Kingdom: Input Validation and Representation

Input validation and representation problems ares caused by metacharacters, alternate encodings and numeric representations. Security problems result from trusting input. The issues include: "Buffer Overflows," "Cross-Site Scripting" attacks, "SQL Injection," and many others.

191 items found
Weaknesses
Abstract
The method call changes an access specifier.
Explanation
The AccessibleObject API allows the programmer to get around the access control checks provided by Java access specifiers. In particular it enables the programmer to allow a reflected object to bypass Java access controls and in turn change the value of private fields or invoke private methods, behaviors that are normally disallowed.
desc.dataflow.java.access_specifier_manipulation
Abstract
The method call changes or works around an access specifier.
Explanation
The send function and its variants allow programmers to work around Ruby access specifiers on functions. In particular it enables the programmer to access private and protected fields and functions, behaviors that are normally disallowed.
desc.structural.ruby.access_specifier_manipulation
Abstract
An Oracle ADF Faces bookmarkable view is missing a URL parameter converter.
Explanation
In a regular JSF application, values are converted and validated using converters and validators specified by the UI components. The conversion and validation itself happens when the page is submitted. A bookmarkable view in a Fusion application results in no page submission, and therefore no similar conversion or validation is performed by default.

Example 1: The following configuration file snippet shows a sample bookmarkable view that is configured to perform no conversion or validation of the paramName URL parameter.


...
<bookmark>
<method>#{paramHandler.handleParams}</method>
<url-parameter>
<name>paramName</name>
<value>#{requestScope.paramName}</value>
</url-parameter>
</bookmark>
...
References
[1] Oracle(R) Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework, 15.2.3.Bookmarking View Activities
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.5
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[6] Standards Mapping - CIS Kubernetes Benchmark complete
[7] Standards Mapping - Common Weakness Enumeration CWE ID 20
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[16] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[22] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 2.2.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.config.java.adf_bad_practices_missing_url_parameter_converter
Abstract
Loading classes from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Android Class Loading Hijacking vulnerabilities take two forms:

- An attacker can change the name of the directories that the program searches to load classes, thereby pointing the path to one that they have control over: the attacker explicitly controls the paths which should be searched for classes.

- An attacker can change the environment in which the class loads: the attacker implicitly controls what the path name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the directories searched for classes to load. Android Class Loading Hijacking vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library directory to search for classes to load.



3. By executing code from the library path, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code uses the user changeable userClassPath to determine the directory in which to search for classes to load.


...
productCategory = this.getIntent().getExtras().getString("userClassPath");
DexClassLoader dexClassLoader = new DexClassLoader(productCategory, optimizedDexOutputPath.getAbsolutePath(), null, getClassLoader());
...


This code allows an attacker to load a library and potentially execute arbitrary code with the elevated privilege of the app by being able to modify the result of userClassPath to point to a different path, which they control. Because the program does not validate the value read from the environment, if an attacker can control the value of userClassPath, then they can fool the application into pointing to a directory that they control and therefore load the classes that they have defined, using the same privileges as the original app.

Example 2: The following code uses the user changeable userOutput to determine the directory the optimized DEX files should be written.


...
productCategory = this.getIntent().getExtras().getString("userOutput");
DexClassLoader dexClassLoader = new DexClassLoader(sanitizedPath, productCategory, null, getClassLoader());
...



This code allows an attacker to specify the output directory for Optimized DEX files (ODEX). This then allows a malicious user to change the value of userOutput to a directory that they control, such as external storage. Once this is achieved, it is simply a matter of replacing the outputted ODEX file with a malicious ODEX file to have this executed with the same privileges as the original application.
References
[1] Android Class Loading Hijacking Symantec
desc.dataflow.java.android_class_loading_hijacking
Abstract
ASP.NET Web API action methods which receive a model should check if validation of the model passes, in order to prevent vulnerabilities that result from unchecked input.
Explanation
Unvalidated input is one of the leading causes of vulnerabilities in ASP.NET Web API services. Unchecked input can lead to numerous vulnerabilities, including cross-site scripting, process control, access control, and SQL injection. Although ASP.NET Web API services are generally not susceptible to memory corruption attacks, if an ASP.NET Web API service calls into native code which does not perform array bounds checking, an attacker may be able to use an input validation weakness in the ASP.NET Web API service to launch a buffer overflow attack.

To prevent such attacks:
1. use validation attributes to programmatically annotate validation checks on parameters or members of model-binding object parameters to ASP.NET Web API service actions.
2. use ModelState.IsValid to check if model validation passes.
References
[1] Jon Galloway, Phil Haack, Brad Wilson, K. Scott Allen Professional ASP.NET MVC 4 Wrox Press
[2] Model Validation Microsoft ASP.NET Site
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 20
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.structural.dotnet.asp_dotnet_bad_practices_unvalidated_web_api_model
Abstract
An attacker may set arbitrary bean properties that can compromise system integrity.
Explanation
Bean property names and values need to be validated before populating any bean. Bean population functions let developers to set a bean property or a nested property. Attackers can leverage this functionality to access special bean properties such as class.classLoader that enable them to override system properties and potentially execute arbitrary code.

Example: The following code sets a user-controlled bean property without proper validation of the property name or value:


String prop = request.getParameter('prop');
String value = request.getParameter('value');
HashMap properties = new HashMap();
properties.put(prop, value);
BeanUtils.populate(user, properties);
desc.dataflow.java.bean_manipulation
Abstract
Writing outside the bounds of a block of allocated memory can corrupt data, crash the program, or cause the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily overwrite the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

Buffer overflow vulnerabilities typically occur in code that:

- Relies on external data to control its behavior.

- Depends upon properties of the data that are enforced outside of the immediate scope of the code.

- Is so complex that a programmer cannot accurately predict its behavior.



The following examples demonstrate all three of the scenarios.

Example 1.a: The following sample code demonstrates a simple buffer overflow that is often caused by the first scenario in which the code relies on external data to control its behavior. The code uses the gets() function to read an arbitrary amount of data into a stack buffer. Because there is no way to limit the amount of data read by this function, the safety of the code depends on the user to always enter fewer than BUFSIZE characters.


...
char buf[BUFSIZE];
gets(buf);
...
Example 1.b: This example shows how easy it is to mimic the unsafe behavior of the gets() function in C++ by using the >> operator to read input into a char[] string.


...
char buf[BUFSIZE];
cin >> (buf);
...
Example 2: The code in this example also relies on user input to control its behavior, but it adds a level of indirection with the use of the bounded memory copy function memcpy(). This function accepts a destination buffer, a source buffer, and the number of bytes to copy. The input buffer is filled by a bounded call to read(), but the user specifies the number of bytes that memcpy() copies.


...
char buf[64], in[MAX_SIZE];
printf("Enter buffer contents:\n");
read(0, in, MAX_SIZE-1);
printf("Bytes to copy:\n");
scanf("%d", &bytes);
memcpy(buf, in, bytes);
...


Note: This type of buffer overflow vulnerability (where a program reads data and then trusts a value from the data in subsequent memory operations on the remaining data) has turned up with some frequency in image, audio, and other file processing libraries.

Example 3: This is an example of the second scenario in which the code depends on properties of the data that are not verified locally. In this example a function named lccopy() takes a string as its argument and returns a heap-allocated copy of the string with all uppercase letters converted to lowercase. The function performs no bounds checking on its input because it expects str to always be smaller than BUFSIZE. If an attacker bypasses checks in the code that calls lccopy(), or if a change in that code makes the assumption about the size of str untrue, then lccopy() will overflow buf with the unbounded call to strcpy().


char *lccopy(const char *str) {
char buf[BUFSIZE];
char *p;

strcpy(buf, str);
for (p = buf; *p; p++) {
if (isupper(*p)) {
*p = tolower(*p);
}
}
return strdup(buf);
}
Example 4: The following code demonstrates the third scenario in which the code is so complex its behavior cannot be easily predicted. This code is from the popular libPNG image decoder, which is used by a wide array of applications.

The code appears to safely perform bounds checking because it checks the size of the variable length, which it later uses to control the amount of data copied by png_crc_read(). However, immediately before it tests length, the code performs a check on png_ptr->mode, and if this check fails a warning is issued and processing continues. Since length is tested in an else if block, length would not be tested if the first check fails, and is used blindly in the call to png_crc_read(), potentially allowing a stack buffer overflow.

Although the code in this example is not the most complex we have seen, it demonstrates why complexity should be minimized in code that performs memory operations.


if (!(png_ptr->mode & PNG_HAVE_PLTE)) {
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Missing PLTE before tRNS");
}
else if (length > (png_uint_32)png_ptr->num_palette) {
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
...
png_crc_read(png_ptr, readbuf, (png_size_t)length);
Example 5: This example also demonstrates the third scenario in which the program's complexity exposes it to buffer overflows. In this case, the exposure is due to the ambiguous interface of one of the functions rather than the structure of the code (as was the case in the previous example).

The getUserInfo() function takes a username specified as a multibyte string and a pointer to a structure for user information, and populates the structure with information about the user. Since Windows authentication uses Unicode for usernames, the username argument is first converted from a multibyte string to a Unicode string. This function then incorrectly passes the size of unicodeUser in bytes rather than characters. The call to MultiByteToWideChar() may therefore write up to (UNLEN+1)*sizeof(WCHAR) wide characters, or
(UNLEN+1)*sizeof(WCHAR)*sizeof(WCHAR) bytes, to the unicodeUser array, which has only (UNLEN+1)*sizeof(WCHAR) bytes allocated. If the username string contains more than UNLEN characters, the call to MultiByteToWideChar() will overflow the buffer unicodeUser.


void getUserInfo(char *username, struct _USER_INFO_2 info){
WCHAR unicodeUser[UNLEN+1];
MultiByteToWideChar(CP_ACP, 0, username, -1,
unicodeUser, sizeof(unicodeUser));
NetUserGetInfo(NULL, unicodeUser, 2, (LPBYTE *)&info);
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] About Strsafe.h Microsoft
desc.dataflow.cpp.buffer_overflow
Abstract
The program uses an improperly bounded format string, allowing it to write outside the bounds of allocated memory. This behavior could corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

In this case, an improperly constructed format string causes the program to write beyond the bounds of allocated memory.

Example: The following code overflows c because the double type requires more space than is allocated for c.


void formatString(double d) {
char c;

scanf("%d", &c)
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[8] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[10] Standards Mapping - CIS Kubernetes Benchmark complete
[11] Standards Mapping - Common Weakness Enumeration CWE ID 134, CWE ID 787
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [12] CWE ID 787
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [2] CWE ID 787
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787
[15] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787
[16] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[18] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[23] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[24] Standards Mapping - OWASP Top 10 2013 A1 Injection
[25] Standards Mapping - OWASP Top 10 2017 A1 Injection
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[28] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 134
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_format_string