SameSite
attribute on session cookies.SameSite
parameter limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite
parameter can have the following three values:Strict
, cookies are only sent along with requests upon top-level navigation.Lax
, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe
or href
tags that link to the host site. If a user follows the link, the request will include the cookie.SameSite
attribute to None
for session cookies.
...
Cookie cookie = new Cookie('name', 'Foo', path, -1, true, 'None');
...
SameSite
attribute on session cookies.SameSite
attribute limits the scope of the cookie such that it will only be attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite
attribute can have the following three values:Strict
, cookies are only sent along with requests upon top-level navigation.Lax
, cookies are sent with top-level navigation from the same host as well as GET requests originating from third-party sites, including those that have either iframe
or href
tags that link to the host site. If a user follows the link, the request will include the cookie.SameSite
attribute for session cookies.
...
CookieOptions opt = new CookieOptions()
{
SameSite = SameSiteMode.None;
};
context.Response.Cookies.Append("name", "Foo", opt);
...
SameSite
attribute on session cookies.SameSite
attribute limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite
attribute can have the following three values:Strict
, cookies are only sent along with requests upon top-level navigation.Lax
, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe
or href
tags that link to the host site. If a user follows the link, the request will include the cookie.SameSite
attribute for session cookies.
c := &http.Cookie{
Name: "cookie",
Value: "samesite-none",
SameSite: http.SameSiteNoneMode,
}
SameSite
attribute on session cookies.SameSite
attribute limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite
attribute can have the following three values:Strict
, cookies are only sent along with requests upon top-level navigation.Lax
, cookies are sent with top-level navigation from the same host as well as GET requests originating from third-party sites, including those that have either iframe
or href
tags that link to the host site. For example, suppose there is a third-party site that has either iframe
or href
tags that link to the host site. If a user follows the link, the request will include the cookie.SameSite
attribute for session cookies.
ResponseCookie cookie = ResponseCookie.from("myCookie", "myCookieValue")
...
.sameSite("None")
...
SameSite
attribute on session cookies.SameSite
attribute limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite
attribute can have the following three values:Strict
, cookies are only sent along with requests upon top-level navigation.Lax
, cookies are sent with top-level navigation from the same host as well as GET requests originating from third-party sites, including those that have either iframe
or href
tags that link to the host site. For example, suppose there is a third-party site that has either iframe
or href
tags that link to the host site. If a user follows the link, the request will include the cookie.SameSite
attribute for session cookies.
app.get('/', function (req, res) {
...
res.cookie('name', 'Foo', { sameSite: false });
...
}
SameSite
attribute on session cookies.SameSite
attribute limits the scope of the cookie such that it will only be attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite
attribute can have the following three values:Strict
, cookies are only sent along with requests upon top-level navigation.Lax
, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe
or href
tags that link to the host site. If a user follows the link, the request will include the cookie.SameSite
attribute for session cookies.
ini_set("session.cookie_samesite", "None");
SameSite
attribute on session cookies.samesite
parameter limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The samesite
parameter can have the following three values:Strict
, cookies are only sent along with requests upon top-level navigation.Lax
, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe
or href
tags that link to the host site. If a user follows the link, the request will include the cookie.SameSite
attribute for session cookies.
response.set_cookie("cookie", value="samesite-none", samesite=None)
Legacy
appended to cookiename. Sites can look for this legacy cookie if it does not find a cookie that was set with SameSite=None..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
, and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
HttpCookie cookie = new HttpCookie("sessionID", sessionID);
cookie.Domain = ".example.com";
http://insecure.example.com/
and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from secure.example.com
..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
cookie := http.Cookie{
Name: "sessionID",
Value: getSessionID(),
Domain: ".example.com",
}
...
http://insecure.example.com/
, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from Secure.example.com
..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
Cookie cookie = new Cookie("sessionID", sessionID);
cookie.setDomain(".example.com");
http://insecure.example.com/
, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from secure.example.com
..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
cookie_options = {};
cookie_options.domain = '.example.com';
...
res.cookie('important_cookie', info, cookie_options);
http://insecure.example.com/
, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from secure.example.com
..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
...
NSDictionary *cookieProperties = [NSDictionary dictionary];
...
[cookieProperties setValue:@".example.com" forKey:NSHTTPCookieDomain];
...
NSHTTPCookie *cookie = [NSHTTPCookie cookieWithProperties:cookieProperties];
...
http://insecure.example.com/
, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from secure.example.com
..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
setcookie("mySessionId", getSessionID(), 0, "/", ".example.com", true, true);
http://insecure.example.com/
, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from secure.example.com
..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
from django.http.response import HttpResponse
...
def view_method(request):
res = HttpResponse()
res.set_cookie("mySessionId", getSessionID(), domain=".example.com")
return res
...
http://insecure.example.com/
, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from secure.example.com
..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
Ok(Html(command)).withCookies(Cookie("sessionID", sessionID, domain = Some(".example.com")))
http://insecure.example.com/
, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from secure.example.com
..example.com
". This exposes the cookie to all web applications on the base domain and any sub-domains. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://secure.example.com/
and the application sets a session ID cookie with the domain ".example.com
" when a user logs in.
...
let properties = [
NSHTTPCookieDomain: ".example.com",
NSHTTPCookiePath: "/service",
NSHTTPCookieName: "foo",
NSHTTPCookieValue: "bar",
NSHTTPCookieSecure: true
]
let cookie : NSHTTPCookie? = NSHTTPCookie(properties:properties)
...
http://insecure.example.com/
, and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
.insecure.example.com
to create its own overly broad cookie that overwrites the cookie from secure.example.com
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum. For example:
...
String path = '/';
Cookie cookie = new Cookie('sessionID', sessionID, path, maxAge, true, 'Strict');
...
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
", however, doing so exposes the cookie to all web applications on the same domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
HttpCookie cookie = new HttpCookie("sessionID", sessionID);
cookie.Path = "/";
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
cookie := http.Cookie{
Name: "sessionID",
Value: sID,
Expires: time.Now().AddDate(0, 0, 1),
Path: "/",
}
...
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a forum user clicks this link, the browser sends the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
Cookie cookie = new Cookie("sessionID", sessionID);
cookie.setPath("/");
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
cookie_options = {};
cookie_options.path = '/';
...
res.cookie('important_cookie', info, cookie_options);
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
...
NSDictionary *cookieProperties = [NSDictionary dictionary];
...
[cookieProperties setValue:@"/" forKey:NSHTTPCookiePath];
...
NSHTTPCookie *cookie = [NSHTTPCookie cookieWithProperties:cookieProperties];
...
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
setcookie("mySessionId", getSessionID(), 0, "/", "communitypages.example.com", true, true);
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
from django.http.response import HttpResponse
...
def view_method(request):
res = HttpResponse()
res.set_cookie("sessionid", value) # Path defaults to "/"
return res
...
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
Ok(Html(command)).withCookies(Cookie("sessionID", sessionID, path = "/"))
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
./
"). This exposes the cookie to all web applications on the domain. Because cookies often carry sensitive information such as session identifiers, sharing cookies across applications can cause a vulnerability in one application to compromise another application.http://communitypages.example.com/MyForum
and the application sets a session ID cookie with the path "/
" when users log in to the forum.
...
let properties = [
NSHTTPCookieDomain: "www.example.com",
NSHTTPCookiePath: "/",
NSHTTPCookieName: "foo",
NSHTTPCookieValue: "bar",
NSHTTPCookieSecure: true
]
let cookie : NSHTTPCookie? = NSHTTPCookie(properties:properties)
...
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a user of the forum clicks this link, the browser will send the cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session ID, the attacker can compromise the account of any forum user that browsed to /EvilSite
./EvilSite
to create its own overly broad cookie that overwrites the cookie from /MyForum
..example.com
". However, doing so exposes the session cookie to all web applications on the base domain name and any sub-domains. Leaking session cookies can lead to account compromises.http://secure.example.com/
and the application sets a session cookie with the domain ".example.com
" when users log in.
server.servlet.session.cookie.domain=.example.com
http://insecure.example.com/
and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
..example.com
". This exposes the session cookie to all web applications on the base domain and any sub-domains. Sharing session cookies across applications can lead to a vulnerability in one application causing a compromise in another.http://secure.example.com/
and the application sets a session cookie with the domain ".example.com
" when users log in.
session_set_cookie_params(0, "/", ".example.com", true, true);
http://insecure.example.com/
and it contains a cross-site scripting vulnerability. Any user authenticated to http://secure.example.com
that browses to http://insecure.example.com
risks exposing their session cookie from http://secure.example.com
./
"). This exposes the cookie to all web applications on the same domain. Leaking session cookies can lead to account compromises because an attacker may steal the session cookie using a vulnerability in any of the applications on the domain.http://communitypages.example.com/MyForum
and the application sets a session cookie with the path "/
" when users log in to the forum. For example:
server.servlet.session.cookie.path=/
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a forum user clicks this link, their browser will send the session cookie set by /MyForum
to the application running at /EvilSite
. By using the session cookie provided from the user on /MyForum
, the attacker can compromise the account of any forum user that browses to /EvilSite
./
"). This exposes the cookie to all web applications on the same domain. Leaking session cookies can lead to account compromises because an attacker may steal the session cookie using a vulnerability in any of the applications on the domain.http://communitypages.example.com/MyForum
and the application sets a session cookie with the path "/
" when users log in to the forum.
session_set_cookie_params(0, "/", "communitypages.example.com", true, true);
http://communitypages.example.com/EvilSite
and posts a link to this site on the forum. When a forum user clicks this link, their browser will send the session cookie set by /MyForum
to the application running at /EvilSite
. By stealing the session cookie, the attacker can compromise the account of any forum user that browsed to /EvilSite
.SameSite
parameter on session cookies is not set to Strict
.SameSite
parameter limits the scope of the cookie so that it is only attached to a request if the request is generated from first-party or same-site context. This helps to protect cookies from Cross-Site Request Forgery (CSRF) attacks. The SameSite
parameter can have the following three values:Strict
, cookies are only sent along with requests upon top-level navigation.Lax
, cookies are sent with top-level navigation from the same host as well as GET requests originated to the host from third-party sites. For example, suppose a third-party site has either iframe
or href
tags that link to the host site. If a user follows the link, the request will include the cookie.SameSite
parameter to Lax
for session cookies.
...
Cookie cookie = new Cookie('name', 'Foo', path, -1, true, 'Lax');
...
SameSite
attribute on session cookies is not set to Strict
.SameSite
attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href
and src
attribute of tags such as link
and iframe
in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.SameSite
attribute to Strict
in session cookies. This restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe
, img
, and form
do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.SameSite
attribute to Lax
for session cookies.
...
CookieOptions opt = new CookieOptions()
{
SameSite = SameSiteMode.Lax;
};
context.Response.Cookies.Append("name", "Foo", opt);
...
SameSite
attribute on session cookies is not set to SameSiteStrictMode
.SameSite
attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href
and src
attribute of tags such as link
and iframe
in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.SameSiteStrictMode
for the SameSite
attribute, which restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe
, img
, and form
do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.SameSiteLaxMode
in the SameSite
attribute for session cookies.
c := &http.Cookie{
Name: "cookie",
Value: "samesite-lax",
SameSite: http.SameSiteLaxMode,
}
SameSite
attribute on session cookies is not set to Strict
.SameSite
attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href
and src
attribute of tags such as link
and iframe
in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.SameSite
attribute to Strict
in session cookies. This restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe
, img
, and form
do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.SameSite
attribute to Lax
for session cookies.
ResponseCookie cookie = ResponseCookie.from("myCookie", "myCookieValue")
...
.sameSite("Lax")
...
}
SameSite
attribute on session cookies is not set to Strict
.SameSite
attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href
and src
attribute of tags such as link
and iframe
in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.SameSite
attribute to Strict
in session cookies. This restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe
, img
, and form
do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.SameSite
attribute to Lax
for session cookies.
app.get('/', function (req, res) {
...
res.cookie('name', 'Foo', { sameSite: "Lax" });
...
}
SameSite
attribute on session cookies is not set to Strict
.SameSite
attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href
and src
attribute of tags such as link
and iframe
in third-party site pages that an attacker controls. If an attacker is able to lure an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie authorizing the user, effectively authorizing the attacker as if they were the user.Strict
for the SameSite
attribute, which restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe
, img
, and form
do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.Lax
mode in the SameSite
attribute for session cookies.
ini_set("session.cookie_samesite", "Lax");
SameSite
attribute on session cookies is not set to Strict
.SameSite
attribute protects cookies from attacks such as Cross-Site Request Forgery (CSRF). Session cookies represent a user to the site so that the user can perform authorized actions. However, the browser automatically sends the cookies with the request and therefore users and web sites implicitly trust the browser for authorization. An attacker can misuse this trust and make a request to the site on behalf of the user by embedding links inside the href
and src
attribute of tags such as link
and iframe
in third-party site pages that an attacker controls. If an attacker lures an unsuspecting user to the third-party site that they control, the attacker can make requests that automatically include the session cookie with user authorization. This effectively gives the attacker access with the user's authorization.Strict
for the SameSite
parameter, which restricts the browser to append cookies only to requests that are either top-level navigation or originate from the same site. Requests that originate from third-party sites via links in various tags such as iframe
, img
, and form
do not have these cookies and therefore prevent the site from taking action that the user might not have authorized.Lax
in the samesite
attribute for session cookies.
response.set_cookie("cookie", value="samesite-lax", samesite="Lax")
...
Integer maxAge = 60*60*24*365*10;
Cookie cookie = new Cookie('emailCookie', emailCookie, path, maxAge, true, 'Strict');
...
HttpCookie cookie = new HttpCookie("emailCookie", email);
cookie.Expires = DateTime.Now.AddYears(10);;
Cookie cookie = new Cookie("emailCookie", email);
cookie.setMaxAge(60*60*24*365*10);
...
NSDictionary *cookieProperties = [NSDictionary dictionary];
...
[cookieProperties setValue:[[NSDate date] dateByAddingTimeInterval:(60*60*24*365*10)] forKey:NSHTTPCookieExpires];
...
NSHTTPCookie *cookie = [NSHTTPCookie cookieWithProperties:cookieProperties];
...
setcookie("emailCookie", $email, time()+60*60*24*365*10);
from django.http.response import HttpResponse
...
def view_method(request):
res = HttpResponse()
res.set_cookie("emailCookie", email, expires=time()+60*60*24*365*10, secure=True, httponly=True)
return res
...
Ok(Html(command)).withCookies(Cookie("sessionID", sessionID, maxAge = Some(60*60*24*365*10)))
...
let properties = [
NSHTTPCookieDomain: "www.example.com",
NSHTTPCookiePath: "/service",
NSHTTPCookieName: "foo",
NSHTTPCookieValue: "bar",
NSHTTPCookieSecure: true,
NSHTTPCookieExpires : NSDate(timeIntervalSinceNow: (60*60*24*365*10))
]
let cookie : NSHTTPCookie? = NSHTTPCookie(properties:properties)
...
server.servlet.session.cookie.persistent=true
session_set_cookie_params(time()+60*60*24*365*10, "/", "www.example.com", false, true);
Secure
flag set to true
.Secure
flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.Secure
flag.
...
<configuration>
<system.web>
<authentication mode="Forms">
<forms requireSSL="false" loginUrl="login.aspx">
</forms>
</authentication>
</system.web>
</configuration>
...
Secure
flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Sniffing network traffic over unencrypted wireless connections is a trivial task for attackers, so sending cookies (especially those with session IDs) over HTTP can result in application compromise.Secure
flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.Secure
flag for session cookies.
server.servlet.session.cookie.secure=false
Secure
flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.Secure
flag to true
Secure
flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.Secure
flag.
...
setcookie("emailCookie", $email, 0, "/", "www.example.com");
...
Secure
flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.SESSION_COOKIE_SECURE
property to True
or set it to False
.Secure
flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data, session identifiers, or carries a CSRF token.Secure
bit for session cookies.
...
MIDDLEWARE = (
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'csp.middleware.CSPMiddleware',
'django.middleware.security.SecurityMiddleware',
...
)
...
Secure
flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.
...
<cfquery name = "GetSSNs" dataSource = "users"
username = "scott" password = "tiger">
SELECT SSN
FROM Users
</cfquery>
...
...
Credentials.basic("hardcoded-username", password);
...
MyAccountActions
and a page action method pageAction()
. The pageAction()
method is executed when visiting the page URL, and the server does not check for anti-CSRF tokens.
<apex:page controller="MyAccountActions" action="{!pageAction}">
...
</apex:page>
public class MyAccountActions {
...
public void pageAction() {
Map<String,String> reqParams = ApexPages.currentPage().getParameters();
if (params.containsKey('id')) {
Id id = reqParams.get('id');
Account acct = [SELECT Id,Name FROM Account WHERE Id = :id];
delete acct;
}
}
...
}
<img src="http://my-org.my.salesforce.com/apex/mypage?id=YellowSubmarine" height=1 width=1/>
RequestBuilder rb = new RequestBuilder(RequestBuilder.POST, "/new_user");
body = addToPost(body, new_username);
body = addToPost(body, new_passwd);
rb.sendRequest(body, new NewAccountCallback(callback));
RequestBuilder rb = new RequestBuilder(RequestBuilder.POST, "http://www.example.com/new_user");
body = addToPost(body, "attacker";
body = addToPost(body, "haha");
rb.sendRequest(body, new NewAccountCallback(callback));
example.com
visits the malicious page while they have an active session on the site, they will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.
<http auto-config="true">
...
<csrf disabled="true"/>
</http>
var req = new XMLHttpRequest();
req.open("POST", "/new_user", true);
body = addToPost(body, new_username);
body = addToPost(body, new_passwd);
req.send(body);
var req = new XMLHttpRequest();
req.open("POST", "http://www.example.com/new_user", true);
body = addToPost(body, "attacker");
body = addToPost(body, "haha");
req.send(body);
example.com
visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.
<form method="POST" action="/new_user" >
Name of new user: <input type="text" name="username">
Password for new user: <input type="password" name="user_passwd">
<input type="submit" name="action" value="Create User">
</form>
<form method="POST" action="http://www.example.com/new_user">
<input type="hidden" name="username" value="hacker">
<input type="hidden" name="user_passwd" value="hacked">
</form>
<script>
document.usr_form.submit();
</script>
example.com
visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.buyItem
controller method.
+ nocsrf
POST /buyItem controllers.ShopController.buyItem
shop.com
, she will unwittingly buy items for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.
<form method="POST" action="/new_user" >
Name of new user: <input type="text" name="username">
Password for new user: <input type="password" name="user_passwd">
<input type="submit" name="action" value="Create User">
</form>
<form method="POST" action="http://www.example.com/new_user">
<input type="hidden" name="username" value="hacker">
<input type="hidden" name="user_passwd" value="hacked">
</form>
<script>
document.usr_form.submit();
</script>
example.com
visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.
@GetMapping("/ai")
String generation(String userInput) {
return this.chatClient.prompt()
.user(userInput)
.call()
.content();
}
message
, and displays it to the user.
const openai = new OpenAI({
apiKey: ...,
});
const chatCompletion = await openai.chat.completions.create(...);
message = res.choices[0].message.content
console.log(chatCompletion.choices[0].message.content)
val chatCompletionRequest = ChatCompletionRequest(
model = ModelId("gpt-3.5-turbo"),
messages = listOf(...)
)
val completion: ChatCompletion = openAI.chatCompletion(chatCompletionRequest)
response.getOutputStream().print(completion.choices[0].message)
message
, and displays it to the user.
client = openai.OpenAI()
res = client.chat.completions.create(...)
message = res.choices[0].message.content
self.writeln(f"<p>{message}<\p>")
chatService.createCompletion(
text,
settings = CreateCompletionSettings(...)
).map(completion =>
val html = Html(completion.choices.head.text)
Ok(html) as HTML
)
...
text/html
MIME type. Therefore, XSS is only possible if the response uses this MIME type or any other that also forces the browser to render the response as HTML or other document that may execute scripts such as SVG images (image/svg+xml
), XML documents (application/xml
), etc. application/octet-stream
. However, some browsers such as Internet Explorer perform what is known as Content Sniffing
. Content Sniffing involves ignoring the provided MIME type and attempting to infer the correct MIME type by the contents of the response.text/html
is only one such MIME type that may lead to XSS vulnerabilities. Other documents that may execute scripts such as SVG images (image/svg+xml
), XML documents (application/xml
), as well as others may lead to XSS vulnerabilities regardless of whether the browser performs Content Sniffing. <html><body><script>alert(1)</script></body></html>
, could be rendered as HTML even if its content-type
header is set to application/octet-stream
, multipart-mixed
, and so on.application/octet-stream
response.
@RestController
public class SomeResource {
@RequestMapping(value = "/test", produces = {MediaType.APPLICATION_OCTET_STREAM_VALUE})
public String response5(@RequestParam(value="name") String name){
return name;
}
}
name
parameter set to <html><body><script>alert(1)</script></body></html>
, the server will produce the following response:
HTTP/1.1 200 OK
Content-Length: 51
Content-Type: application/octet-stream
Connection: Closed
<html><body><script>alert(1)</script></body></html>
text/html
MIME type. Therefore, XSS is only possible if the response uses this MIME type or any other that also forces the browser to render the response as HTML or other document that may execute scripts such as SVG images (image/svg+xml
), XML documents (application/xml
), etc. application/json
. However, some browsers such as Internet Explorer perform what is known as Content Sniffing
. Content Sniffing involves ignoring the provided MIME type and attempting to infer the correct MIME type by the contents of the response.text/html
is only one such MIME type that may lead to XSS vulnerabilities. Other documents that may execute scripts such as SVG images (image/svg+xml
), XML documents (application/xml
), as well as others may lead to XSS vulnerabilities regardless of whether the browser performs Content Sniffing. <html><body><script>alert(1)</script></body></html>
, could be rendered as HTML even if its content-type
header is set to application/json
.application/json
response.
def mylambda_handler(event, context):
name = event['name']
response = {
"statusCode": 200,
"body": "{'name': name}",
"headers": {
'Content-Type': 'application/json',
}
}
return response
name
parameter set to <html><body><script>alert(1)</script></body></html>
, the server will produce the following response:
HTTP/1.1 200 OK
Content-Length: 88
Content-Type: application/json
Connection: Closed
{'name': '<html><body><script>alert(1)</script></body></html>'}
eid
, from an HTTP request and displays it to the user.
String queryString = Window.Location.getQueryString();
int pos = queryString.indexOf("eid=")+4;
HTML output = new HTML();
output.setHTML(queryString.substring(pos, queryString.length()));
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.eid
, from a URL and displays it to the user.Example 2: Consider the HTML form:
<SCRIPT>
var pos=document.URL.indexOf("eid=")+4;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>
<div id="myDiv">
Employee ID: <input type="text" id="eid"><br>
...
<button>Show results</button>
</div>
<div id="resultsDiv">
...
</div>
$(document).ready(function(){
$("#myDiv").on("click", "button", function(){
var eid = $("#eid").val();
$("resultsDiv").append(eid);
...
});
});
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
let element = JSON.parse(getUntrustedInput());
ReactDOM.render(<App>
{element}
</App>);
Example 3
, if an attacker can control the entire JSON object retrieved from getUntrustedInput()
, they may be able to make React render element
as a component, and therefore can pass an object with dangerouslySetInnerHTML
with their own controlled value, a typical cross-site scripting attack.
<attribute name="href" onInvalid="filterTag">
<regexp-list>
<regexp name="onsiteURL"/>
<regexp name="offsiteURL"/>
</regexp-list>
</attribute>
eid
, from an HTTP request and displays it to the user.
String eid = Request["eid"];
...
EmployeeID.Text = eid;
EmployeeID
is a server-side ASP.NET control defined as follows:
<form runat="server">
...
<asp:Label id="EmployeeID" runat="server"/>
...
</form>
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
string name = "";
using (SqlConnection conn = new SqlConnection(_ConnectionString))
{
string eid = Request["eid"];
SqlCommand cmd = new SqlCommand("SELECT * FROM emp WHERE id = @id", conn);
cmd.Parameters.AddWithValue("@id", eid);
conn.Open();
SqlDataReader objReader = cmd.ExecuteReader();
while (objReader.Read())
{
name = objReader["name"];
}
objReader.Close();
}
...
EmployeeName.Text = name;
EmployeeName
is a server-side ASP.NET control defined as follows:
<form runat="server">
...
<asp:Label id="EmployeeName" runat="server"/>
...
</form>
Example 2
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.user
, from an HTTP request and displays it to the user.
func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", user)
}
user
contains only standard alphanumeric text. If user
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", name)
}
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...
url
starts with javascript:
, JavaScript code that follows executes within the context of the web page inside WebView.eid
, from an HTTP request and displays it to the user.
<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>
Employee Name: <%= name %>
Example 2
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(url)
...
url
starts with javascript:
, JavaScript code that follows executes within the context of the web page inside WebView.eid
, from an HTTP servlet request, then displays the value back to the user in the servlet's response.
val eid: String = request.getParameter("eid")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee ID: $eid")
...
out.close()
...
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
val stmt: Statement = conn.createStatement()
val rs: ResultSet = stmt.executeQuery("select * from emp where id=$eid")
rs.next()
val name: String = rs.getString("name")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee Name: $name")
...
out.close()
...
Example 2
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
...
@property (strong, nonatomic) NSString *webContentFromURL;
...
- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url sourceApplication:(NSString *)sourceApplication annotation:(id)annotation {
...
[self setWebContentFromURL:[url host]];
...
...
...
@property (strong, nonatomic) WKWebView *webView;
...
AppDelegate *appDelegate = (AppDelegate *)[[UIApplication sharedApplication] delegate];
...
[_webView loadHTMLString:appDelegate.webContentFromURL] baseURL:nil];
...
...
@property (strong, nonatomic) WKWebView *webView;
@property (strong, nonatomic) UITextField *inputTextField;
...
[_webView loadHTMLString:_inputTextField.text baseURL:nil];
...
inputTextField
contains only standard alphanumeric text. If the text within inputTextField
includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.
...
@property (strong, nonatomic) WKWebView *webView;
...
NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"Employee" inManagedObjectContext:context];
[fetchRequest setEntity:entity];
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
for (NSManagedObject *info in fetchedObjects) {
NSString msg = @"Hello, " + [info valueForKey:@"name"];
[_webView loadHTMLString:msg baseURL:nil]
...
}
...
Example 2
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.Example 2
, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = WKWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...
loadHTMLString:
is user-controllable and JavaScript is enabled by default within a WKWebView, the user can write arbitrary content (including executable scripts) to the WKWebView via requests that use app's custom URL scheme.
...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...
inputTextField
contains only standard alphanumeric text. If the text within inputTextField
includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.
let fetchRequest = NSFetchRequest()
let entity = NSEntityDescription.entityForName("Employee", inManagedObjectContext: managedContext)
fetchRequest.entity = entity
do {
let results = try managedContext.executeFetchRequest(fetchRequest)
let result : NSManagedObject = results.first!
let name : String = result.valueForKey("name")
let msg : String = "Hello, \(name)"
let webView : UIWebView = UIWebView()
webView.loadHTMLString(msg, baseURL:nil)
} catch let error as NSError {
print("Error \(error)")
}
Example 2
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.Example 2
, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
...
DATA: BEGIN OF itab_employees,
eid TYPE employees-itm,
name TYPE employees-name,
END OF itab_employees,
itab LIKE TABLE OF itab_employees.
...
itab_employees-eid = '...'.
APPEND itab_employees TO itab.
SELECT *
FROM employees
INTO CORRESPONDING FIELDS OF TABLE itab_employees
FOR ALL ENTRIES IN itab
WHERE eid = itab-eid.
ENDSELECT.
...
response->append_cdata( 'Employee Name: ').
response->append_cdata( itab_employees-name ).
...
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP request and displays it to the user.
...
eid = request->get_form_field( 'eid' ).
...
response->append_cdata( 'Employee ID: ').
response->append_cdata( eid ).
...
Example 1
, this code operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.
stmt.sqlConnection = conn;
stmt.text = "select * from emp where id="+eid;
stmt.execute();
var rs:SQLResult = stmt.getResult();
if (null != rs) {
var name:String = String(rs.data[0]);
var display:TextField = new TextField();
display.htmlText = "Employee Name: " + name;
}
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP request and displays it to the user.
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var eid:String = String(params["eid"]);
...
var display:TextField = new TextField();
display.htmlText = "Employee ID: " + eid;
...
Example 1
, this code operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.
...
variable = Database.query('SELECT Name FROM Contact WHERE id = ID');
...
<div onclick="this.innerHTML='Hello {!variable}'">Click me!</div>
name
are well defined like just alphanumeric characters, but does nothing to check for malicious data. Even read from a database, the value should be properly validated because the content of the database can be originated from user-supplied data. This way, an attacker can have malicious commands executed in the user's web browser without the need to interact with the victim like in Reflected XSS. This type of attack, known as Stored XSS (or Persistent), can be very hard to detect since the data is indirectly provided to the vulnerable function and also have a higher impact due to the possibility to affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.username
, and displays it to the user.
<script>
document.write('{!$CurrentPage.parameters.username}')
</script>
username
contains metacharacters or source code, it will be executed by the web browser.Example 1
, the database or other data store can provide dangerous data to the application that will be included in dynamic content. From the attacker's perspective, the best place to store malicious content is an area accessible to all users specially those with elevated privileges, who are more likely to handle sensitive information or perform critical operations.Example 2
, data is read from the HTTP request and reflected back in the HTTP response. Reflected XSS occurs when an attacker can have dangerous content delivered to a vulnerable web application and then reflected back to the user and execute by his browser. The most common mechanism to deliver malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to the victim. URLs crafted this way are the core of many phishing schemes, where the attacker lures the victim to visit the URL. After the site reflects the content back to the user, it is executed and can perform several actions like forward private sensitive information, execute unauthorized operations on the victim computer etc.
<script runat="server">
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;
</script>
EmployeeName
is a form control defined as follows:Example 2: The following ASP.NET code segment is functionally equivalent to
<form runat="server">
...
<asp:Label id="EmployeeName" runat="server">
...
</form>
Example 1
, but implements all of the form elements programmatically.
protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;
name
are well-behaved, but they do nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.
<script runat="server">
...
EmployeeID.Text = Login.Text;
...
</script>
Login
and EmployeeID
are form controls defined as follows:Example 4: The following ASP.NET code segment shows the programmatic way to implement
<form runat="server">
<asp:TextBox runat="server" id="Login"/>
...
<asp:Label runat="server" id="EmployeeID"/>
</form>
Example 3
.
protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;
Example 1
and Example 2
, these examples operate correctly if Login
contains only standard alphanumeric text. If Login
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.Example 1
and Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 3
and Example 4
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.
...
EXEC SQL
SELECT NAME
INTO :ENAME
FROM EMPLOYEE
WHERE ID = :EID
END-EXEC.
EXEC CICS
WEB SEND
FROM(ENAME)
...
END-EXEC.
...
ENAME
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of ENAME
is read from a database, whose contents are apparently managed by the application. However, if the value of ENAME
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Stored XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.EID
, from an HTML form and displays it to the user.
...
EXEC CICS
WEB READ
FORMFIELD(ID)
VALUE(EID)
...
END-EXEC.
EXEC CICS
WEB SEND
FROM(EID)
...
END-EXEC.
...
Example 1
, this code operates correctly if EID
contains only standard alphanumeric text. If EID
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Stored XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker might perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTML Form and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.
<cfquery name="matchingEmployees" datasource="cfsnippets">
SELECT name
FROM Employees
WHERE eid = '#Form.eid#'
</cfquery>
<cfoutput>
Employee Name: #name#
</cfoutput>
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from a web form and displays it to the user.
<cfoutput>
Employee ID: #Form.eid#
</cfoutput>
Example 1
, this code operates correctly if Form.eid
contains only standard alphanumeric text. If Form.eid
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.user
, from an HTTP request and displays it to the user.
func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", user)
}
user
contains only standard alphanumeric text. If user
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", name)
}
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>
Employee Name: <%= name %>
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP request and displays it to the user.
<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>
Example 1
, this code operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...
url
starts with javascript:
, JavaScript code that follows executes within the context of the web page inside WebView.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
var http = require('http');
...
function listener(request, response){
connection.query('SELECT * FROM emp WHERE eid="' + eid + '"', function(err, rows){
if (!err && rows.length > 0){
response.write('<p>Welcome, ' + rows[0].name + '!</p>');
}
...
});
...
}
...
http.createServer(listener).listen(8080);
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP request and displays it to the user.
var http = require('http');
var url = require('url');
...
function listener(request, response){
var eid = url.parse(request.url, true)['query']['eid'];
if (eid !== undefined){
response.write('<p>Welcome, ' + eid + '!</p>');
}
...
}
...
http.createServer(listener).listen(8080);
Example 1
, this code operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.
...
val stmt: Statement = conn.createStatement()
val rs: ResultSet = stmt.executeQuery("select * from emp where id=$eid")
rs.next()
val name: String = rs.getString("name")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee Name: $name")
...
out.close()
...
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP servlet request, then displays the value back to the user in the servlet's response.
val eid: String = request.getParameter("eid")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee ID: $eid")
...
out.close()
...
Example 1
, this code operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(url)
...
url
starts with javascript:
, JavaScript code that follows executes within the context of the web page inside WebView.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.myapp://input_to_the_application
). The untrusted data in the URL is then used to render HTML output in a UIWebView component.
...
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
UIWebView *webView;
NSString *partAfterSlashSlash = [[url host] stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
webView = [[UIWebView alloc] initWithFrame:CGRectMake(0.0,0.0,360.0, 480.0)];
[webView loadHTMLString:partAfterSlashSlash baseURL:nil]
...
Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.
<?php...
$con = mysql_connect($server,$user,$password);
...
$result = mysql_query("select * from emp where id="+eid);
$row = mysql_fetch_array($result)
echo 'Employee name: ', mysql_result($row,0,'name');
...
?>
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP request and displays it to the user.
<?php
$eid = $_GET['eid'];
...
?>
...
<?php
echo "Employee ID: $eid";
?>
Example 1
, this code operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.
...
SELECT ename INTO name FROM emp WHERE id = eid;
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee Name: ' || name || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP request and displays it to the user.
...
-- Assume QUERY_STRING looks like EID=EmployeeID
eid := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 5);
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee ID: ' || eid || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...
Example 1
, this code operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.eid
, from an HTTP request and displays it to the user.
req = self.request() # fetch the request object
eid = req.field('eid',None) # tainted request message
...
self.writeln("Employee ID:" + eid)
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
cursor.execute("select * from emp where id="+eid)
row = cursor.fetchone()
self.writeln('Employee name: ' + row["emp"]')
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
...
rs = conn.exec_params("select * from emp where id=?", eid)
...
Rack::Response.new.finish do |res|
...
rs.each do |row|
res.write("Employee name: #{escape(row['name'])}")
...
end
end
...
name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP request and displays it to the user.
eid = req.params['eid'] #gets request parameter 'eid'
Rack::Response.new.finish do |res|
...
res.write("Employee ID: #{eid}")
end
Example 1
, the code in this example operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.Rack::Request#params()
as in Example 2
, this sees both GET
and POST
parameters, so may be vulnerable to various types of attacks other than just having the malicious code appended to the URL.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.eid
, from a database query and displays it to the user.
def getEmployee = Action { implicit request =>
val employee = getEmployeeFromDB()
val eid = employee.id
if (employee == Null) {
val html = Html(s"Employee ID ${eid} not found")
Ok(html) as HTML
}
...
}
name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.
...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...
inputTextField
contains only standard alphanumeric text. If the text within inputTextField
includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.myapp://input_to_the_application
). The untrusted data in the URL is then used to render HTML output in a UIWebView component.
...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = UIWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...
Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.
...
eid = Request("eid")
strSQL = "Select * from emp where id=" & eid
objADORecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
while not objRec.EOF
Response.Write "Employee Name:" & objADORecordSet("name")
objADORecordSet.MoveNext
Wend
...
name
are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.eid
, from an HTTP request and displays it to the user.
...
eid = Request("eid")
Response.Write "Employee ID:" & eid & "<br/>"
..
Example 1
, this code operates correctly if eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Example 1
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.cl_http_utility=>escape_html
, will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded may take on meta-meaning. Relying on such encoding function modules is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks report cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.eid
, from an HTTP request, HTML-encodes it, and displays it to the user.
...
eid = request->get_form_field( 'eid' ).
...
CALL METHOD cl_http_utility=>escape_html
EXPORTING
UNESCAPED = eid
KEEP_NUM_CHAR_REF = '-'
RECEIVING
ESCAPED = e_eid.
...
response->append_cdata( 'Employee ID: ').
response->append_cdata( e_eid ).
...
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
DATA: BEGIN OF itab_employees,
eid TYPE employees-itm,
name TYPE employees-name,
END OF itab_employees,
itab LIKE TABLE OF itab_employees.
...
itab_employees-eid = '...'.
APPEND itab_employees TO itab.
SELECT *
FROM employees
INTO CORRESPONDING FIELDS OF TABLE itab_employees
FOR ALL ENTRIES IN itab
WHERE eid = itab-eid.
ENDSELECT.
...
CALL METHOD cl_http_utility=>escape_html
EXPORTING
UNESCAPED = itab_employees-name
KEEP_NUM_CHAR_REF = '-'
RECEIVING
ESCAPED = e_name.
...
response->append_cdata( 'Employee Name: ').
response->append_cdata( e_name ).
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request, HTML-encodes it, and displays it to the user.
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var eid:String = String(params["eid"]);
...
var display:TextField = new TextField();
display.htmlText = "Employee ID: " + escape(eid);
...
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
stmt.sqlConnection = conn;
stmt.text = "select * from emp where id="+eid;
stmt.execute();
var rs:SQLResult = stmt.getResult();
if (null != rs) {
var name:String = String(rs.data[0]);
var display:TextField = new TextField();
display.htmlText = "Employee Name: " + escape(name);
}
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
...
variable = Database.query('SELECT Name FROM Contact WHERE id = ID');
...
<div onclick="this.innerHTML='Hello {!HTMLENCODE(variable)}'">Click me!</div>
HTMLENCODE
, does not properly validate the data provided by the database and is vulnerable to XSS. This happens because the variable
content is parsed by different mechanisms (HTML and Javascript parsers), therfore neeeds to be encoded two times. This way, an attacker can have malicious commands executed in the user's web browser without the need to interact with the victim like in Reflected XSS. This type of attack, known as Stored XSS (or Persistent), can be very hard to detect since the data is indirectly provided to the vulnerable function and also have a higher impact due to the possibility to affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.username
, and displays it to the user.
<script>
document.write('{!HTMLENCODE($CurrentPage.parameters.username)}')
</script>
username
contains metacharacters or source code, it will be executed by the web browser. Also in this example the usage of HTMLENCODE
is not enough to prevent the XSS attack since the variable is processed by the Javascript parser.Example 1
, the database or other data store can provide dangerous data to the application that will be included in dynamic content. From the attacker's perspective, the best place to store malicious content is an area accessible to all users specially those with elevated privileges, who are more likely to handle sensitive information or perform critical operations.Example 2
, data is read from the HTTP request and reflected back in the HTTP response. Reflected XSS occurs when an attacker can have dangerous content delivered to a vulnerable web application and then reflected back to the user and execute by his browser. The most common mechanism to deliver malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to the victim. URLs crafted this way are the core of many phishing schemes, where the attacker lures the victim to visit the URL. After the site reflects the content back to the user, it is executed and can perform several actions like forward private sensitive information, execute unauthorized operations on the victim computer etc.
<script runat="server">
...
EmployeeID.Text = Server.HtmlEncode(Login.Text);
...
</script>
Login
and EmployeeID
are form controls defined as follows:Example 2: The following ASP.NET code segment implements the same functionality as in
<form runat="server">
<asp:TextBox runat="server" id="Login"/>
...
<asp:Label runat="server" id="EmployeeID"/>
</form>
Example 1
, albeit programmatically.
protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Server.HtmlEncode(Login.Text);
Login
contains only standard alphanumeric text. If Login
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
<script runat="server">
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = Server.HtmlEncode(name);
</script>
EmployeeName
is a form control defined as follows:Example 4: Likewise, the following ASP.NET code segment is functionally equivalent to
<form runat="server">
...
<asp:Label id="EmployeeName" runat="server">
...
</form>
Example 3
, but implements all of the form elements programmatically.
protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = Server.HtmlEncode(name);
Example 1
and Example 2
, these code segments perform correctly when the values of name
are well-behaved, but they do nothing to prevent exploits if they are not. Again, these code examples can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
and Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
and Example 4
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.text
parameter, from an HTTP request, HTML-encodes it, and displays it in an alert box in between script tags.
"<script>alert('<CFOUTPUT>HTMLCodeFormat(#Form.text#)</CFOUTPUT>')</script>";
text
contains only standard alphanumeric text. If text
has a single quote, a round bracket and a semicolon, it ends the alert
textbox thereafter the code will be executed.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.user
, from an HTTP request and displays it to the user.
func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", html.EscapeString(user))
}
user
contains only standard alphanumeric text. If user
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", html.EscapeString(name))
}
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.<c:out/>
tag with the escapeXml="true"
attribute (the default behavior), prevents some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded might take on meta-meaning. Relying on such encoding constructs is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, Fortify Static Code Analyzer reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.eid
, from an HTTP request and displays it to the user via the <c:out/>
tag.
Employee ID: <c:out value="${param.eid}"/>
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.<c:out/>
tag.
<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>
Employee Name: <c:out value="${name}"/>
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.
...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(URLEncoder.encode(url));
...
url
starts with javascript:
, JavaScript code that follows executes within the context of the web page inside WebView.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 3
, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.eid
, from an HTTP request, escapes it, and displays it to the user.
<SCRIPT>
var pos=document.URL.indexOf("eid=")+4;
document.write(escape(document.URL.substring(pos,document.URL.length)));
</SCRIPT>
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.<c:out/>
tag with the escapeXml="true"
attribute (the default behavior), prevents some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' that are XML-encoded might take on meta-meaning. Relying on such encoding constructs is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, Fortify Static Code Analyzer reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.
...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(URLEncoder.encode(url))
...
url
starts with javascript:
, JavaScript code that follows executes within the context of the web page inside WebView.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 3
, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.myapp://input_to_the_application
). The untrusted data in the URL is then used to render HTML output in a UIWebView component.
...
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
...
UIWebView *webView;
NSString *partAfterSlashSlash = [[url host] stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
NSString *htmlPage = [NSString stringWithFormat: @"%@/%@/%@", @"...<input type=text onclick=\"callFunction('",
[DefaultEncoder encodeForHTML:partAfterSlashSlash],
@"')\" />"];
webView = [[UIWebView alloc] initWithFrame:CGRectMake(0.0,0.0,360.0, 480.0)];
[webView loadHTMLString:htmlPage baseURL:nil];
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database and is HTML encoded. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. The attacker supplied exploit could bypass encoded characters or place input in a context which is not effected by HTML encoding. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.htmlspecialchars()
or htmlentities()
, will prevent some, but not all cross-site scripting attacks. Depending on the context in which the data appear, characters beyond the basic <, >, &, and " that are HTML-encoded and those beyond <, >, &, ", and ' (only when ENT_QUOTES
is set) that are XML-encoded may take on meta-meaning. Relying on such encoding functions is equivalent to using a weak deny list to prevent cross-site scripting and might allow an attacker to inject malicious code that will be executed in the browser. Because accurately identifying the context in which the data appear statically is not always possible, the Fortify Secure Coding Rulepacks reports cross-site scripting findings even when encoding is applied and presents them as Cross-Site Scripting: Poor Validation issues.text
parameter, from an HTTP request, HTML-encodes it, and displays it in an alert box in between script tags.
<?php
$var=$_GET['text'];
...
$var2=htmlspecialchars($var);
echo "<script>alert('$var2')</script>";
?>
text
contains only standard alphanumeric text. If text
has a single quote, a round bracket and a semicolon, it ends the alert
textbox thereafter the code will be executed.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.eid
, from an HTTP request, URL-encodes it, and displays it to the user.
...
-- Assume QUERY_STRING looks like EID=EmployeeID
eid := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 5);
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee ID: ' || HTMLDB_UTIL.url_encode(eid) || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
SELECT ename INTO name FROM emp WHERE id = eid;
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee Name: ' || HTMLDB_UTIL.url_encode(name) || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request, HTML-encodes it, and displays it to the user.
req = self.request() # fetch the request object
eid = req.field('eid',None) # tainted request message
...
self.writeln("Employee ID:" + escape(eid))
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
cursor.execute("select * from emp where id="+eid)
row = cursor.fetchone()
self.writeln('Employee name: ' + escape(row["emp"]))
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request, HTML-encodes it, and displays it to the user.
eid = req.params['eid'] #gets request parameter 'eid'
Rack::Response.new.finish do |res|
...
res.write("Employee ID: #{eid}")
end
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Rack::Request#params()
as in Example 1
, this sees both GET
and POST
parameters, so may be vulnerable to various types of attacks other than just having the malicious code appended to the URL.
...
rs = conn.exec_params("select * from emp where id=?", eid)
...
Rack::Response.new.finish do |res|
...
rs.each do |row|
res.write("Employee name: #{escape(row['name'])}")
...
end
end
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation of all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
def getEmployee = Action { implicit request =>
var eid = request.getQueryString("eid")
eid = StringEscapeUtils.escapeHtml(eid); // insufficient validation
val employee = getEmployee(eid)
if (employee == Null) {
val html = Html(s"Employee ID ${eid} not found")
Ok(html) as HTML
}
...
}
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.myapp://input_to_the_application
). The untrusted data in the URL is then used to render HTML output in a UIWebView component.
...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = UIWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database and is HTML encoded. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. The attacker supplied exploit could bypass encoded characters or place input in a context which is not effected by HTML encoding. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.
...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...
inputTextField
contains only standard alphanumeric text. If the text within inputTextField
includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.Example 1
, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 3
, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.eid
, from an HTTP request, HTML-encodes it, and displays it to the user.
...
eid = Request("eid")
Response.Write "Employee ID:" & Server.HTMLEncode(eid) & "<br/>"
..
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
eid = Request("eid")
strSQL = "Select * from emp where id=" & eid
objADORecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
while not objRec.EOF
Response.Write "Employee Name:" & Server.HTMLEncode(objADORecordSet("name"))
objADORecordSet.MoveNext
Wend
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
...
eid = request->get_form_field( 'eid' ).
...
response->append_cdata( 'Employee ID: ').
response->append_cdata( eid ).
...
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
DATA: BEGIN OF itab_employees,
eid TYPE employees-itm,
name TYPE employees-name,
END OF itab_employees,
itab LIKE TABLE OF itab_employees.
...
itab_employees-eid = '...'.
APPEND itab_employees TO itab.
SELECT *
FROM employees
INTO CORRESPONDING FIELDS OF TABLE itab_employees
FOR ALL ENTRIES IN itab
WHERE eid = itab-eid.
ENDSELECT.
...
response->append_cdata( 'Employee Name: ').
response->append_cdata( itab_employees-name ).
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var eid:String = String(params["eid"]);
...
var display:TextField = new TextField();
display.htmlText = "Employee ID: " + eid;
...
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
stmt.sqlConnection = conn;
stmt.text = "select * from emp where id="+eid;
stmt.execute();
var rs:SQLResult = stmt.getResult();
if (null != rs) {
var name:String = String(rs.data[0]);
var display:TextField = new TextField();
display.htmlText = "Employee Name: " + name;
}
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.username
, and displays it to the user.
<script>
document.write('{!$CurrentPage.parameters.username}')
</script>
username
contains metacharacters or source code, it will be executed by the web browser.
...
variable = Database.query('SELECT Name FROM Contact WHERE id = ID');
...
<div onclick="this.innerHTML='Hello {!variable}'">Click me!</div>
Example 1
, this code behaves correctly when the values of name
are well defined like just alphanumeric characters, but does nothing to check for malicious data. Even read from a database, the value should be properly validated because the content of the database can be originated from user-supplied data. This way, an attacker can have malicious commands executed in the user's web browser without the need to interact with the victim like in Reflected XSS. This type of attack, known as Stored XSS (or Persistent), can be very hard to detect since the data is indirectly provided to the vulnerable function and also have a higher impact due to the possibility to affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read from the HTTP request and reflected back in the HTTP response. Reflected XSS occurs when an attacker can have dangerous content delivered to a vulnerable web application and then reflected back to the user and execute by his browser. The most common mechanism to deliver malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to the victim. URLs crafted this way are the core of many phishing schemes, where the attacker lures the victim to visit the URL. After the site reflects the content back to the user, it is executed and can perform several actions like forward private sensitive information, execute unauthorized operations on the victim computer etc.Example 2
, the database or other data store can provide dangerous data to the application that will be included in dynamic content. From the attacker's perspective, the best place to store malicious content is an area accessible to all users specially those with elevated privileges, who are more likely to handle sensitive information or perform critical operations.
<script runat="server">
...
EmployeeID.Text = Login.Text;
...
</script>
Login
and EmployeeID
are form controls defined as follows:Example 2: The following ASP.NET code segment shows the programmatic way to implement
<form runat="server">
<asp:TextBox runat="server" id="Login"/>
...
<asp:Label runat="server" id="EmployeeID"/>
</form>
Example 1
.
protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;
Login
contains only standard alphanumeric text. If Login
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
<script runat="server">
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;
</script>
EmployeeName
is a form control defined as follows:Example 4: The following ASP.NET code segment is functionally equivalent to
<form runat="server">
...
<asp:Label id="EmployeeName" runat="server">
...
</form>
Example 3
, but implements all of the form elements programmatically.
protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;
Example 1
and Example 2
, these code examples function correctly when the values of name
are well-behaved, but they nothing to prevent exploits if the values are not. Again, these can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
and Example 2
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 3
and Example 4
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.EID
, from an HTML form and displays it to the user.
...
EXEC CICS
WEB READ
FORMFIELD(ID)
VALUE(EID)
...
END-EXEC.
EXEC CICS
WEB SEND
FROM(EID)
...
END-EXEC.
...
EID
contains only standard alphanumeric text. If EID
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
...
EXEC SQL
SELECT NAME
INTO :ENAME
FROM EMPLOYEE
WHERE ID = :EID
END-EXEC.
EXEC CICS
WEB SEND
FROM(ENAME)
...
END-EXEC.
...
Example 1
, this code functions correctly when the values of ENAME
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of ENAME
is read from a database, whose contents are apparently managed by the application. However, if the value of ENAME
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Stored XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTML Form and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Stored XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker might perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from a web form and displays it to the user.
<cfoutput>
Employee ID: #Form.eid#
</cfoutput>
Form.eid
contains only standard alphanumeric text. If Form.eid
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
<cfquery name="matchingEmployees" datasource="cfsnippets">
SELECT name
FROM Employees
WHERE eid = '#Form.eid#'
</cfquery>
<cfoutput>
Employee Name: #name#
</cfoutput>
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.user
, from an HTTP request and displays it to the user.
func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", user)
}
user
contains only standard alphanumeric text. If user
has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.
func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", name)
}
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>
Employee Name: <%= name %>
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.
...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...
url
starts with javascript:
, JavaScript code that follows executes within the context of the web page inside WebView.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 3
, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.eid
, from an HTTP request and displays it to the user.
var http = require('http');
var url = require('url');
...
function listener(request, response){
var eid = url.parse(request.url, true)['query']['eid'];
if (eid !== undefined){
response.write('<p>Welcome, ' + eid + '!</p>');
}
...
}
...
http.createServer(listener).listen(8080);
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
var http = require('http');
...
function listener(request, response){
connection.query('SELECT * FROM emp WHERE eid="' + eid + '"', function(err, rows){
if (!err && rows.length > 0){
response.write('<p>Welcome, ' + rows[0].name + '!</p>');
}
...
});
...
}
...
http.createServer(listener).listen(8080);
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP servlet request, then displays the value back to the user in the servlet's response.
val eid: String = request.getParameter("eid")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee ID: $eid")
...
out.close()
...
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
val stmt: Statement = conn.createStatement()
val rs: ResultSet = stmt.executeQuery("select * from emp where id=$eid")
rs.next()
val name: String = rs.getString("name")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee Name: $name")
...
out.close()
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.
...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(url)
...
url
starts with javascript:
, JavaScript code that follows executes within the context of the web page inside WebView.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Example 3
, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.myapp://input_to_the_application
). The untrusted data in the URL is then used to render HTML output in a UIWebView component.
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
UIWebView *webView;
NSString *partAfterSlashSlash = [[url host] stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
webView = [[UIWebView alloc] initWithFrame:CGRectMake(0.0,0.0,360.0, 480.0)];
[webView loadHTMLString:partAfterSlashSlash baseURL:nil]
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
<?php
$eid = $_GET['eid'];
...
?>
...
<?php
echo "Employee ID: $eid";
?>
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
<?php...
$con = mysql_connect($server,$user,$password);
...
$result = mysql_query("select * from emp where id="+eid);
$row = mysql_fetch_array($result)
echo 'Employee name: ', mysql_result($row,0,'name');
...
?>
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
...
-- Assume QUERY_STRING looks like EID=EmployeeID
eid := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 5);
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee ID: ' || eid || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
SELECT ename INTO name FROM emp WHERE id = eid;
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee Name: ' || name || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
req = self.request() # fetch the request object
eid = req.field('eid',None) # tainted request message
...
self.writeln("Employee ID:" + eid)
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
cursor.execute("select * from emp where id="+eid)
row = cursor.fetchone()
self.writeln('Employee name: ' + row["emp"]')
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
eid = req.params['eid'] #gets request parameter 'eid'
Rack::Response.new.finish do |res|
...
res.write("Employee ID: #{eid}")
end
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.Rack::Request#params()
as in Example 1
, this sees both GET
and POST
parameters, so may be vulnerable to various types of attacks other than just having the malicious code appended to the URL.
...
rs = conn.exec_params("select * from emp where id=?", eid)
...
Rack::Response.new.finish do |res|
...
rs.each do |row|
res.write("Employee name: #{escape(row['name'])}")
...
end
end
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
def getEmployee = Action { implicit request =>
val eid = request.getQueryString("eid")
val employee = getEmployee(eid)
if (employee == Null) {
val html = Html(s"Employee ID ${eid} not found")
Ok(html) as HTML
}
...
}
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...
inputTextField
contains only standard alphanumeric text. If the text within inputTextField
includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.myapp://input_to_the_application
). The untrusted data in the URL is then used to render HTML output in a UIWebView component.
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = UIWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
Example 2
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.Example 3
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.eid
, from an HTTP request and displays it to the user.
...
eid = Request("eid")
Response.Write "Employee ID:" & eid & "<br/>"
..
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.
...
eid = Request("eid")
strSQL = "Select * from emp where id=" & eid
objADORecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
while not objRec.EOF
Response.Write "Employee Name:" & objADORecordSet("name")
objADORecordSet.MoveNext
Wend
...
Example 1
, this code functions correctly when the values of name
are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However, if the value of name
originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.Example 1
, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.Example 2
, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.Origin
header, it will allow any malicious site to impersonate the user and establish a bidirectional WebSocket connection without the user even noticing.Origin
header, it will allow any malicious site to impersonate the user and establish a bidirectional WebSocket connection without the user even noticing.