as part of the bogus request.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] OWASP Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 4.2.2 Operation Level Access Control (L1 L2 L3), 13.2.3 RESTful Web Service Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.structural.javascript.csrf
Abstract
The Django application does not enable the CSRF middleware protection
Explanation
A cross-site request forgery (CSRF) vulnerability occurs when:
1. A Web application uses session cookies.

2. The application acts on an HTTP request without verifying that the request was made with the user's consent.

A nonce is a cryptographic random value that is sent with a message to prevent replay attacks. If the request does not contain a nonce that proves its provenance, the code that handles the request is vulnerable to a CSRF attack (unless it does not change the state of the application). This means a Web application that uses session cookies has to take special precautions in order to ensure that an attacker can't trick users into submitting bogus requests. Imagine a Web application that allows administrators to create new accounts by submitting this form:


<form method="POST" action="/new_user" >
Name of new user: <input type="text" name="username">
Password for new user: <input type="password" name="user_passwd">
<input type="submit" name="action" value="Create User">
</form>


An attacker might set up a Web site with the following:


<form method="POST" action="http://www.example.com/new_user">
<input type="hidden" name="username" value="hacker">
<input type="hidden" name="user_passwd" value="hacked">
</form>
<script>
document.usr_form.submit();
</script>


If an administrator for example.com visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.

Applications that pass the session identifier in the URL rather than as a cookie do not have CSRF problems because there is no way for the attacker to access the session identifier and include it as part of the bogus request.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Standards Mapping - Common Weakness Enumeration CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 4.2.2 Operation Level Access Control (L1 L2 L3), 13.2.3 RESTful Web Service Verification Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[15] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[16] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[31] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.structural.python.cross_site_request_forgery_django_settings
Abstract
HTTP requests must contain a user-specific secret in order to prevent an attacker from making unauthorized requests.
Explanation
A cross-site request forgery (CSRF) vulnerability occurs when:
1. A Web application uses session cookies.

2. The application acts on an HTTP request without verifying that the request was made with the user's consent.

A nonce is a cryptographic random value that is sent with a message to prevent replay attacks. If the request does not contain a nonce that proves its provenance, the code that handles the request is vulnerable to a CSRF attack (unless it does not change the state of the application). This means a Web application that uses session cookies has to take special precautions in order to ensure that an attacker can't trick users into submitting bogus requests. Imagine a Web application that allows administrators to create new accounts as follows:

By default Play Framework adds protection against CSRF, but it can be disabled globally or for certain routes.

Example 1: The following route definition disables the CSRF protection for the buyItem controller method.

+ nocsrf
POST /buyItem controllers.ShopController.buyItem


If a user is tricked into visiting a malicious page while she has an active session for shop.com, she will unwittingly buy items for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.

Applications that pass the session identifier in the URL rather than as a cookie do not have CSRF problems because there is no way for the attacker to access the session identifier and include it as part of the bogus request.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] OWASP Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 4.2.2 Operation Level Access Control (L1 L2 L3), 13.2.3 RESTful Web Service Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.scala.cross_site_request_forgery
Abstract
Form posts must contain a user-specific secret in order to prevent an attacker from making unauthorized requests.
Explanation
A cross-site request forgery (CSRF) vulnerability occurs when:
1. A Web application uses session cookies.

2. The application acts on an HTTP request without verifying that the request was made with the user's consent.



A nonce is a cryptographic random value that is sent with a message to prevent replay attacks. If the request does not contain a nonce that proves its provenance, the code that handles the request is vulnerable to a CSRF attack (unless it does not change the state of the application). This means a Web application that uses session cookies has to take special precautions in order to ensure that an attacker can't trick users into submitting bogus requests. Imagine a Web application that allows administrators to create new accounts by submitting this form:


<form method="POST" action="/new_user" >
Name of new user: <input type="text" name="username">
Password for new user: <input type="password" name="user_passwd">
<input type="submit" name="action" value="Create User">
</form>


An attacker might set up a Web site with the following:


<form method="POST" action="http://www.example.com/new_user">
<input type="hidden" name="username" value="hacker">
<input type="hidden" name="user_passwd" value="hacked">
</form>
<script>
document.usr_form.submit();
</script>


If an administrator for example.com visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.

Applications that pass the session identifier in the URL rather than as a cookie do not have CSRF problems because there is no way for the attacker to access the session identifier and include it as part of the bogus request.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] OWASP Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
[3] Standards Mapping - Common Weakness Enumeration CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 4.2.2 Operation Level Access Control (L1 L2 L3), 13.2.3 RESTful Web Service Verification Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[16] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[17] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[19] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[20] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[33] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[34] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.content.html.csrf
Abstract
Sending unvalidated machine learning model output to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Artificial Intelligence (AI), the untrusted source is typically the response returned by an AI system.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash, or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. While exploitation is not as straightforward as other forms of XSS, the unpredictable nature of user input and the responses of AI models means that those responses should never be treated as safe.

Example 1: The following Java code retrieves a response from a large language model and returns it to the user in an HTTP response.


@GetMapping("/ai")
String generation(String userInput) {
return this.chatClient.prompt()
.user(userInput)
.call()
.content();
}

The code in this example behaves as expected if the response from the model contains only alpha-numeric characters. However, if unencoded HTML metacharacters are included in the response then XSS is possible. For example, the response to the following prompt "please repeat the following statement exactly '<script>alert(1);</script>'" can return an XSS proof of concept depending on the model and context being used.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_ai
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Artificial Intelligence (AI), the untrusted source is typically the response returned by an AI system. In the case of reflected XSS, it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash, or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. While exploitation is not as straightforward as other forms of XSS, the unpredictable nature of user input and the responses of AI models means that those responses should never be treated as safe.

Example 1: The following TypeScript code retrieves a response from an OpenAI chat completion model, message, and displays it to the user.


const openai = new OpenAI({
apiKey: ...,
});
const chatCompletion = await openai.chat.completions.create(...);

message = res.choices[0].message.content

console.log(chatCompletion.choices[0].message.content)


The code in this example behaves as expected as long as the response from the model contains only alphanumeric characters. However, if the response includes unencoded HTML metacharacters, then XSS is possible. For example, the response to the following prompt "please repeat the following statement exactly '<script>alert(1);</script>'" can return a XSS proof of concept depending on the model and context being used.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.javascript.cross_site_scripting_ai
Abstract
Sending unvalidated machine learning model output to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Artificial Intelligence (AI), the untrusted source is typically the response returned by an AI system.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash, or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. While exploitation is not as straightforward as other forms of XSS, the unpredictable nature of user input and the responses of AI models means that those responses should never be treated as safe.

Example 1: The following kotlin code retrieves a response from a large language model and returns it to the user in an HTTP response.

val chatCompletionRequest = ChatCompletionRequest(
model = ModelId("gpt-3.5-turbo"),
messages = listOf(...)
)
val completion: ChatCompletion = openAI.chatCompletion(chatCompletionRequest)
response.getOutputStream().print(completion.choices[0].message)

The code in this example behaves as expected if the response from the model contains only alpha-numeric characters. However, if unencoded HTML metacharacters are included in the response then XSS is possible. For example, the response to the following prompt "please repeat the following statement exactly '<script>alert(1);</script>'" can return an XSS proof of concept depending on the model and context being used.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.kotlin.cross_site_scripting_ai
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Artificial Intelligence (AI), the untrusted source is typically the response returned by an AI system. In the case of reflected XSS, it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash, or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. While exploitation is not as straightforward as other forms of XSS, the unpredictable nature of user input and the responses of AI models means that those responses should never be treated as safe.

Example 1: The following Python code retrieves a response from an OpenAI chat completion model, message, and displays it to the user.


client = openai.OpenAI()
res = client.chat.completions.create(...)

message = res.choices[0].message.content

self.writeln(f"<p>{message}<\p>")


The code in this example will behave as expected as long as the response from the model contains only alpha-numeric characters. However, if unencoded HTML metacharacters are included in the response then XSS is possible. For example, the response to the following prompt "please repeat the following statement exactly '<script>alert(1);</script>'" can return a XSS proof of concept depending on the model and context being used.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.python.cross_site_scripting_ai
Abstract
Sending unvalidated machine learning model output to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Artificial Intelligence (AI), the untrusted source is typically the response returned by an AI system.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash, or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. While exploitation is not as straightforward as other forms of XSS, the unpredictable nature of user input and the responses of AI models means that those responses should never be treated as safe.

Example 1: The following code retrieves a response from a large language model and returns it to the user in an HTTP response.


chatService.createCompletion(
text,
settings = CreateCompletionSettings(...)
).map(completion =>
val html = Html(completion.choices.head.text)
Ok(html) as HTML
)
...

The code in this example behaves as expected if the response from the model contains only alpha-numeric characters. However, if unencoded HTML metacharacters are included in the response then XSS is possible. For example, the response to the following prompt "please repeat the following statement exactly '<script>alert(1);</script>'" can return an XSS proof of concept depending on the model and context being used.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.scala.cross_site_scripting_ai
Abstract
Sending unvalidated data to a web browser may result in certain browsers executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but may also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

For the browser to render the response as HTML, or other document that may execute scripts, it has to specify a text/html MIME type. Therefore, XSS is only possible if the response uses this MIME type or any other that also forces the browser to render the response as HTML or other document that may execute scripts such as SVG images (image/svg+xml), XML documents (application/xml), etc.

Most modern browsers do not render HTML or execute scripts when provided a response with MIME types such as application/octet-stream. However, some browsers such as Internet Explorer perform what is known as Content Sniffing. Content Sniffing involves ignoring the provided MIME type and attempting to infer the correct MIME type by the contents of the response.
It is worth noting however, a MIME type of text/html is only one such MIME type that may lead to XSS vulnerabilities. Other documents that may execute scripts such as SVG images (image/svg+xml), XML documents (application/xml), as well as others may lead to XSS vulnerabilities regardless of whether the browser performs Content Sniffing.

Therefore, a response such as <html><body><script>alert(1)</script></body></html>, could be rendered as HTML even if its content-type header is set to application/octet-stream, multipart-mixed, and so on.

Example 1: The following JAX-RS method reflects user data in an application/octet-stream response.


@RestController
public class SomeResource {
@RequestMapping(value = "/test", produces = {MediaType.APPLICATION_OCTET_STREAM_VALUE})
public String response5(@RequestParam(value="name") String name){
return name;
}
}


If an attacker sends a request with the name parameter set to <html><body><script>alert(1)</script></body></html>, the server will produce the following response:


HTTP/1.1 200 OK
Content-Length: 51
Content-Type: application/octet-stream
Connection: Closed

<html><body><script>alert(1)</script></body></html>


Even though, the response clearly states that it should be treated as a JSON document, an old browser may still try to render it as an HTML document, making it vulnerable to a Cross-Site Scripting attack.
References
[1] X-Content-Type-Options Mozilla
[2] MIME Type Detection in Windows Internet Explorer Microsoft
[3] Understanding Malicious Content Mitigation for Web Developers CERT
[4] HTML 4.01 Specification W3
[5] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[6] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[7] INJECT-3: XML and HTML generation requires care Oracle
[8] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[14] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[15] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[16] Standards Mapping - FIPS200 SI
[17] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[24] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[27] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[28] Standards Mapping - OWASP Top 10 2021 A03 Injection
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_content_sniffing
Abstract
Sending unvalidated data to a web browser may result in certain browsers executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but may also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

For the browser to render the response as HTML, or other document that may execute scripts, it has to specify a text/html MIME type. Therefore, XSS is only possible if the response uses this MIME type or any other that also forces the browser to render the response as HTML or other document that may execute scripts such as SVG images (image/svg+xml), XML documents (application/xml), etc.

Most modern browsers will not render HTML, nor execute scripts when provided a response with MIME types such as application/json. However, some browsers such as Internet Explorer perform what is known as Content Sniffing. Content Sniffing involves ignoring the provided MIME type and attempting to infer the correct MIME type by the contents of the response.
It is worth noting however, a MIME type of text/html is only one such MIME type that may lead to XSS vulnerabilities. Other documents that may execute scripts such as SVG images (image/svg+xml), XML documents (application/xml), as well as others may lead to XSS vulnerabilities regardless of whether the browser performs Content Sniffing.

Therefore, a response such as <html><body><script>alert(1)</script></body></html>, could be rendered as HTML even if its content-type header is set to application/json.

Example 1: The following AWS Lambda function reflects user data in an application/json response.


def mylambda_handler(event, context):
name = event['name']
response = {
"statusCode": 200,
"body": "{'name': name}",
"headers": {
'Content-Type': 'application/json',
}
}
return response


If an attacker sends a request with the name parameter set to <html><body><script>alert(1)</script></body></html>, the server will produce the following response:


HTTP/1.1 200 OK
Content-Length: 88
Content-Type: application/json
Connection: Closed

{'name': '<html><body><script>alert(1)</script></body></html>'}


Even though, the response clearly states that it should be treated as a JSON document, an old browser may still try to render it as an HTML document, making it vulnerable to a Cross-Site Scripting attack.
References
[1] X-Content-Type-Options Mozilla
[2] MIME Type Detection in Windows Internet Explorer Microsoft
[3] Understanding Malicious Content Mitigation for Web Developers CERT
[4] HTML 4.01 Specification W3
[5] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[6] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[7] INJECT-3: XML and HTML generation requires care Oracle
[8] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[14] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[15] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[16] Standards Mapping - FIPS200 SI
[17] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[24] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[27] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[28] Standards Mapping - OWASP Top 10 2021 A03 Injection
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.python.cross_site_scripting_content_sniffing
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of DOM-based XSS, data is read from a URL parameter or other value within the browser and written back into the page with client-side code. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation. In the case of DOM-based XSS, malicious content is executed as part of DOM (Document Object Model) creation, whenever the victim's browser parses the HTML page.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following JavaScript code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


String queryString = Window.Location.getQueryString();
int pos = queryString.indexOf("eid=")+4;
HTML output = new HTML();
output.setHTML(queryString.substring(pos, queryString.length()));


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.


As the example demonstrates, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- Data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- The application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] INJECT-3: XML and HTML generation requires care Oracle
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_dom
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of DOM-based XSS, data is read from a URL parameter or other value within the browser and written back into the page with client-side code. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation. In the case of DOM-based XSS, malicious content is executed as part of DOM (Document Object Model) creation, whenever the victim's browser parses the HTML page.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following JavaScript code segment reads an employee ID, eid, from a URL and displays it to the user.


<SCRIPT>
var pos=document.URL.indexOf("eid=")+4;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

Example 2: Consider the HTML form:


<div id="myDiv">
Employee ID: <input type="text" id="eid"><br>
...
<button>Show results</button>
</div>
<div id="resultsDiv">
...
</div>


The following jQuery code segment reads an employee ID from the form, and displays it to the user.


$(document).ready(function(){
$("#myDiv").on("click", "button", function(){
var eid = $("#eid").val();
$("resultsDiv").append(eid);
...
});
});


These code examples operate correctly if the employee ID from the text input with ID eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Example 3: The following code shows an example of a DOM-based XSS within a React application:


let element = JSON.parse(getUntrustedInput());
ReactDOM.render(<App>
{element}
</App>);


In Example 3, if an attacker can control the entire JSON object retrieved from getUntrustedInput(), they may be able to make React render element as a component, and therefore can pass an object with dangerouslySetInnerHTML with their own controlled value, a typical cross-site scripting attack.

Initially these might not appear to be much of a vulnerability. After all, why would someone provide input containing malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the example demonstrates, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- Data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- The application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] XSS via a spoofed React element Daniel LeCheminant
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.javascript.cross_site_scripting_dom
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code. Settings in the configuration can minimize and reduce the exposure to cross-site scripting
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently a web request or database.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Since attacks against XSS vulnerabilities often involve communicating with or redirecting to a malicious site controlled by the attacker, the ability to inject references to content on other domains is integral to many exploits. AntiSamy can be configured to prevent links to external domains, which diminishes the damage an attacker may cause through an XSS attack. However, this protection is only a partial solution and does not address the overall threat posed by XSS vulnerabilities.

Example 1: The following AntiSamy configuration entry allows links to URLs outside of the domain on which the application is running.

<attribute name="href" onInvalid="filterTag">
<regexp-list>
<regexp name="onsiteURL"/>
<regexp name="offsiteURL"/>
</regexp-list>
</attribute>
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001167, CCI-001310
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-18 Mobile Code (P2), SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-18 Mobile Code, SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-003300 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-003300 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-003300 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.config.java.xss_external_links
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web or mobile application through an untrusted source. In the case of Inter-Component Communication XSS, the untrusted source is data received from other components that reside on the same system. In the mobile world, these are applications running on the same device. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 1: The following ASP.NET code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


String eid = Request["eid"];
...
EmployeeID.Text = eid;


Where EmployeeID is a server-side ASP.NET control defined as follows:


<form runat="server">
...
<asp:Label id="EmployeeID" runat="server"/>
...
</form>


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ASP.NET code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
string name = "";
using (SqlConnection conn = new SqlConnection(_ConnectionString))
{
string eid = Request["eid"];
SqlCommand cmd = new SqlCommand("SELECT * FROM emp WHERE id = @id", conn);
cmd.Parameters.AddWithValue("@id", eid);
conn.Open();
SqlDataReader objReader = cmd.ExecuteReader();

while (objReader.Read())
{
name = objReader["name"];
}
objReader.Close();
}
...

EmployeeName.Text = name;


Where EmployeeName is a server-side ASP.NET control defined as follows:


<form runat="server">
...
<asp:Label id="EmployeeName" runat="server"/>
...
</form>


As in Example 2, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Anti-Cross Site Scripting Library MSDN
[2] Understanding Malicious Content Mitigation for Web Developers CERT
[3] HTML 4.01 Specification W3
[4] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[5] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[23] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[27] Standards Mapping - OWASP Top 10 2021 A03 Injection
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[42] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.dotnet.cross_site_scripting_inter_component_communication
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Inter-Component Communication XSS, the untrusted source is data received from other components that reside on the same system. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Go code segment reads a user name, user, from an HTTP request and displays it to the user.

func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", user)
}


The code in this example operates correctly if user contains only standard alphanumeric text. If user has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Go code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", name)
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As shown in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As shown in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.golang.cross_site_scripting_inter_component_communication
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web or mobile application through an untrusted source. In the case of Inter-Component Communication XSS, the untrusted source is data received from other components that reside on the same system. In the mobile world, these are applications running on the same device. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 1: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

Example 2: The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>

Employee Name: <%= name %>


As in Example 2, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[23] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[27] Standards Mapping - OWASP Top 10 2021 A03 Injection
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[42] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_inter_component_communication
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Inter-Component Communication XSS, the untrusted source is data received from other components that reside on the same system. In the mobile environment, these are applications running on the same device. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 1: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(url)
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

Example 2: The following code reads an employee ID, eid, from an HTTP servlet request, then displays the value back to the user in the servlet's response.


val eid: String = request.getParameter("eid")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee ID: $eid")
...
out.close()
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name in the servlet's response.


val stmt: Statement = conn.createStatement()
val rs: ResultSet = stmt.executeQuery("select * from emp where id=$eid")
rs.next()
val name: String = rs.getString("name")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee Name: $name")
...
out.close()
...


As in Example 2, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.


A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Spring MVC). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[23] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[27] Standards Mapping - OWASP Top 10 2021 A03 Injection
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[42] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.kotlin.cross_site_scripting_inter_component_communication
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web or mobile application through an untrusted source. In the case of Inter-Component Communication XSS, the untrusted source is data received from other components that reside on the same system. In the mobile world, these are applications running on the same device. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of Persistent (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 1: The following code enables an application to load an html page within a WKWebView with data from a URL request that uses the application's custom URL scheme:

AppDelegate.m:

...
@property (strong, nonatomic) NSString *webContentFromURL;
...
- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url sourceApplication:(NSString *)sourceApplication annotation:(id)annotation {
...
[self setWebContentFromURL:[url host]];
...
...


ViewController.m

...
@property (strong, nonatomic) WKWebView *webView;
...
AppDelegate *appDelegate = (AppDelegate *)[[UIApplication sharedApplication] delegate];
...
[_webView loadHTMLString:appDelegate.webContentFromURL] baseURL:nil];
...


Because the string passed to loadHTMLString: is user-controllable and JavaScript is enabled by default within a WKWebView, the user can write arbitrary content (including executable scripts) to the WKWebView via requests that use app's custom URL scheme.

Example 2: The following code reads the contents of a UITextField and displays it to the user within a WKWebView:


...
@property (strong, nonatomic) WKWebView *webView;
@property (strong, nonatomic) UITextField *inputTextField;
...
[_webView loadHTMLString:_inputTextField.text baseURL:nil];
...


The code in this example operates without issues if the text within inputTextField contains only standard alphanumeric text. If the text within inputTextField includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone provide input that can cause malicious code to run on their own device? The real danger is that an attacker may use email or social engineering tricks to lure victims into performing such actions. When this is successful, the victims unwittingly reflect the malicious content through the vulnerable web application back to their own devices. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following code segment queries a database for an employee with a given ID and outputs the value in the display content of a WKWebView.


...
@property (strong, nonatomic) WKWebView *webView;
...
NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"Employee" inManagedObjectContext:context];
[fetchRequest setEntity:entity];

NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
for (NSManagedObject *info in fetchedObjects) {
NSString msg = @"Hello, " + [info valueForKey:@"name"];
[_webView loadHTMLString:msg baseURL:nil]
...
}
...


As in Example 2, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.

- As in Example 2, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[21] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.objc.cross_site_scripting_inter_component_communication
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web or mobile application through an untrusted source. In the case of Inter-Component Communication XSS, the untrusted source is data received from other components that reside on the same system. In the mobile world, these are applications running on the same device. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of Persistent (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 1: The following code enables an application to load an html page within a WKWebView with data from a URL request that uses the application's custom URL scheme:


...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = WKWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...


Because the string passed to loadHTMLString: is user-controllable and JavaScript is enabled by default within a WKWebView, the user can write arbitrary content (including executable scripts) to the WKWebView via requests that use app's custom URL scheme.

Example 2: The following code reads the contents of a UITextField and displays it to the user within a WKWebView:


...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...


The code in this example operates without issues if the text within inputTextField contains only standard alphanumeric text. If the text within inputTextField includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone provide input that can cause malicious code to run on their own device? The real danger is that an attacker may use email or social engineering tricks to lure victims into performing such actions. When this is successful, the victims unwittingly reflect the malicious content through the vulnerable web application back to their own devices. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following code segment queries a database for an employee with a given ID and outputs the value in the display content of a WKWebView.


let fetchRequest = NSFetchRequest()
let entity = NSEntityDescription.entityForName("Employee", inManagedObjectContext: managedContext)
fetchRequest.entity = entity
do {
let results = try managedContext.executeFetchRequest(fetchRequest)
let result : NSManagedObject = results.first!
let name : String = result.valueForKey("name")
let msg : String = "Hello, \(name)"
let webView : UIWebView = UIWebView()
webView.loadHTMLString(msg, baseURL:nil)
} catch let error as NSError {
print("Error \(error)")
}


As in Example 2, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.

- As in Example 2, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[21] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.swift.cross_site_scripting_inter_component_communication
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ABAP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
DATA: BEGIN OF itab_employees,
eid TYPE employees-itm,
name TYPE employees-name,
END OF itab_employees,
itab LIKE TABLE OF itab_employees.
...
itab_employees-eid = '...'.
APPEND itab_employees TO itab.

SELECT *
FROM employees
INTO CORRESPONDING FIELDS OF TABLE itab_employees
FOR ALL ENTRIES IN itab
WHERE eid = itab-eid.
ENDSELECT.
...
response->append_cdata( 'Employee Name: ').
response->append_cdata( itab_employees-name ).
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following ABAP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
eid = request->get_form_field( 'eid' ).
...
response->append_cdata( 'Employee ID: ').
response->append_cdata( eid ).
...


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] SAP OSS notes 1582870, 1582867 and related notes for ABAP XSS support
[2] SAP OSS Notes 822881, 1600317, 1640092, 1671470 and 1638779 for XSS support in BSPs
[3] Understanding Malicious Content Mitigation for Web Developers CERT
[4] HTML 4.01 Specification W3
[5] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[21] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.abap.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ActionScript code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


stmt.sqlConnection = conn;
stmt.text = "select * from emp where id="+eid;
stmt.execute();
var rs:SQLResult = stmt.getResult();
if (null != rs) {
var name:String = String(rs.data[0]);
var display:TextField = new TextField();
display.htmlText = "Employee Name: " + name;
}


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following ActionScript code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var eid:String = String(params["eid"]);
...
var display:TextField = new TextField();
display.htmlText = "Employee ID: " + eid;
...


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.actionscript.cross_site_scripting_persistent
Abstract
Sending unvalidated data to the web browser may lead to the execution of malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent XSS, an untrusted source is most frequently the results of a database query, and in the case of Reflected XSS - a web request.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content usually is a segment of JavaScript code, but can also be HML, Flash or any other active content that might be executed by the browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Apex code segment queries a database for a contact name with a given ID and returns the corresponding employee's name, which later gets printed by the Visualforce code.


...
variable = Database.query('SELECT Name FROM Contact WHERE id = ID');
...

<div onclick="this.innerHTML='Hello {!variable}'">Click me!</div>


This code behaves correctly when the values of name are well defined like just alphanumeric characters, but does nothing to check for malicious data. Even read from a database, the value should be properly validated because the content of the database can be originated from user-supplied data. This way, an attacker can have malicious commands executed in the user's web browser without the need to interact with the victim like in Reflected XSS. This type of attack, known as Stored XSS (or Persistent), can be very hard to detect since the data is indirectly provided to the vulnerable function and also have a higher impact due to the possibility to affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following Visualforce code segment reads an HTTP request parameter, username, and displays it to the user.


<script>
document.write('{!$CurrentPage.parameters.username}')
</script>


The code in this example was intended to receive only alphanumeric text and display it. However, if username contains metacharacters or source code, it will be executed by the web browser.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are two vectors by which an XSS attack can be executed:

- As in Example 1, the database or other data store can provide dangerous data to the application that will be included in dynamic content. From the attacker's perspective, the best place to store malicious content is an area accessible to all users specially those with elevated privileges, who are more likely to handle sensitive information or perform critical operations.

- As in Example 2, data is read from the HTTP request and reflected back in the HTTP response. Reflected XSS occurs when an attacker can have dangerous content delivered to a vulnerable web application and then reflected back to the user and execute by his browser. The most common mechanism to deliver malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to the victim. URLs crafted this way are the core of many phishing schemes, where the attacker lures the victim to visit the URL. After the site reflects the content back to the user, it is executed and can perform several actions like forward private sensitive information, execute unauthorized operations on the victim computer etc.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Salesforce Developers Technical Library Secure Coding Guidelines - Cross Site Scripting
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.apex.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP.NET Web Form queries a database for an employee with a given employee ID and prints the name corresponding with the ID.

<script runat="server">
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;
</script>


Where EmployeeName is a form control defined as follows:


<form runat="server">
...
<asp:Label id="EmployeeName" runat="server">
...
</form>
Example 2: The following ASP.NET code segment is functionally equivalent to Example 1, but implements all of the form elements programmatically.

protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;


These code examples function correctly when the values of name are well-behaved, but they do nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 3: The following ASP.NET Web Form reads an employee ID number from an HTTP request and displays it to the user.

<script runat="server">
...
EmployeeID.Text = Login.Text;
...
</script>


Where Login and EmployeeID are form controls defined as follows:


<form runat="server">
<asp:TextBox runat="server" id="Login"/>
...
<asp:Label runat="server" id="EmployeeID"/>
</form>
Example 4: The following ASP.NET code segment shows the programmatic way to implement Example 3.

protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;


As in Example 1 and Example 2, these examples operate correctly if Login contains only standard alphanumeric text. If Login has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks in order to lure victims into clicking a link. When the victims click the link, they unwittingly reflect the malicious content through the vulnerable web application and back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1 and Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3 and Example 4, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including ASP.NET Request Validation and WCF). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. With ASP.NET Request Validation, we also provide evidence for when validation is explicitly disabled. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Anti-Cross Site Scripting Library MSDN
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.dotnet.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.

2. The data is included in dynamic content that is sent to a web browser without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
EXEC SQL
SELECT NAME
INTO :ENAME
FROM EMPLOYEE
WHERE ID = :EID
END-EXEC.

EXEC CICS
WEB SEND
FROM(ENAME)
...
END-EXEC.
...


The code in this example functions correctly when the values of ENAME are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of ENAME is read from a database, whose contents are apparently managed by the application. However, if the value of ENAME originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Stored XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following code segment reads an employee ID, EID, from an HTML form and displays it to the user.


...
EXEC CICS
WEB READ
FORMFIELD(ID)
VALUE(EID)
...
END-EXEC.

EXEC CICS
WEB SEND
FROM(EID)
...
END-EXEC.
...


As in Example 1, this code operates correctly if EID contains only standard alphanumeric text. If EID has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Stored XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker might perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTML Form and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cobol.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following CFML code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

 
<cfquery name="matchingEmployees" datasource="cfsnippets">
SELECT name
FROM Employees
WHERE eid = '#Form.eid#'
</cfquery>
<cfoutput>
Employee Name: #name#
</cfoutput>


The code in this example functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following CFML code segment reads an employee ID, eid, from a web form and displays it to the user.


<cfoutput>
Employee ID: #Form.eid#
</cfoutput>


As in Example 1, this code operates correctly if Form.eid contains only standard alphanumeric text. If Form.eid has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] ColdFusion Developer Center: Security Macromedia
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cfml.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Go code segment reads a user name, user, from an HTTP request and displays it to the user.

func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", user)
}


The code in this example operates correctly if user contains only standard alphanumeric text. If user has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Go code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", name)
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As shown in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As shown in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.golang.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>

Employee Name: <%= name %>


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Node.js code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


var http = require('http');
...

function listener(request, response){
connection.query('SELECT * FROM emp WHERE eid="' + eid + '"', function(err, rows){
if (!err && rows.length > 0){
response.write('<p>Welcome, ' + rows[0].name + '!</p>');
}
...
});
...
}
...
http.createServer(listener).listen(8080);


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following Node.js code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


var http = require('http');
var url = require('url');

...

function listener(request, response){
var eid = url.parse(request.url, true)['query']['eid'];
if (eid !== undefined){
response.write('<p>Welcome, ' + eid + '!</p>');
}
...
}
...
http.createServer(listener).listen(8080);


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.
As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.javascript.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name in the servlet response.


...
val stmt: Statement = conn.createStatement()
val rs: ResultSet = stmt.executeQuery("select * from emp where id=$eid")
rs.next()
val name: String = rs.getString("name")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee Name: $name")
...
out.close()
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following code reads an employee ID, eid, from an HTTP servlet request, then displays the value back to the user in the servlet's response.


val eid: String = request.getParameter("eid")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee ID: $eid")
...
out.close()
...


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(url)
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.


A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Spring MVC). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.kotlin.cross_site_scripting_persistent
Abstract
The method sends unvalidated data to a web browser which can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store while in the case of reflected XSS it is typically through user components, URL scheme handlers, or external notifications.


2. The data is included in dynamic content that is sent to a UIWebView component without being validated.


The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.



This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following Objective-C code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


...
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {

UIWebView *webView;
NSString *partAfterSlashSlash = [[url host] stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
webView = [[UIWebView alloc] initWithFrame:CGRectMake(0.0,0.0,360.0, 480.0)];
[webView loadHTMLString:partAfterSlashSlash baseURL:nil]

...


As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.objc.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following PHP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<?php...
$con = mysql_connect($server,$user,$password);
...
$result = mysql_query("select * from emp where id="+eid);
$row = mysql_fetch_array($result)
echo 'Employee name: ', mysql_result($row,0,'name');
...
?>


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following PHP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<?php
$eid = $_GET['eid'];
...
?>
...
<?php
echo "Employee ID: $eid";
?>


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.php.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
SELECT ename INTO name FROM emp WHERE id = eid;
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee Name: ' || name || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
-- Assume QUERY_STRING looks like EID=EmployeeID
eid := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 5);
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee ID: ' || eid || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.sql.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Python code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


req = self.request() # fetch the request object
eid = req.field('eid',None) # tainted request message
...
self.writeln("Employee ID:" + eid)


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Python code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
cursor.execute("select * from emp where id="+eid)
row = cursor.fetchone()
self.writeln('Employee name: ' + row["emp"]')
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.python.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.
Example 1: The following Ruby code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
rs = conn.exec_params("select * from emp where id=?", eid)
...
Rack::Response.new.finish do |res|
...
rs.each do |row|
res.write("Employee name: #{escape(row['name'])}")
...
end
end
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Alternative types of XSS may not come from a database, but other places of potential user input. The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 2: The following Ruby code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


eid = req.params['eid'] #gets request parameter 'eid'
Rack::Response.new.finish do |res|
...
res.write("Employee ID: #{eid}")
end


As in Example 1, the code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS, however please note that if using Rack::Request#params() as in Example 2, this sees both GET and POST parameters, so may be vulnerable to various types of attacks other than just having the malicious code appended to the URL.
As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.ruby.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Play controller code segment reads an employee ID, eid, from a database query and displays it to the user.


def getEmployee = Action { implicit request =>

val employee = getEmployeeFromDB()
val eid = employee.id

if (employee == Null) {
val html = Html(s"Employee ID ${eid} not found")
Ok(html) as HTML
}
...
}
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] INJECT-3: XML and HTML generation requires care Oracle
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.scala.cross_site_scripting_persistent
Abstract
The method sends unvalidated data to a web browser which can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store while in the case of reflected XSS it is typically through user components, URL scheme handlers, or external notifications.


2. The data is included in dynamic content that is sent to a UIWebView component without being validated.


The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.



This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following code reads the contents of a UITextField and displays it to the user within a WKWebView:


...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...


The code in this example operates without issues if the text within inputTextField contains only standard alphanumeric text. If the text within inputTextField includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone provide input that can cause malicious code to run on their own device? The real danger is that an attacker may use email or social engineering tricks to lure victims into performing such actions. When this is successful, the victims unwittingly reflect the malicious content through the vulnerable web application back to their own devices. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following Swift code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = UIWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...


As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.swift.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
eid = Request("eid")
strSQL = "Select * from emp where id=" & eid
objADORecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
while not objRec.EOF
Response.Write "Employee Name:" & objADORecordSet("name")
objADORecordSet.MoveNext
Wend
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following ASP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
eid = Request("eid")
Response.Write "Employee ID:" & eid & "<br/>"
..


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.vb.cross_site_scripting_persistent
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding function modules, such as cl_http_utility=>escape_html, will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding function modules is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS -- it is the results of a database query.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ABAP code segment reads an employee ID, eid, from an HTTP request, HTML-encodes it, and displays it to the user.


...
eid = request->get_form_field( 'eid' ).
...
CALL METHOD cl_http_utility=>escape_html
EXPORTING
UNESCAPED = eid
KEEP_NUM_CHAR_REF = '-'
RECEIVING
ESCAPED = e_eid.
...
response->append_cdata( 'Employee ID: ').
response->append_cdata( e_eid ).
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ABAP code segment queries a database for an employee with a given ID and prints the corresponding HTML-encoded employee's name.


...
DATA: BEGIN OF itab_employees,
eid TYPE employees-itm,
name TYPE employees-name,
END OF itab_employees,
itab LIKE TABLE OF itab_employees.
...
itab_employees-eid = '...'.
APPEND itab_employees TO itab.

SELECT *
FROM employees
INTO CORRESPONDING FIELDS OF TABLE itab_employees
FOR ALL ENTRIES IN itab
WHERE eid = itab-eid.
ENDSELECT.
...
CALL METHOD cl_http_utility=>escape_html
EXPORTING
UNESCAPED = itab_employees-name
KEEP_NUM_CHAR_REF = '-'
RECEIVING
ESCAPED = e_name.
...
response->append_cdata( 'Employee Name: ').
response->append_cdata( e_name ).
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] SAP OSS notes 1582870, 1582867 and related notes for ABAP XSS support
[2] SAP OSS Notes 822881, 1600317, 1640092, 1671470 and 1638779 for XSS support in BSPs
[3] Understanding Malicious Content Mitigation for Web Developers CERT
[4] HTML 4.01 Specification W3
[5] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[21] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.abap.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ActionScript code segment reads an employee ID, eid, from an HTTP request, HTML-encodes it, and displays it to the user.


var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var eid:String = String(params["eid"]);
...
var display:TextField = new TextField();
display.htmlText = "Employee ID: " + escape(eid);
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ActionScript code segment queries a database for an employee with a given ID and prints the corresponding HTML-encoded employee's name.


stmt.sqlConnection = conn;
stmt.text = "select * from emp where id="+eid;
stmt.execute();
var rs:SQLResult = stmt.getResult();
if (null != rs) {
var name:String = String(rs.data[0]);
var display:TextField = new TextField();
display.htmlText = "Employee Name: " + escape(name);
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.actionscript.cross_site_scripting_poor_validation
Abstract
Sending unvalidated data to the web browser may lead to the execution of malicious code.
Explanation
Due to the large amount of possible interactions between user supplied data and the web browser parsers, it is not always possible to properly assess if the applied encoding is sufficient to protect against XSS vulnerability. Therefore, Fortify Static Code Analyzer reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS it is the results of a database query.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content usually is a segment of JavaScript code, but can also be HML, Flash or any other active content that might be executed by the browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Apex code segment queries a database for a contact name with a given ID and returns the corresponding employee's name, which later gets printed by the Visualforce code.


...
variable = Database.query('SELECT Name FROM Contact WHERE id = ID');
...

<div onclick="this.innerHTML='Hello {!HTMLENCODE(variable)}'">Click me!</div>


This code, despite the usage of HTMLENCODE, does not properly validate the data provided by the database and is vulnerable to XSS. This happens because the variable content is parsed by different mechanisms (HTML and Javascript parsers), therfore neeeds to be encoded two times. This way, an attacker can have malicious commands executed in the user's web browser without the need to interact with the victim like in Reflected XSS. This type of attack, known as Stored XSS (or Persistent), can be very hard to detect since the data is indirectly provided to the vulnerable function and also have a higher impact due to the possibility to affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following Visualforce code segment reads an HTTP request parameter, username, and displays it to the user.


<script>
document.write('{!HTMLENCODE($CurrentPage.parameters.username)}')
</script>


The code in this example was intended to receive only alphanumeric text and display it. However, if username contains metacharacters or source code, it will be executed by the web browser. Also in this example the usage of HTMLENCODE is not enough to prevent the XSS attack since the variable is processed by the Javascript parser.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are two vectors by which an XSS attack can be executed:

- As in Example 1, the database or other data store can provide dangerous data to the application that will be included in dynamic content. From the attacker's perspective, the best place to store malicious content is an area accessible to all users specially those with elevated privileges, who are more likely to handle sensitive information or perform critical operations.

- As in Example 2, data is read from the HTTP request and reflected back in the HTTP response. Reflected XSS occurs when an attacker can have dangerous content delivered to a vulnerable web application and then reflected back to the user and execute by his browser. The most common mechanism to deliver malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to the victim. URLs crafted this way are the core of many phishing schemes, where the attacker lures the victim to visit the URL. After the site reflects the content back to the user, it is executed and can perform several actions like forward private sensitive information, execute unauthorized operations on the victim computer etc.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Salesforce Developers Technical Library Secure Coding Guidelines - Cross Site Scripting
[4] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[61] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.apex.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP.NET code segment reads an employee ID number from an HTTP request, HTML-encodes it, and displays it to the user.

<script runat="server">
...
EmployeeID.Text = Server.HtmlEncode(Login.Text);
...
</script>


Where Login and EmployeeID are form controls defined as follows:


<form runat="server">
<asp:TextBox runat="server" id="Login"/>
...
<asp:Label runat="server" id="EmployeeID"/>
</form>
Example 2: The following ASP.NET code segment implements the same functionality as in Example 1, albeit programmatically.

protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Server.HtmlEncode(Login.Text);


The code in these examples operate correctly if Login contains only standard alphanumeric text. If Login has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks in order to lure victims into clicking a link. When the victims click the link, they unwittingly reflect the malicious content through the vulnerable web application and back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following ASP.NET code segment queries a database for an employee with a given employee ID and prints the HTML-encoded name corresponding with the ID.

<script runat="server">
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = Server.HtmlEncode(name);
</script>


Where EmployeeName is a form control defined as follows:


<form runat="server">
...
<asp:Label id="EmployeeName" runat="server">
...
</form>
Example 4: Likewise, the following ASP.NET code segment is functionally equivalent to Example 3, but implements all of the form elements programmatically.

protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = Server.HtmlEncode(name);


As in Example 1 and Example 2, these code segments perform correctly when the values of name are well-behaved, but they do nothing to prevent exploits if they are not. Again, these code examples can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1 and Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3 and Example 4, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including ASP.NET Request Validation and WCF). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. With ASP.NET Request Validation, we also provide evidence for when validation is explicitly disabled. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Anti-Cross Site Scripting Library MSDN
[4] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[61] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.dotnet.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS -- it is the results of a database query.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment reads in the text parameter, from an HTTP request, HTML-encodes it, and displays it in an alert box in between script tags.


"<script>alert('<CFOUTPUT>HTMLCodeFormat(#Form.text#)</CFOUTPUT>')</script>";


The code in this example operates correctly if text contains only standard alphanumeric text. If text has a single quote, a round bracket and a semicolon, it ends the alert textbox thereafter the code will be executed.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- The application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cfml.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Go code segment reads a user name, user, from an HTTP request and displays it to the user.

func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", html.EscapeString(user))
}


The code in this example operates correctly if user contains only standard alphanumeric text. If user has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Go code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", html.EscapeString(name))
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As shown in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As shown in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.golang.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding constructs, such as the <c:out/> tag with the escapeXml="true" attribute (the default behavior), prevents some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded might take on meta-meaning. Relying on such encoding constructs is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, Fortify Static Code Analyzer reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS -- it is the results of a database query.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user via the <c:out/> tag.


Employee ID: <c:out value="${param.eid}"/>


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name via the <c:out/> tag.


<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>

Employee Name: <c:out value="${name}"/>


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(URLEncoder.encode(url));
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of DOM-based XSS, data is read from a URL parameter or other value within the browser and written back into the page with client-side code. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation. In the case of DOM-based XSS, malicious content is executed as part of DOM (Document Object Model) creation, whenever the victim's browser parses the HTML page.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following JavaScript code segment reads an employee ID, eid, from an HTTP request, escapes it, and displays it to the user.


<SCRIPT>
var pos=document.URL.indexOf("eid=")+4;
document.write(escape(document.URL.substring(pos,document.URL.length)));
</SCRIPT>



The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the example demonstrates, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- Data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- The application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.javascript.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding constructs, such as the <c:out/> tag with the escapeXml="true" attribute (the default behavior), prevents some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded might take on meta-meaning. Relying on such encoding constructs is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, Fortify Static Code Analyzer reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS -- it is the results of a database query.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.



The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.



As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(URLEncoder.encode(url))
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.


A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Spring MVC). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.kotlin.cross_site_scripting_poor_validation
Abstract
The method uses HTML, XML, or other types of encoding that is not always enough to prevent malicious code from reaching the web browser.
Explanation
The use of certain encoding constructs, such as ESAPI or AntiXSS, will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appears, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding constructs is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, Fortify Static Code Analyzer reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of reflected XSS, the untrusted source is typically through user components, URL scheme handlers, or notifications, while in the case of Persistent (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a UIWebView component without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

The following examples highlight exploitable XSS instances which are encoded using an encoding API:

Example 1: The following Objective-C code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


...
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
...
UIWebView *webView;
NSString *partAfterSlashSlash = [[url host] stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
NSString *htmlPage = [NSString stringWithFormat: @"%@/%@/%@", @"...<input type=text onclick=\"callFunction('",
[DefaultEncoder encodeForHTML:partAfterSlashSlash],
@"')\" />"];
webView = [[UIWebView alloc] initWithFrame:CGRectMake(0.0,0.0,360.0, 480.0)];
[webView loadHTMLString:htmlPage baseURL:nil];
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database and is HTML encoded. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. The attacker supplied exploit could bypass encoded characters or place input in a context which is not effected by HTML encoding. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[61] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.objc.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions, such as htmlspecialchars() or htmlentities(), will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' (only when ENT_QUOTES is set) that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS -- it is the results of a database query.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment reads in the text parameter, from an HTTP request, HTML-encodes it, and displays it in an alert box in between script tags.


<?php
$var=$_GET['text'];
...
$var2=htmlspecialchars($var);
echo "<script>alert('$var2')</script>";
?>


The code in this example operates correctly if text contains only standard alphanumeric text. If text has a single quote, a round bracket and a semicolon, it ends the alert textbox thereafter the code will be executed.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- The application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.php.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment reads an employee ID, eid, from an HTTP request, URL-encodes it, and displays it to the user.


...
-- Assume QUERY_STRING looks like EID=EmployeeID
eid := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 5);
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee ID: ' || HTMLDB_UTIL.url_encode(eid) || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following code segment queries a database for an employee with a given ID and prints the corresponding URL-encoded employee's name.


...
SELECT ename INTO name FROM emp WHERE id = eid;
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee Name: ' || HTMLDB_UTIL.url_encode(name) || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.sql.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Python code segment reads an employee ID, eid, from an HTTP request, HTML-encodes it, and displays it to the user.


req = self.request() # fetch the request object
eid = req.field('eid',None) # tainted request message
...
self.writeln("Employee ID:" + escape(eid))


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Python code segment queries a database for an employee with a given ID and prints the corresponding HTML-encoded employee's name.


...
cursor.execute("select * from emp where id="+eid)
row = cursor.fetchone()
self.writeln('Employee name: ' + escape(row["emp"]))
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.python.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Ruby code segment reads an employee ID, eid, from an HTTP request, HTML-encodes it, and displays it to the user.


eid = req.params['eid'] #gets request parameter 'eid'
Rack::Response.new.finish do |res|
...
res.write("Employee ID: #{eid}")
end


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS, however please note that if using Rack::Request#params() as in Example 1, this sees both GET and POST parameters, so may be vulnerable to various types of attacks other than just having the malicious code appended to the URL.

Example 2: The following Ruby code segment queries a database for an employee with a given ID and prints the corresponding HTML-encoded employee's name.


...
rs = conn.exec_params("select * from emp where id=?", eid)
...
Rack::Response.new.finish do |res|
...
rs.each do |row|
res.write("Employee name: #{escape(row['name'])}")
...
end
end
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation of all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.ruby.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding constructs, will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding constructs is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, Fortify Static Code Analyzer reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS -- it is the results of a database query.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Play controller code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


def getEmployee = Action { implicit request =>
var eid = request.getQueryString("eid")

eid = StringEscapeUtils.escapeHtml(eid); // insufficient validation

val employee = getEmployee(eid)

if (employee == Null) {
val html = Html(s"Employee ID ${eid} not found")
Ok(html) as HTML
}
...
}


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] INJECT-3: XML and HTML generation requires care Oracle
[4] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[61] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.scala.cross_site_scripting_poor_validation
Abstract
The method uses HTML, XML, or other types of encoding that is not always enough to prevent malicious code from reaching the web browser.
Explanation
The use of certain encoding constructs, such as ESAPI or AntiXSS, will prevent some, but not all, cross-site scripting attacks. Depending on the context in which the data appears, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding constructs is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, Fortify Static Code Analyzer reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of reflected XSS, the untrusted source is typically through user components, URL scheme handlers, or notifications, while in the case of Persistent (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a UIWebView component without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

The following examples highlight exploitable XSS instances which are encoded using an encoding API:

Example 1: The following Swift code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = UIWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database and is HTML encoded. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. The attacker supplied exploit could bypass encoded characters or place input in a context which is not effected by HTML encoding. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 3: The following code reads the contents of a UITextField and displays it to the user within a WKWebView:


...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...


The code in this example operates without issues if the text within inputTextField contains only standard alphanumeric text. If the text within inputTextField includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone provide input that can cause malicious code to run on their own device? The real danger is that an attacker may use email or social engineering tricks to lure victims into performing such actions. When this is successful, the victims unwittingly reflect the malicious content through the vulnerable web application back to their own devices. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[61] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.swift.cross_site_scripting_poor_validation
Abstract
Relying on HTML, XML, and other types of encoding to validate user input can result in the browser executing malicious code.
Explanation
The use of certain encoding functions will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.

Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP code segment reads an employee ID, eid, from an HTTP request, HTML-encodes it, and displays it to the user.


...
eid = Request("eid")
Response.Write "Employee ID:" & Server.HTMLEncode(eid) & "<br/>"
..


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ASP code segment queries a database for an employee with a given ID and prints the corresponding HTML-encoded employee's name.


...
eid = Request("eid")
strSQL = "Select * from emp where id=" & eid
objADORecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
while not objRec.EOF
Response.Write "Employee Name:" & Server.HTMLEncode(objADORecordSet("name"))
objADORecordSet.MoveNext
Wend
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 82, CWE ID 83, CWE ID 87, CWE ID 692
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.vb.cross_site_scripting_poor_validation
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ABAP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
eid = request->get_form_field( 'eid' ).
...
response->append_cdata( 'Employee ID: ').
response->append_cdata( eid ).
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ABAP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
DATA: BEGIN OF itab_employees,
eid TYPE employees-itm,
name TYPE employees-name,
END OF itab_employees,
itab LIKE TABLE OF itab_employees.
...
itab_employees-eid = '...'.
APPEND itab_employees TO itab.

SELECT *
FROM employees
INTO CORRESPONDING FIELDS OF TABLE itab_employees
FOR ALL ENTRIES IN itab
WHERE eid = itab-eid.
ENDSELECT.
...
response->append_cdata( 'Employee Name: ').
response->append_cdata( itab_employees-name ).
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] SAP OSS notes 1582870, 1582867 and related notes for ABAP XSS support
[2] SAP OSS Notes 822881, 1600317, 1640092, 1671470 and 1638779 for XSS support in BSPs
[3] Understanding Malicious Content Mitigation for Web Developers CERT
[4] HTML 4.01 Specification W3
[5] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[21] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.abap.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ActionScript code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var eid:String = String(params["eid"]);
...
var display:TextField = new TextField();
display.htmlText = "Employee ID: " + eid;
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ActionScript code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


stmt.sqlConnection = conn;
stmt.text = "select * from emp where id="+eid;
stmt.execute();
var rs:SQLResult = stmt.getResult();
if (null != rs) {
var name:String = String(rs.data[0]);
var display:TextField = new TextField();
display.htmlText = "Employee Name: " + name;
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.actionscript.cross_site_scripting_reflected
Abstract
Sending unvalidated data to the web browser may lead to the execution of malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS it is the results of a database query.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content usually is a segment of JavaScript code, but can also be HML, Flash or any other active content that might be executed by the browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Visualforce code segment reads an HTTP request parameter, username, and displays it to the user.


<script>
document.write('{!$CurrentPage.parameters.username}')
</script>


The code in this example was intended to receive only alphanumeric text and display it. However, if username contains metacharacters or source code, it will be executed by the web browser.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Apex code segment queries a database for a contact name with a given ID and returns the corresponding employee's name, which later gets printed by the Visualforce code.


...
variable = Database.query('SELECT Name FROM Contact WHERE id = ID');
...

<div onclick="this.innerHTML='Hello {!variable}'">Click me!</div>


As in Example 1, this code behaves correctly when the values of name are well defined like just alphanumeric characters, but does nothing to check for malicious data. Even read from a database, the value should be properly validated because the content of the database can be originated from user-supplied data. This way, an attacker can have malicious commands executed in the user's web browser without the need to interact with the victim like in Reflected XSS. This type of attack, known as Stored XSS (or Persistent), can be very hard to detect since the data is indirectly provided to the vulnerable function and also have a higher impact due to the possibility to affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are two vectors by which an XSS attack can be executed:

- As in Example 1, data is read from the HTTP request and reflected back in the HTTP response. Reflected XSS occurs when an attacker can have dangerous content delivered to a vulnerable web application and then reflected back to the user and execute by his browser. The most common mechanism to deliver malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to the victim. URLs crafted this way are the core of many phishing schemes, where the attacker lures the victim to visit the URL. After the site reflects the content back to the user, it is executed and can perform several actions like forward private sensitive information, execute unauthorized operations on the victim computer etc.

- As in Example 2, the database or other data store can provide dangerous data to the application that will be included in dynamic content. From the attacker's perspective, the best place to store malicious content is an area accessible to all users specially those with elevated privileges, who are more likely to handle sensitive information or perform critical operations.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Salesforce Developers Technical Library Secure Coding Guidelines - Cross Site Scripting
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.apex.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP.NET Web Form reads an employee ID number from an HTTP request and displays it to the user.

<script runat="server">
...
EmployeeID.Text = Login.Text;
...
</script>


Where Login and EmployeeID are form controls defined as follows:


<form runat="server">
<asp:TextBox runat="server" id="Login"/>
...
<asp:Label runat="server" id="EmployeeID"/>
</form>
Example 2: The following ASP.NET code segment shows the programmatic way to implement Example 1.

protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;


The code in these examples operates correctly if Login contains only standard alphanumeric text. If Login has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks in order to lure victims into clicking a link. When the victims click the link, they unwittingly reflect the malicious content through the vulnerable web application and back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following ASP.NET Web Form queries a database for an employee with a given employee ID and prints the name corresponding with the ID.

<script runat="server">
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;
</script>


Where EmployeeName is a form control defined as follows:


<form runat="server">
...
<asp:Label id="EmployeeName" runat="server">
...
</form>
Example 4: The following ASP.NET code segment is functionally equivalent to Example 3, but implements all of the form elements programmatically.

protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;


As in Example 1 and Example 2, these code examples function correctly when the values of name are well-behaved, but they nothing to prevent exploits if the values are not. Again, these can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1 and Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3 and Example 4, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including ASP.NET Request Validation and WCF). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. With ASP.NET Request Validation, we also provide evidence for when validation is explicitly disabled. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Anti-Cross Site Scripting Library MSDN
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.dotnet.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.

2. The data is included in dynamic content that is sent to a web browser without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment reads an employee ID, EID, from an HTML form and displays it to the user.


...
EXEC CICS
WEB READ
FORMFIELD(ID)
VALUE(EID)
...
END-EXEC.

EXEC CICS
WEB SEND
FROM(EID)
...
END-EXEC.
...


The code in this example operates correctly if EID contains only standard alphanumeric text. If EID has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
EXEC SQL
SELECT NAME
INTO :ENAME
FROM EMPLOYEE
WHERE ID = :EID
END-EXEC.

EXEC CICS
WEB SEND
FROM(ENAME)
...
END-EXEC.
...


As in Example 1, this code functions correctly when the values of ENAME are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of ENAME is read from a database, whose contents are apparently managed by the application. However, if the value of ENAME originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Stored XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTML Form and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Stored XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker might perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cobol.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following CFML code segment reads an employee ID, eid, from a web form and displays it to the user.


<cfoutput>
Employee ID: #Form.eid#
</cfoutput>


The code in this example operates correctly if Form.eid contains only standard alphanumeric text. If Form.eid has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following CFML code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

 
<cfquery name="matchingEmployees" datasource="cfsnippets">
SELECT name
FROM Employees
WHERE eid = '#Form.eid#'
</cfquery>
<cfoutput>
Employee Name: #name#
</cfoutput>


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] ColdFusion Developer Center: Security Macromedia
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cfml.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Go code segment reads a user name, user, from an HTTP request and displays it to the user.

func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", user)
}


The code in this example operates correctly if user contains only standard alphanumeric text. If user has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Go code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", name)
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As shown in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As shown in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.golang.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>

Employee Name: <%= name %>


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Node.js code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


var http = require('http');
var url = require('url');

...

function listener(request, response){
var eid = url.parse(request.url, true)['query']['eid'];
if (eid !== undefined){
response.write('<p>Welcome, ' + eid + '!</p>');
}
...
}
...
http.createServer(listener).listen(8080);


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Node.js code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


var http = require('http');
...

function listener(request, response){
connection.query('SELECT * FROM emp WHERE eid="' + eid + '"', function(err, rows){
if (!err && rows.length > 0){
response.write('<p>Welcome, ' + rows[0].name + '!</p>');
}
...
});
...
}
...
http.createServer(listener).listen(8080);


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.javascript.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code reads an employee ID, eid, from an HTTP servlet request, then displays the value back to the user in the servlet's response.


val eid: String = request.getParameter("eid")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee ID: $eid")
...
out.close()
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name in the servlet's response.


val stmt: Statement = conn.createStatement()
val rs: ResultSet = stmt.executeQuery("select * from emp where id=$eid")
rs.next()
val name: String = rs.getString("name")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee Name: $name")
...
out.close()
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(url)
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.


A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Spring MVC). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.kotlin.cross_site_scripting_reflected
Abstract
The method sends unvalidated data to a web browser which can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of reflected XSS, the untrusted source is typically through user components, URL scheme handlers, or notifications, while in the case of Persistent (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a UIWebView component without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Objective-C code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {

UIWebView *webView;
NSString *partAfterSlashSlash = [[url host] stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
webView = [[UIWebView alloc] initWithFrame:CGRectMake(0.0,0.0,360.0, 480.0)];
[webView loadHTMLString:partAfterSlashSlash baseURL:nil]

...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.objc.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following PHP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<?php
$eid = $_GET['eid'];
...
?>
...
<?php
echo "Employee ID: $eid";
?>


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following PHP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<?php...
$con = mysql_connect($server,$user,$password);
...
$result = mysql_query("select * from emp where id="+eid);
$row = mysql_fetch_array($result)
echo 'Employee name: ', mysql_result($row,0,'name');
...
?>


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.php.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
-- Assume QUERY_STRING looks like EID=EmployeeID
eid := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 5);
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee ID: ' || eid || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
SELECT ename INTO name FROM emp WHERE id = eid;
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee Name: ' || name || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.sql.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Python code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


req = self.request() # fetch the request object
eid = req.field('eid',None) # tainted request message
...
self.writeln("Employee ID:" + eid)


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Python code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
cursor.execute("select * from emp where id="+eid)
row = cursor.fetchone()
self.writeln('Employee name: ' + row["emp"]')
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.python.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Ruby code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


eid = req.params['eid'] #gets request parameter 'eid'
Rack::Response.new.finish do |res|
...
res.write("Employee ID: #{eid}")
end


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS, however please note that if using Rack::Request#params() as in Example 1, this sees both GET and POST parameters, so may be vulnerable to various types of attacks other than just having the malicious code appended to the URL.

Example 2: The following Ruby code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
rs = conn.exec_params("select * from emp where id=?", eid)
...
Rack::Response.new.finish do |res|
...
rs.each do |row|
res.write("Employee name: #{escape(row['name'])}")
...
end
end
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.ruby.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Play controller code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


def getEmployee = Action { implicit request =>
val eid = request.getQueryString("eid")

val employee = getEmployee(eid)

if (employee == Null) {
val html = Html(s"Employee ID ${eid} not found")
Ok(html) as HTML
}
...
}


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.scala.cross_site_scripting_reflected
Abstract
The method sends unvalidated data to a web browser which can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of reflected XSS, the untrusted source is typically through user components, URL scheme handlers, or notifications, while in the case of Persistent (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a WKWebView component without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code reads the contents of a UITextField and displays it to the user within a WKWebView:


...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...


The code in this example operates without issues if the text within inputTextField contains only standard alphanumeric text. If the text within inputTextField includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone provide input that can cause malicious code to run on their own device? The real danger is that an attacker may use email or social engineering tricks to lure victims into performing such actions. When this is successful, the victims unwittingly reflect the malicious content through the vulnerable web application back to their own devices. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Swift code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = UIWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}


As in Example 2, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.

- As in Example 3, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.swift.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
eid = Request("eid")
Response.Write "Employee ID:" & eid & "<br/>"
..


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ASP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
eid = Request("eid")
strSQL = "Select * from emp where id=" & eid
objADORecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
while not objRec.EOF
Response.Write "Employee Name:" & objADORecordSet("name")
objADORecordSet.MoveNext
Wend
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.vb.cross_site_scripting_reflected
Abstract
Server fails to verify request origin effectively accepting cross-domain requests which can be used by an attacker to hijack a bidirectional WebSocket connection.
Explanation
Cross-Site WebSocket Hijacking occurs when a user is tricked into visiting a malicious site that will establish a WebSocket connection with a legitimate backend server. The initial HTTP request used to ask the server for upgrading to WebSocket protocol is a regular HTTP request and so, the browser will send any cookies bound to the target domain including any session cookies. If the server fails to verify the Origin header, it will allow any malicious site to impersonate the user and establish a bidirectional WebSocket connection without the user even noticing.
References
[1] Christian Schneider Cross-Site WebSocket Hijacking
[2] Standards Mapping - Common Weakness Enumeration CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 4.2.2 Operation Level Access Control (L1 L2 L3), 13.2.3 RESTful Web Service Verification Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[15] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[16] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[30] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[31] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.dotnet.cross_site_websocket_hijacking
Abstract
The server fails to verify requests' origins, thereby accepting cross-domain requests which may be used by an attacker to hijack bidirectional WebSocket connections.
Explanation
Cross-Site WebSocket Hijacking occurs when a user is tricked into visiting a malicious site that will establish a WebSocket connection with a legitimate backend server. The initial HTTP request used to ask the server for upgrading to WebSocket protocol is a regular HTTP request and so, the browser will send any cookies bound to the target domain including any session cookies. If the server fails to verify the Origin header, it will allow any malicious site to impersonate the user and establish a bidirectional WebSocket connection without the user even noticing.
References
[1] Christian Schneider Cross-Site WebSocket Hijacking
[2] Standards Mapping - Common Weakness Enumeration CWE ID 352
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [9] CWE ID 352
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [9] CWE ID 352
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [9] CWE ID 352
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [9] CWE ID 352
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [9] CWE ID 352
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [4] CWE ID 352
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-001941, CCI-001942
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-2 Identification and Authentication (Organizational Users) (P1), SC-23 Session Authenticity (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-2 Identification and Authentication (Organizational Users), SC-23 Session Authenticity, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.5.3 Token-based Session Management (L2 L3), 4.2.2 Operation Level Access Control (L1 L2 L3), 13.2.3 RESTful Web Service Verification Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[15] Standards Mapping - OWASP Top 10 2007 A5 Cross Site Request Forgery (CSRF)
[16] Standards Mapping - OWASP Top 10 2010 A5 Cross-Site Request Forgery (CSRF)
[17] Standards Mapping - OWASP Top 10 2013 A8 Cross-Site Request Forgery (CSRF)
[18] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.9
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.9
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.9
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.9
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.9
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[30] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 352
[31] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 352
[32] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 352
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3585 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3585 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3585 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3585 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3585 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3585 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3585 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001620 CAT II, APSC-DV-001630 CAT II, APSC-DV-002500 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Request Forgery (WASC-09)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Request Forgery
desc.semantic.java.cross_site_websocket_hijacking