Kingdom: Code Quality

Poor code quality leads to unpredictable behavior. From a user's perspective that often manifests itself as poor usability. For an attacker it provides an opportunity to stress the system in unexpected ways.

99 items found
Weaknesses
Abstract
An attempt was made to use one of the following accounts to connect to the database: admin, administrator, guest, root, or sa.
Explanation
Windows Azure SQL Database supports only SQL Server Authentication. Windows Authentication (integrated security) is not supported. Users must provide credentials (login and password) every time they connect to Windows Azure SQL Database. Per Microsoft Windows Azure SQL Database General Guidelines and Limitations, the following account names are not available: admin, administrator, guest, root, sa.
References
[1] Security Guidelines and Limitations (Windows Azure SQL Database)
[2] Windows Azure SQL Database Concepts
[3] Transact-SQL Support (Windows Azure SQL Database)
[4] Development Considerations in Windows Azure SQL Database
[5] Managing Databases and Logins in Windows Azure SQL Database
[6] Configure and manage Azure AD authentication with Azure SQL
[7] How to: Connect to Windows Azure SQL Database Using sqlcmd
[8] Copying Databases in Windows Azure SQL Database
[9] Data Types (Windows Azure SQL Database)
[10] Deprecated Database Engine Features in SQL Server 2012
[11] EXECUTE AS (Transact-SQL)
[12] Security Statements
[13] System Stored Procedures (Windows Azure SQL Database)
[14] Guidelines and Limitations (Windows Azure SQL Database)
[15] General Guidelines and Limitations (Windows Azure SQL Database)
[16] Standards Mapping - Common Weakness Enumeration CWE ID 272
[17] Standards Mapping - Common Weakness Enumeration Top 25 2023 [22] CWE ID 269
[18] Standards Mapping - Common Weakness Enumeration Top 25 2024 [15] CWE ID 269
[19] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000381, CCI-002233, CCI-002235
[20] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-6 Least Privilege (P1), CM-7 Least Functionality (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-6 Least Privilege, CM-7 Least Functionality
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.4.3 Access Control Architectural Requirements (L2 L3), 10.2.2 Malicious Code Search (L2 L3)
[24] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[25] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 7.1.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 7.1.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 7.1.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 7.1.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 7.1.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 7.1.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 7.2.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 7.2.2
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective C.2.1.2 - Web Software Access Controls
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3500 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3500 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3500 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3500 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3500 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3500 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3500 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000500 CAT II, APSC-DV-000510 CAT I, APSC-DV-001500 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.sql.code_quality_database_authentication_use_of_restricted_accounts
Abstract
This statement will never be executed.
Explanation
The surrounding code makes it impossible for this statement to ever be executed.

Example 1: The condition for the second if statement is impossible to satisfy. It requires that the variable s be non-null, while on the only path where s can be assigned a non-null value there is a return statement.


String s = null;

if (b) {
s = "Yes";
return;
}

if (s != null) {
Dead();
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 561
[2] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 2.1
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 2.1
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-1-1, Rule 0-1-2
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 0.0.1, Rule 0.0.2
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[7] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3050 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3050 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3050 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3050 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3050 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3050 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3050 CAT II
[14] Standards Mapping - Smart Contract Weakness Classification SWC-135
desc.internal.cpp.dead_code
Abstract
A function defines code with no effect.
Explanation
In Solidity, developers can write code that has no effect, which can lead to unexpected behavior or code that does not perform the intended action.

Example 1: The following code tries to update the balance of msg.sender but uses == instead of = to do so, which has no effect.


function deposit(uint amount) public payable {
require(msg.value == amount, 'incorrect amount');
balance[msg.sender] == amount;
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 561
[2] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 2.1
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 2.1
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-1-1, Rule 0-1-2
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 0.0.1, Rule 0.0.2
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[7] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3050 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3050 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3050 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3050 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3050 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3050 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3050 CAT II
[14] Standards Mapping - Smart Contract Weakness Classification SWC-135
desc.structural.solidity.swc135
Abstract
Use of parameters that trigger unexposed, privileged functionality can allow an attacker to gain unauthorized access to application resources.
Explanation
Unused parameters represent data that is processed by the application code but is not made available to the users through any of the request parameters. These parameters can be used to aid debugging, enable privileged functionality known only to the programmers or administrators of the web site, or act as a backdoor. If discovered by an attacker, use of these parameters can lead to unauthorized access to privileged functionality or be used to inject arbitrary code into the application. Programmers sometimes leave behind functionality in product code that was only meant for debugging and incorrectly assume they can hide privileged functionality by not exposing it through publicly accessible interfaces.

The presence of unused parameters can expose an application to certain risks:
- It can indicate dead code in an application, which is not exposed to legitimate application users. However, a malicious user might get access to functionality in dead code by supplying brute force parameter name/value pairs (e.g. debug=true). If the code accesses sensitive resources such as databases and file IO, it can threaten the overall security of the application.
- It can indicate a backdoor into the application planted by a developer with malicious intent, which can be used later to gain unlawful access to application data or perform serious attacks against the application.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 235
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001082
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-2 Application Partitioning (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-2 Separation of System and User Functionality
[5] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[6] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[7] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3050 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3050 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3050 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3050 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3050 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3050 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3050 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002150 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002150 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002150 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002150 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002150 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002150 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002150 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002150 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002150 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002150 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002150 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002150 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002150 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002150 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002150 CAT II
desc.dynamic.xtended_preview.dead_code_unused_parameter
Abstract
Calling free() twice on the same memory address can lead to a buffer overflow.
Explanation
Double free errors occur when free() is called more than once with the same memory address as an argument.



Calling free() twice on the same value can lead to a buffer overflow. When a program calls free() twice with the same argument, the program's memory management data structures become corrupted. This corruption can cause the program to crash or, in some circumstances, cause two later calls to malloc() to return the same pointer. If malloc() returns the same value twice and the program later gives the attacker control over the data that is written into this doubly-allocated memory, the program becomes vulnerable to a buffer overflow attack.

Example 1: The following code shows a simple example of a double free vulnerability.


char* ptr = (char*)malloc (SIZE);
...
if (abrt) {
free(ptr);
}
...
free(ptr);


Double free vulnerabilities have two common (and sometimes overlapping) causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Although some double free vulnerabilities are not much more complicated than the previous example, most are spread out across hundreds of lines of code or even different files. Programmers seem particularly susceptible to freeing global variables more than once.
References
[1] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[2] Standards Mapping - Common Weakness Enumeration CWE ID 415
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [17] CWE ID 119
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [19] CWE ID 119
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [17] CWE ID 119
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [20] CWE ID 119
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[17] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3590.1 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3590.1 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3590.1 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3590.1 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3590.1 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3590.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3590.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002590 CAT I
desc.controlflow.cpp.double_free
Abstract
Bidirectional control characters in source code can lead to trojan source attacks.
Explanation
Source code that contains Unicode bidirectional override control characters can be a sign of an insider threat attack. Such an attack can be leveraged through the supply chain for programming languages such as C, C++, C#, Go, Java, JavaScript, Python, and Rust. Several variant attacks are already published by Nicholas Boucher and Ross Anderson, including the following: Early Returns, Commenting-Out, and Stretched Strings.
Example 1: The following code exhibits a control character, present in a C source code file, which leads to an Early Return attack:

#include <stdio.h>

int main() {
/* Nothing to see here; newline RLI /*/ return 0 ;
printf("Do we get here?\n");
return 0;
}

The Right-to-Left Isolate (RLI) Unicode bidirectional control character, in Example 1, causes the code to be viewed as the following:

#include <stdio.h>

int main() {
/* Nothing to see here; newline; return 0 /*/
printf("Do we get here?\n");
return 0;
}

Of particular note is that a developer who performs a code review, in a vulnerable editor/viewer, would not visibly see what a vulnerable compiler will process. Specifically, the early return statement that modifies the program flow.
References
[1] Nicholas Boucher, and R. Anderson Trojan Source: Invisible Vulnerabilities
[2] Standards Mapping - Common Weakness Enumeration CWE ID 451
[3] Standards Mapping - OWASP Top 10 2017 A1 Injection
[4] Standards Mapping - OWASP Top 10 2021 A03 Injection
[5] Standards Mapping - Smart Contract Weakness Classification SWC-130
desc.regex.universal.encoding_confusion_bidi_control_characters
Abstract
The application uses a library that is experimental.
Explanation
This library is considered experimental and should not be used in production environments unless you know what you are doing.
desc.semantic.scala.experimental_api
Abstract
The program uses an improperly constructed format string that contains a different number of conversion specifiers than the function has arguments. Incorrect format strings can lead the program to read data outside the bounds of allocated memory, which can allow access to sensitive information, introduce incorrect behavior, or crash the program.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

In this case, an improperly constructed format string causes the program to access values outside the bounds of allocated memory.

Example 1: The following reads arbitrary values from the stack because the number of format specifiers does not align with the number of arguments passed to the function.

void wrongNumberArgs(char *s, float f, int d) {
char buf[1024];
sprintf(buf, "Wrong number of %.512s");
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 126
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [5] CWE ID 125
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [4] CWE ID 125
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [3] CWE ID 125, [17] CWE ID 119
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [5] CWE ID 125, [19] CWE ID 119
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [7] CWE ID 125, [17] CWE ID 119
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [6] CWE ID 125, [12] CWE ID 020, [20] CWE ID 119
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[18] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[20] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002590 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Format String (WASC-06)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Format String Attack
desc.internal.cpp.format_string_argument_number_mismatch
Abstract
The program uses an improperly constructed format string that contains conversion specifiers that do not align with the types of the arguments passed to the function. Incorrect format strings can lead the program to convert values incorrectly and potentially read or write outside the bounds of allocated memory, which can introduce incorrect behavior or crash the program.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

In this case, an improperly constructed format string causes the program to improperly convert data values or to access values outside the bounds of allocated memory.

Example 1: The following code incorrectly converts f from a float using a %d format specifier.


void ArgTypeMismatch(float f, int d, char *s, wchar *ws) {
char buf[1024];
sprintf(buf, "Wrong type of %d", f);
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 125, CWE ID 787
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [5] CWE ID 125, [12] CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [4] CWE ID 125, [2] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787, [3] CWE ID 125, [17] CWE ID 119
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787, [5] CWE ID 125, [19] CWE ID 119
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787, [7] CWE ID 125, [17] CWE ID 119
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [2] CWE ID 787, [6] CWE ID 125, [12] CWE ID 020, [20] CWE ID 119
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 10.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 10.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 5-0-3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 7.0.5, Rule 7.0.6
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002590 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Format String (WASC-06)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Format String Attack
desc.internal.cpp.format_string_argument_type_mismatch
Abstract
An implicit internal Intent has been detected. Implicit internal intents might expose the system to man-in-the-middle style attacks on internal components.
Explanation
An internal Intent uses a custom action as defined by an internal component. Implicit intents can facilitate the calling of intents from any given external component without knowledge of the specific component. Combining the two allows for an application to access intents specified for a specific internal use from outside of the desired application context.

The ability to process an internal Intent from an external application can enable for a wide variety of man-in-the-middle exploits ranging in severity from information leakage and denial of service to remote code execution, depending on the capacity of the internal action specified by the Intent.

Example 1: The following code uses an implicit internal Intent.


...
val imp_internal_intent_action = Intent("INTERNAL_ACTION_HERE")
startActivity(imp_internal_intent_action)
...
References
[1] Remediation of Implicit Internal Intent Vulnerability
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[40] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.intent_manipulation_implicit_internal_intent
Abstract
An implicit PendingIntent has been detected. Implicit pending intents might result in security vulnerabilities such as denial of service, private and system information leakage, and privilege escalation.
Explanation
Android Intents are used to bind applications and application components together by providing instruction on actions that a given component performs. Pending intents are created to deliver the Intent at a later time. Implicit intents facilitate the calling of intents from any given external component, using a general name and filter to determine execution.

When an implicit Intent is created as a PendingIntent, this might allow for the Intent to be sent to an unintended component that runs outside of the intended temporal context, leaving the system vulnerable to exploit vectors such as denial of service, private and system information leakage, and privilege escalation.

Example 1: The following code uses an implicit PendingIntent.


...
val imp_intent = Intent()
val flag_mut = PendingIntent.FLAG_MUTABLE
val pi_flagmutable_impintintent = PendingIntent.getService(
this,
0,
imp_intent,
flag_mut
)
...
References
[1] Remediation for Implicit PendingIntent Vulnerability
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[40] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.intent_manipulation_implicit_pending_intent
Abstract
A PendingIntent has been detected that has its flag value set to FLAG_MUTABLE. Pending intents created with the flag value of FLAG_MUTABLE are susceptible to having unspecified Intent fields set downstream, which can modify the capacity of the Intent and leave the system open to vulnerability.
Explanation
Allowing modification of the underlying Intent of a PendingIntent after its creation can leave a system open to attack. This mostly depends on the overall capability of the underlying Intent. In most cases, it is best practice to prevent potential issues by setting the PendingIntent flag to FLAG_IMMUTABLE.

Example 1: The following includes a PendingIntent created with a flag value of FLAG_MUTABLE.


...
val intent_flag_mut = Intent(Intent.ACTION_GTALK_SERVICE_DISCONNECTED, Uri.EMPTY, this, DownloadService::class.java)
val flag_mut = PendingIntent.FLAG_MUTABLE

val pi_flagmutable = PendingIntent.getService(
this,
0,
intent_flag_mut,
flag_mut
)
...
References
[1] Remediation for Implicit PendingIntent Vulnerability
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[40] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.intent_manipulation_mutable_pending_intent
Abstract
Memory is allocated but never freed.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker may be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The following C function leaks a block of allocated memory if the call to read() fails to return the expected number of bytes:


char* getBlock(int fd) {
char* buf = (char*) malloc(BLOCK_SIZE);
if (!buf) {
return NULL;
}
if (read(fd, buf, BLOCK_SIZE) != BLOCK_SIZE) {
return NULL;
}
return buf;
}
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[45] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[46] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.memory_leak
Abstract
Memory is allocated but never freed.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker might be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The following Micro Focus COBOL program leaks a block of allocated memory if an error occurs:


CALL "CBL_ALLOC_MEM"
USING mem-pointer
BY VALUE mem-size
BY VALUE flags
RETURNING status-code
END-CALL

IF status-code NOT = 0
DISPLAY "Error!"
GOBACK
ELSE
SET ADDRESS OF mem TO mem-pointer
END-IF

PERFORM write-data
IF ws-status-code NOT = 0
DISPLAY "Error!"
GOBACK
ELSE
DISPLAY "Success!"
END-IF

CALL "CBL_FREE_MEM"
USING BY VALUE mem-pointer
RETURNING status-code
END-CALL

GOBACK
.
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[45] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[46] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cobol.memory_leak
Abstract
An object allocates memory for a member variable and fails to free it in its dealloc() method.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker may be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The Objective-C object allocates memory in the init() method but fails to free it in the deallocate() method, resulting in a memory leak:


- (void)init
{
myVar = [NSString alloc] init];
...
}

- (void)dealloc
{
[otherVar release];
}
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[45] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[46] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.objc.memory_leak
Abstract
The program resizes a block of allocated memory. If the resize fails, the original block will be leaked.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker may be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The following C function leaks a block of allocated memory if the call to realloc() fails to resize the original allocation.


char* getBlocks(int fd) {
int amt;
int request = BLOCK_SIZE;
char* buf = (char*) malloc(BLOCK_SIZE + 1);
if (!buf) {
goto ERR;
}
amt = read(fd, buf, request);
while ((amt % BLOCK_SIZE) != 0) {
if (amt < request) {
goto ERR;
}
request = request + BLOCK_SIZE;
buf = realloc(buf, request);
if (!buf) {
goto ERR;
}
amt = read(fd, buf, request);
}

return buf;

ERR:
if (buf) {
free(buf);
}
return NULL;
}
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[37] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.memory_leak_reallocation
Abstract
The program resizes a block of allocated memory. If the resize fails, the original block will be leaked.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker might be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The following Micro Focus COBOL program leaks a block of allocated memory if the call to realloc() fails to resize the original allocation.


CALL "malloc" USING
BY VALUE mem-size
RETURNING mem-pointer
END-CALL

ADD 1000 TO mem-size

CALL "realloc" USING
BY VALUE mem-pointer
BY VALUE mem-size
RETURNING mem-pointer
END-CALL

IF mem-pointer <> null
CALL "free" USING
BY VALUE mem-pointer
END-CALL
END-IF
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[37] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cobol.memory_leak_reallocation
Abstract
The program can potentially dereference a null-pointer, thereby raising a NullException.
Explanation
Null-pointer errors are usually the result of one or more programmer assumptions being violated.

Most null-pointer issues result in general software reliability problems, but if an attacker can intentionally trigger a null-pointer dereference, the attacker may be able to use the resulting exception to bypass security logic or to cause the application to reveal debugging information that will be valuable in planning subsequent attacks.

Example 1: In the following code, the programmer assumes that the system always has a property named "cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined, the program throws a null-pointer exception when it attempts to call the Trim() method.


string cmd = null;
...
cmd = Environment.GetEnvironmentVariable("cmd");
cmd = cmd.Trim();
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 476
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [14] CWE ID 476
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [13] CWE ID 476
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [15] CWE ID 476
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [11] CWE ID 476
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [12] CWE ID 476
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [21] CWE ID 476
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[15] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 11.1.7 Business Logic Security Requirements (L2 L3)
[17] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.dotnet.null_dereference
Abstract
The program can potentially dereference a null-pointer, thereby causing a segmentation fault.
Explanation
Null-pointer exceptions usually occur when one or more of the programmer's assumptions is violated. There are at least three flavors of this problem: check-after-dereference, dereference-after-check, and dereference-after-store. A check-after-dereference error occurs when a program dereferences a pointer that can be null before checking if the pointer is null. Dereference-after-check errors occur when a program makes an explicit check for null, but proceeds to dereference the pointer when it is known to be null. Errors of this type are often the result of a typo or programmer oversight. A dereference-after-store error occurs when a program explicitly sets a pointer to null and dereferences it later. This error is often the result of a programmer initializing a variable to null when it is declared.

Most null-pointer issues result in general software reliability problems, but if an attacker can intentionally trigger a null-pointer dereference, the attacker may be able to use the resulting exception to bypass security logic in order to mount a denial of service attack, or to cause the application to reveal debugging information that will be valuable in planning subsequent attacks.

Example 1: In the following code, the programmer assumes that the variable ptr is not NULL. That assumption is made explicit when the programmer dereferences the pointer. This assumption is later contradicted when the programmer checks ptr against NULL. If ptr can be NULL when it is checked in the if statement then it can also be NULL when it dereferenced and may cause a segmentation fault.


ptr->field = val;
...
if (ptr != NULL) {
...
}
Example 2: In the following code, the programmer confirms that the variable ptr is NULL and subsequently dereferences it erroneously. If ptr is NULL when it is checked in the if statement, then a null dereference will occur, thereby causing a segmentation fault.


if (ptr == null) {
ptr->field = val;
...
}
Example 3: In the following code, the programmer forgets that the string '\0' is actually 0 or NULL, thereby dereferencing a null-pointer and causing a segmentation fault.


if (ptr == '\0') {
*ptr = val;
...
}
Example 4: In the following code, the programmer explicitly sets the variable ptr to NULL. Later, the programmer dereferences ptr before checking the object for a null value.


*ptr = NULL;
...
ptr->field = val;
...
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 476
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [14] CWE ID 476
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [13] CWE ID 476
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [15] CWE ID 476
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [11] CWE ID 476
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [12] CWE ID 476
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [21] CWE ID 476
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[15] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 11.1.7 Business Logic Security Requirements (L2 L3)
[17] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.null_dereference
Abstract
The program can potentially dereference a null-pointer, thereby raising a NullPointerException.
Explanation
Null-pointer errors are usually the result of one or more programmer assumptions being violated.

Most null-pointer issues result in general software reliability problems, but if an attacker can intentionally trigger a null-pointer dereference, the attacker may be able to use the resulting exception to bypass security logic or to cause the application to reveal debugging information that will be valuable in planning subsequent attacks.

Example 1: In the following code, the programmer assumes that the system always has a property named "cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined, the program throws a null-pointer exception when it attempts to call the trim() method.


String val = null;
...
cmd = System.getProperty("cmd");
if (cmd)
val = util.translateCommand(cmd);
...
cmd = val.trim();
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 476
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [14] CWE ID 476
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [13] CWE ID 476
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [15] CWE ID 476
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [11] CWE ID 476
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [12] CWE ID 476
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [21] CWE ID 476
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[15] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 11.1.7 Business Logic Security Requirements (L2 L3)
[17] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.null_dereference
Abstract
The use of deprecated or obsolete functions could indicate neglected code.
Explanation
In general as programming languages evolve, methods occasionally become obsolete due to:

- Advances in the language
- Improved understanding of how operations should perform effectively and
securely
- Changes in the conventions that govern certain operations

Statements that are removed from a language are usually replaced by newer counterparts that perform the same task in somewhat different and hopefully better way.

In particular, SAP ABAP evolved to include ABAP Objects - the object oriented extension of ABAP and to operate in a Unicode compatible environment. As a result, stricter syntax is enforced in classes or in Unicode programs. Obsolete constructs are still available only for reasons of compatibility with older releases and they can only be used outside of classes or in non-Unicode programs. There are replacement constructions for all obsolete language elements, which improve the efficiency and readability of programs. Many implicit, ambiguous type/length/memory specifications in the obsolete syntax are required to be specified in a more precise and explicit way in the newer syntax. It is recommended to adopt the newer syntax to make programs easier to understand, more robust and easier to maintain.


Not all functions are deprecated or replaced because they pose a security risk. However, the presence of an obsolete function often indicates that the surrounding code has been neglected and may be in a state of disrepair. Software security has not been a priority, or even a consideration, for very long. If the program uses deprecated or obsolete functions, it raises the probability that there are security problems lurking nearby.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 477
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002617
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-2 Flaw Remediation (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-2 Flaw Remediation
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.6 Configuration Architectural Requirements (L2 L3)
[7] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002610 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002610 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002610 CAT II
[10] Standards Mapping - Smart Contract Weakness Classification SWC-111
desc.semantic.abap.obsolete
Abstract
The use of deprecated or obsolete functions could indicate neglected code.
Explanation
As programming languages evolve, functions occasionally become obsolete due to:

- Advances in the language
- Improved understanding of how operations should perform effectively and
securely
- Changes in the conventions that govern certain operations


Functions that are removed from a language are usually replaced by newer counterparts that perform the same task in some different and hopefully better way.
Example 1: The following code constructs a new SqlClientPermission object, which regulates how users are allowed to connect to a database. In this example, the program passes false as the second parameter to the constructor, which controls whether users are allowed to connect with blank passwords. Passing false to this parameter indicates that blank passwords should not be allowed.


...
SCP = new SqlClientPermission(pstate, false);
...


However, because the PermissionState object passed as the first parameter supersedes any value passed to the second parameter, the constructor allows blank passwords for database connections, which contradicts the second argument. To disallow blank passwords, the program should pass PermissionState.None to the first parameter of the constructor. Because of the ambiguity in its functionality, the two-parameter version of the SqlClientPermission constructor has been deprecated in favor of the single parameter version, which conveys the same degree of information without the risk of misinterpretation.

Not all functions are deprecated or replaced because they pose a security risk. However, the presence of an obsolete function often indicates that the surrounding code has been neglected and may be in a state of disrepair. Software security has not been a priority, or even a consideration, for very long. If the program uses deprecated or obsolete functions, it raises the probability that there are security problems lurking nearby.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 477
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002617
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-2 Flaw Remediation (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-2 Flaw Remediation
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.6 Configuration Architectural Requirements (L2 L3)
[7] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002610 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002610 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002610 CAT II
[10] Standards Mapping - Smart Contract Weakness Classification SWC-111
desc.semantic.dotnet.obsolete
Abstract
The use of deprecated or obsolete functions could indicate neglected code.
Explanation
As programming languages evolve, functions occasionally become obsolete due to:

- Advances in the language.
- Improved understanding of how operations should be performed effectively and securely.
- Changes in the conventions that govern certain operations.

Functions that are removed are usually replaced by newer counterparts that perform the same task in some different and hopefully improved way.
Example 1: The following code uses the deprecated function getpw() to verify that a plain text password matches a user's encrypted password. If the password is valid, the function sets result to 1; otherwise it is set to 0.


...
getpw(uid, pwdline);
for (i=0; i<3; i++){
cryptpw=strtok(pwdline, ":");
pwdline=0;
}
result = strcmp(crypt(plainpw,cryptpw), cryptpw) == 0;
...


Although the code often behaves correctly, using the getpw() function can be problematic from a security standpoint, because it can overflow the buffer passed to its second parameter. Because of this vulnerability, getpw() has been supplanted by getpwuid(), which performs the same lookup as getpw() but returns a pointer to a statically-allocated structure to mitigate the risk.

Not all functions are deprecated or replaced because they pose a security risk. However, the presence of an obsolete function often indicates that the surrounding code has been neglected and may be in a state of disrepair. Software security has not been a priority, or even a consideration, for very long. If the program uses deprecated or obsolete functions, it raises the probability that there are security problems lurking nearby.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 477
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002617
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-2 Flaw Remediation (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-2 Flaw Remediation
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.6 Configuration Architectural Requirements (L2 L3)
[7] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002610 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002610 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002610 CAT II
[10] Standards Mapping - Smart Contract Weakness Classification SWC-111
desc.semantic.cpp.obsolete
Abstract
The use of deprecated or obsolete functions could indicate neglected code or the use of an antiquated version of ColdFusion.
Explanation
As programming languages evolve, methods occasionally become obsolete due to:

- Advances in the language
- Improved understanding of how operations should perform effectively and
securely
- Changes in the conventions that govern certain operations

Methods that are removed from a language are usually replaced by newer counterparts that perform the same task in some different and hopefully better way.


Not all functions are deprecated or replaced because they pose a security risk. However, the presence of an obsolete function often indicates that the surrounding code has been neglected and may be in a state of disrepair. Software security has not been a priority, or even a consideration, for very long. If the program uses deprecated or obsolete functions, it raises the probability that there are security problems lurking nearby.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 477
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002617
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-2 Flaw Remediation (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-2 Flaw Remediation
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.6 Configuration Architectural Requirements (L2 L3)
[7] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002610 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002610 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002610 CAT II
[10] Standards Mapping - Smart Contract Weakness Classification SWC-111
desc.semantic.cfml.obsolete
Abstract
The use of deprecated or obsolete functions could indicate neglected code.
Explanation
As programming languages evolve, methods occasionally become obsolete due to:

- Advances in the language
- Improved understanding of how operations should perform effectively and
securely
- Changes in the conventions that govern certain operations

Methods that are removed from a language are usually replaced by newer counterparts that perform the same task in some different and hopefully better way.
Example 1: The following code constructs a string object from an array of bytes and a value that specifies the top 8 bits of each 16-bit Unicode character.


...
String name = new String(nameBytes, highByte);
...


In this example, the constructor may fail to correctly convert bytes to characters depending on which charset is used to encode the string represented by nameBytes. Due to the evolution of the charsets used to encode strings, this constructor was deprecated and replaced by a constructor that accepts as one of its parameters the name of the charset used to encode the bytes for conversion.

Not all functions are deprecated or replaced because they pose a security risk. However, the presence of an obsolete function often indicates that the surrounding code has been neglected and may be in a state of disrepair. Software security has not been a priority, or even a consideration, for very long. If the program uses deprecated or obsolete functions, it raises the probability that there are security problems lurking nearby.
References
[1] MET02-J. Do not use deprecated or obsolete classes or methods CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 477
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002617
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-2 Flaw Remediation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-2 Flaw Remediation
[7] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.6 Configuration Architectural Requirements (L2 L3)
[8] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002610 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002610 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002610 CAT II
[11] Standards Mapping - Smart Contract Weakness Classification SWC-111
desc.semantic.java.obsolete
Abstract
The use of deprecated or obsolete functions could indicate neglected code.
Explanation
As programming languages evolve, methods occasionally become obsolete due to:

- Advances in the language
- Improved understanding of how operations should perform effectively and
securely
- Changes in the conventions that govern certain operations.

Methods that are removed from a language are usually replaced by newer counterparts that perform the same task in some different and hopefully better way.
Example 1: The following code uses the Digest::HMAC stdlib, which use of is explicitly discouraged in the documentation due to accidental involvement within a release.


require 'digest/hmac'

hmac = Digest::HMAC.new("foo", Digest::RMD160)
...
hmac.update(buf)
...


In this example the Digest::HMAC class was deprecated immediately upon involvement due to accidental inclusion within a release. Due to possibility of this not working as expected because of experimental and not properly tested code, use of this is highly discouraged, especially considering the relation HMACs have in relation to cryptographic functionality.

Not all functions are deprecated or replaced because they pose a security risk. However, the presence of an obsolete function often indicates that the surrounding code has been neglected and may be in a state of disrepair. Software security has not been a priority, or even a consideration, for very long. If the program uses deprecated or obsolete functions, it raises the probability that there are security problems lurking nearby.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 477
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002617
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-2 Flaw Remediation (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-2 Flaw Remediation
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.6 Configuration Architectural Requirements (L2 L3)
[7] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002610 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002610 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002610 CAT II
[10] Standards Mapping - Smart Contract Weakness Classification SWC-111
desc.structural.ruby.obsolete
Abstract
A deprecated function is used.
Explanation
Due to the fast-paced nature of smart contracts, functions and operators may become deprecated with newer compiler versions and using them may lead to low quality code, unintended side effects and/or compilation errors.

Example 1: The following code obtains the hash of the current block using block.blockhash(), which has been deprecated since version 0.5.0 of the Solidity compiler.


bytes32 blockhash = block.blockhash(0);
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 477
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002617
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-2 Flaw Remediation (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-2 Flaw Remediation
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.6 Configuration Architectural Requirements (L2 L3)
[7] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002610 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002610 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002610 CAT II
[10] Standards Mapping - Smart Contract Weakness Classification SWC-111
desc.structural.solidity.swc111
Abstract
The function is obsolete and cannot guarantee that a pointer is valid or referenced memory is safe to use.
Explanation
There are a number of reasons not to use the IsBadXXXPtr() class of functions. These functions are:
1) Not thread safe.
2) Often implicated in crashes caused by their probing of invalid memory addresses.
3) Erroneously believed to carry out proper error handling during exception conditions.

Example 1: The following code uses IsBadWritePtr() in an attempt to prevent bad memory writes.

if (IsBadWritePtr(ptr, length))
{
[handle error]
}


Programmers often use these functions intending that they will detect exception cases, but the functions usually cause more problems than they fix.
References
[1] Raymond Chen IsBadXxxPtr should really be called CrashProgramRandomly
[2] IsBadWritePtr Function Microsoft
[3] Standards Mapping - Common Weakness Enumeration CWE ID 730
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[8] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[10] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[33] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.semantic.cpp.obsolete_inadequate_pointer_validation
Abstract
The class contains a field and a method with the same name.
Explanation
It is confusing to have a member field and a method with the same name. It makes it easy for a programmer to accidentally call the method when attempting to access the field or vice versa.

Example 1:

public class Totaller {
private int total;
public int total() {
...
}
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 398, CWE ID 710
[2] Standards Mapping - Smart Contract Weakness Classification SWC-119
desc.structural.java.poor_style_confusing_naming.member_and_method
Abstract
The contract uses a shadowed variable which is ambiguous and prone to misuse.
Explanation
Solidity allows developers to ambiguously declare state variables. This means that even though two different variables in two different contexts can be declared with the same name, using them can lead to confusion and misuse.

This can happen both at the function level and at the inheritance level. For example, if Contract1 declares var1 and inherits from Contract2, which also declares a variable named var1, then the variable is ambiguous and can easily be confused with each other later in the smart contract execution.

Example 1: The following code uses inheritance and declares a state variable with the same name in both smart contracts. It can be hard to determine which is the actual hardcap of the token sale.


contract Tokensale {
uint hardcap = 10000 ether;

function Tokensale() { }

function fetchCap() public constant returns(uint) {
return hardcap;
}
}

contract Presale is Tokensale {
uint hardcap = 1000 ether;

function Presale() Tokensale() { }
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 398, CWE ID 710
[2] Standards Mapping - Smart Contract Weakness Classification SWC-119
desc.structural.solidity.swc119
Abstract
This synchronized block contains no statements; it is unlikely the synchronization achieves the intended effect.
Explanation
Synchronization in Java can be tricky. An empty synchronized block is often a sign that a programmer is wrestling with synchronization but has not yet achieved the result they intend.

Example 1:

synchronized(this) { }
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 585
desc.structural.java.poor_style_empty_synchronized_block
Abstract
Using a dollar sign ($) as part of an identifier is not recommended.
Explanation
Section 3.8 of the Java Language Specification reserves the dollar sign ($) for identifiers that are used only in mechanically generated source code.

Example 1:

int un$afe;
References
[1] J. Gosling, B. Joy, G. Steele, G. Bracha The Java Language Specification, Second Edition Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 398
desc.structural.java.poor_style_identifier_contains_dollar_symbol
Abstract
The variable's value is assigned but never used, making it a dead store.
Explanation
This variable's initial value is not used. After initialization, the variable is either assigned another value or goes out of scope.

Example 1: The following code excerpt assigns to the variable r and then overwrites the value without using it.


int r = getNum();
r = getNewNum(buf);
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 398
[2] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3050 CAT II
[3] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3050 CAT II
[4] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3050 CAT II
[5] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3050 CAT II
[6] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3050 CAT II
[7] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3050 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3050 CAT II
desc.structural.cpp.poor_style_redundant_initialization
Abstract
The variable's value is assigned but never used, making it a dead store.
Explanation
This variable's initial value is not used. After initialization, the variable is either assigned another value or goes out of scope.

Example 1: The following code excerpt assigns to the variable r and then overwrites the value without using it.


int r = getNum();
r = getNewNum(buf);
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 398
[2] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3050 CAT II
[3] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3050 CAT II
[4] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3050 CAT II
[5] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3050 CAT II
[6] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3050 CAT II
[7] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3050 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3050 CAT II
desc.structural.java.poor_style_redundant_initialization