299 items found
Weaknesses
Abstract
The application enables the deprecated and unsafe BinaryFormatter class.
Explanation
In .NET, you can use the BinaryFormatter class to turn an object into a binary stream that contains both the object itself and the necessary metadata to reconstruct it during deserialization.

Use of the BinaryFormatter class can lead to insecure deserialization scenarios where attackers can execute arbitrary code, abuse application logic, or trigger a denial of service condition.

Use of the BinaryFormatter type is dangerous and is not recommended for data processing, as it cannot be made secure.

Example 1: The application enables the usage of the unsafe BinaryFormatter class by setting the config property EnableUnsafeBinaryFormatterSerialization to true in the runtimeConfig.json file.

...
AppContext.SetSwitch("System.Runtime.Serialization.EnableUnsafeBinaryFormatterSerialization", true);
...
References
[1] Microsoft BinaryFormatter serialization methods are obsolete and prohibited in ASP.NET apps
[2] Microsoft Deserialization risks in use of BinaryFormatter and related types
[3] Standards Mapping - Common Weakness Enumeration CWE ID 470, CWE ID 494
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[20] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[22] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation, Control Objective C.3.5 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.semantic.dotnet.dotnet_bad_practices_binaryformatter_enabled
Abstract
The application enables the deprecated and unsafe BinaryFormatter class.
Explanation
In .NET, you can use the BinaryFormatter class to turn an object into a binary stream that contains both the object itself and the necessary metadata to reconstruct it during deserialization.

Use of the BinaryFormatter class can lead to insecure deserialization scenarios where attackers can execute arbitrary code, abuse application logic, or trigger a denial of service condition.

Use of the BinaryFormatter class is dangerous and is not recommended for data processing, as it cannot be made secure.

Example 1: The application enables the usage of the unsafe BinaryFormatter class by setting the config property EnableUnsafeBinaryFormatterSerialization to true in the runtimeConfig.json file.

{
"configProperties": {
"System.Runtime.Serialization.EnableUnsafeBinaryFormatterSerialization": true
}
}
References
[1] Microsoft BinaryFormatter serialization methods are obsolete and prohibited in ASP.NET apps
[2] Microsoft Deserialization risks in use of BinaryFormatter and related types
[3] Standards Mapping - Common Weakness Enumeration CWE ID 470, CWE ID 494
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[20] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[22] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation, Control Objective C.3.5 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.structural.json.dotnet_bad_practices_binaryformatter_enabled
Abstract
The method call changes an access specifier.
Explanation
The AccessibleObject API allows the programmer to get around the access control checks provided by Java access specifiers. In particular it enables the programmer to allow a reflected object to bypass Java access controls and in turn change the value of private fields or invoke private methods, behaviors that are normally disallowed.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 284
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-001310, CCI-002165
[3] Standards Mapping - FIPS200 AC
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), CM-5 Access Restrictions for Change (P1), SC-3 Security Function Isolation (P1), SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, CM-5 Access Restrictions for Change, SC-3 Security Function Isolation, SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.4.2 Access Control Architectural Requirements (L2 L3), 1.4.4 Access Control Architectural Requirements (L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[10] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1, MASVS-CODE-4
[12] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[13] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[14] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[15] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[16] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[30] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 676
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II, APSC-DV-002530 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II, APSC-DV-002530 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II, APSC-DV-002530 CAT II
[54] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.java.access_specifier_manipulation
Abstract
The method call changes or works around an access specifier.
Explanation
The send function and its variants allow programmers to work around Ruby access specifiers on functions. In particular it enables the programmer to access private and protected fields and functions, behaviors that are normally disallowed.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 284
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-001310, CCI-002165
[3] Standards Mapping - FIPS200 AC
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), CM-5 Access Restrictions for Change (P1), SC-3 Security Function Isolation (P1), SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, CM-5 Access Restrictions for Change, SC-3 Security Function Isolation, SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.4.2 Access Control Architectural Requirements (L2 L3), 1.4.4 Access Control Architectural Requirements (L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[10] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1, MASVS-CODE-4
[12] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[13] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[14] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[15] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[16] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[30] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 676
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II, APSC-DV-002530 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II, APSC-DV-002530 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II, APSC-DV-002530 CAT II
[54] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.ruby.access_specifier_manipulation
Abstract
An Oracle ADF Faces bookmarkable view is missing a URL parameter converter.
Explanation
In a regular JSF application, values are converted and validated using converters and validators specified by the UI components. The conversion and validation itself happens when the page is submitted. A bookmarkable view in a Fusion application results in no page submission, and therefore no similar conversion or validation is performed by default.

Example 1: The following configuration file snippet shows a sample bookmarkable view that is configured to perform no conversion or validation of the paramName URL parameter.


...
<bookmark>
<method>#{paramHandler.handleParams}</method>
<url-parameter>
<name>paramName</name>
<value>#{requestScope.paramName}</value>
</url-parameter>
</bookmark>
...
References
[1] Oracle(R) Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework, 15.2.3.Bookmarking View Activities
[2] Standards Mapping - Common Weakness Enumeration CWE ID 20
[3] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[8] Standards Mapping - FIPS200 CM
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[14] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[15] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[16] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 2.2.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 2.2.6
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[26] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.config.java.adf_bad_practices_missing_url_parameter_converter
Abstract
The application invokes internal or hidden APIs.
Explanation
It is not recommended that developers build their apps using undocumented, or hidden, APIs. There are no guarantees that Google will not remove or change those APIs in the future and therefore they should be avoided therefore using such methods or fields has a high risk of breaking your app.
References
[1] Google Restrictions on non-SDK interfaces
[2] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
desc.structural.cpp.android_bad_practices_use_of_internal_apis
Abstract
The application invokes internal or hidden APIs.
Explanation
It is not recommended that developers build their apps using undocumented, or hidden, APIs. There are no guarantees that Google will not remove or change those APIs in the future and therefore they should be avoided therefore using such methods or fields has a high risk of breaking your app.
References
[1] Google Restrictions on non-SDK interfaces
[2] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
desc.structural.java.android_bad_practices_use_of_internal_apis
Abstract
The code references the Camera object after it has already been released.
Explanation
The code attempts to use the Camera object after the it has already been released. Any further references to the Camera object without reacquiring the resource will throw an exception, and can cause the application to crash if the exception is not caught.

Example 1: The following code uses a toggle button to toggle the camera preview on and off. After the user taps the button once, the camera preview stops and the camera resource is released. However, if she taps the button again, startPreview() is called on the previously-released Camera object.


public class ReuseCameraActivity extends Activity {
private Camera cam;

...
private class CameraButtonListener implements OnClickListener {
public void onClick(View v) {
if (toggle) {
cam.stopPreview();
cam.release();
}
else {
cam.startPreview();
}
toggle = !toggle;
}
}
...
}
References
[1] Camera, Android Developers
[2] Standards Mapping - Common Weakness Enumeration CWE ID 416
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [7] CWE ID 416
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [8] CWE ID 416
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [7] CWE ID 416
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [7] CWE ID 416
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [4] CWE ID 416
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [8] CWE ID 416, [12] CWE ID 020, [20] CWE ID 119
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[14] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[48] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.android_bad_practices_use_of_released_camera_resource
Abstract
The code references the Android media object after it has already been released.
Explanation
The code attempts to use the media object after the it has already been released. Any further references to that media object without reacquiring the resource will throw an exception, and can cause the application to crash if the exception is not caught.

Example 1: The following code uses a pause button to toggle the media playback. After the user taps the button once, the current song or video is paused and the camera resource is released. However, if she taps the button again, start() is called on the previously-released media resource.


public class ReuseMediaPlayerActivity extends Activity {
private MediaPlayer mp;

...
private class PauseButtonListener implements OnClickListener {
public void onClick(View v) {
if (paused) {
mp.pause();
mp.release();
}
else {
mp.start();
}
paused = !paused;
}
}
...
}
References
[1] Media Player, Android Developers
[2] Audio Capture, Android Developers
[3] Standards Mapping - Common Weakness Enumeration CWE ID 416
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [7] CWE ID 416
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [8] CWE ID 416
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [7] CWE ID 416
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [7] CWE ID 416
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [4] CWE ID 416
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [8] CWE ID 416, [12] CWE ID 020, [20] CWE ID 119
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[15] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[49] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[50] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.android_bad_practices_use_of_released_media_resource
Abstract
The code references the Android database handler after it has already been released.
Explanation
The code attempts to use the Android SQLite database handler after the it has already been closed. Any further references to the handler without re-establishing the database connection will throw an exception, and can cause the application to crash if the exception is not caught.

Example 1: The following code might be from a program that caches user values temporarily in memory, but can call flushUpdates() to commit the changes to disk. The method properly closes the database handler after writing updates to the database. However, when flushUpdates() is called again, the database object is referenced again before reinitializing it.


public class ReuseDBActivity extends Activity {
private myDBHelper dbHelper;
private SQLiteDatabase db;

@Override
public void onCreate(Bundle state) {
...
db = dbHelper.getWritableDatabase();
...
}
...

private void flushUpdates() {
db.insert(cached_data); // flush cached data
dbHelper.close();
}
...
}
References
[1] Data Storage, Android Developers
[2] Standards Mapping - Common Weakness Enumeration CWE ID 416
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [7] CWE ID 416
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [8] CWE ID 416
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [7] CWE ID 416
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [7] CWE ID 416
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [4] CWE ID 416
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [8] CWE ID 416, [12] CWE ID 020, [20] CWE ID 119
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[14] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[48] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.android_bad_practices_use_of_released_sqlite_resource
Abstract
Loading classes from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Android Class Loading Hijacking vulnerabilities take two forms:

- An attacker can change the name of the directories that the program searches to load classes, thereby pointing the path to one that they have control over: the attacker explicitly controls the paths which should be searched for classes.

- An attacker can change the environment in which the class loads: the attacker implicitly controls what the path name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the directories searched for classes to load. Android Class Loading Hijacking vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library directory to search for classes to load.



3. By executing code from the library path, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code uses the user changeable userClassPath to determine the directory in which to search for classes to load.


...
productCategory = this.getIntent().getExtras().getString("userClassPath");
DexClassLoader dexClassLoader = new DexClassLoader(productCategory, optimizedDexOutputPath.getAbsolutePath(), null, getClassLoader());
...


This code allows an attacker to load a library and potentially execute arbitrary code with the elevated privilege of the app by being able to modify the result of userClassPath to point to a different path, which they control. Because the program does not validate the value read from the environment, if an attacker can control the value of userClassPath, then they can fool the application into pointing to a directory that they control and therefore load the classes that they have defined, using the same privileges as the original app.

Example 2: The following code uses the user changeable userOutput to determine the directory the optimized DEX files should be written.


...
productCategory = this.getIntent().getExtras().getString("userOutput");
DexClassLoader dexClassLoader = new DexClassLoader(sanitizedPath, productCategory, null, getClassLoader());
...



This code allows an attacker to specify the output directory for Optimized DEX files (ODEX). This then allows a malicious user to change the value of userOutput to a directory that they control, such as external storage. Once this is achieved, it is simply a matter of replacing the outputted ODEX file with a malicious ODEX file to have this executed with the same privileges as the original application.
References
[1] Android Class Loading Hijacking Symantec
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[20] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[22] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
desc.dataflow.java.android_class_loading_hijacking
Abstract
Zip Entry Overwrite Protection is disabled. Zip Entry Overwrite Protection protects against Zip Path Traversal Vulnerabilities by providing validation of zip file entry names.
Explanation
Zip Path Traversal Vulnerabilities occur when a malicious actor can specify Zip file entry names in a given Zip file. When a Zip file entry name is specified maliciously, an attacker can overwrite the contents of key system files when the corresponding Zip file is expanded. Attackers might use such path traversal idioms such as ../ and / to access system files otherwise out of program scope. Android applications that target Android 14 and later can by default throw an exception when idioms such as ../ and / are detected during Zip file extraction. This security feature can be overridden or disabled entirely.

Example 1: The following code disables Zip Entry Overwrite Protection.


...
dalvik.system.ZipPathValidator.clearCallback();
...
References
[1] Zip Path Traversal
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[20] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[21] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[22] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[23] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[37] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[38] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.semantic.java.android_misconfiguration_zip_entry_overwrite_protection_disabled
Abstract
Unminified JavaScript has been included in this file. Microsoft recommends that minified versions of JavaScript libraries should be included for performance reasons.
Explanation
Minification improves page load times for applications that include JavaScript files by reducing the file size. Minification refers to the process of removing unnecessary whitespace, comments, semicolons, braces, shortening the names of local variables and removing unreachable code.

Example 1: The following ASPX code includes the unminified version of Microsoft's jQuery library:


...
<script src="http://applicationserver.application.com/lib/jquery/jquery-1.4.2.js" type="text/javascript"></script>
...
References
[1] Optimizations for Improving Load Times Microsoft
[2] Introduction to CSS Minification Microsoft
[3] Microsoft AJAX Minifier Microsoft
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[6] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[7] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[8] Standards Mapping - OWASP Top 10 2007 A3 Malicious File Execution
[9] Standards Mapping - OWASP Top 10 2010 A1 Injection
[10] Standards Mapping - OWASP Top 10 2013 A1 Injection
[11] Standards Mapping - OWASP Top 10 2017 A1 Injection
[12] Standards Mapping - OWASP Top 10 2021 A03 Injection
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[14] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 098
[15] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
desc.semantic.dotnet.asp_net_bad_practices_unminified_code
Abstract
ASP.NET Web API action methods which receive a model should check if validation of the model passes, in order to prevent vulnerabilities that result from unchecked input.
Explanation
Unvalidated input is one of the leading causes of vulnerabilities in ASP.NET Web API services. Unchecked input can lead to numerous vulnerabilities, including cross-site scripting, process control, access control, and SQL injection. Although ASP.NET Web API services are generally not susceptible to memory corruption attacks, if an ASP.NET Web API service calls into native code which does not perform array bounds checking, an attacker may be able to use an input validation weakness in the ASP.NET Web API service to launch a buffer overflow attack.

To prevent such attacks:
1. use validation attributes to programmatically annotate validation checks on parameters or members of model-binding object parameters to ASP.NET Web API service actions.
2. use ModelState.IsValid to check if model validation passes.
References
[1] Jon Galloway, Phil Haack, Brad Wilson, K. Scott Allen Professional ASP.NET MVC 4 Wrox Press
[2] Model Validation Microsoft ASP.NET Site
[3] Standards Mapping - Common Weakness Enumeration CWE ID 20
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.structural.dotnet.asp_dotnet_bad_practices_unvalidated_web_api_model
Abstract
An attacker may set arbitrary bean properties that can compromise system integrity.
Explanation
Bean property names and values need to be validated before populating any bean. Bean population functions let developers to set a bean property or a nested property. Attackers can leverage this functionality to access special bean properties such as class.classLoader that enable them to override system properties and potentially execute arbitrary code.

Example 1: The following code sets a user-controlled bean property without proper validation of the property name or value:


String prop = request.getParameter('prop');
String value = request.getParameter('value');
HashMap properties = new HashMap();
properties.put(prop, value);
BeanUtils.populate(user, properties);
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[11] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[46] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.bean_manipulation
Abstract
Writing outside the bounds of a block of allocated memory can corrupt data, crash the program, or cause the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily overwrite the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

Buffer overflow vulnerabilities typically occur in code that:

- Relies on external data to control its behavior.

- Depends upon properties of the data that are enforced outside of the immediate scope of the code.

- Is so complex that a programmer cannot accurately predict its behavior.



The following examples demonstrate all three of the scenarios.

Example 1.a: The following sample code demonstrates a simple buffer overflow that is often caused by the first scenario in which the code relies on external data to control its behavior. The code uses the gets() function to read an arbitrary amount of data into a stack buffer. Because there is no way to limit the amount of data read by this function, the safety of the code depends on the user to always enter fewer than BUFSIZE characters.


...
char buf[BUFSIZE];
gets(buf);
...
Example 1.b: This example shows how easy it is to mimic the unsafe behavior of the gets() function in C++ by using the >> operator to read input into a char[] string.


...
char buf[BUFSIZE];
cin >> (buf);
...
Example 2: The code in this example also relies on user input to control its behavior, but it adds a level of indirection with the use of the bounded memory copy function memcpy(). This function accepts a destination buffer, a source buffer, and the number of bytes to copy. The input buffer is filled by a bounded call to read(), but the user specifies the number of bytes that memcpy() copies.


...
char buf[64], in[MAX_SIZE];
printf("Enter buffer contents:\n");
read(0, in, MAX_SIZE-1);
printf("Bytes to copy:\n");
scanf("%d", &bytes);
memcpy(buf, in, bytes);
...


Note: This type of buffer overflow vulnerability (where a program reads data and then trusts a value from the data in subsequent memory operations on the remaining data) has turned up with some frequency in image, audio, and other file processing libraries.

Example 3: This is an example of the second scenario in which the code depends on properties of the data that are not verified locally. In this example a function named lccopy() takes a string as its argument and returns a heap-allocated copy of the string with all uppercase letters converted to lowercase. The function performs no bounds checking on its input because it expects str to always be smaller than BUFSIZE. If an attacker bypasses checks in the code that calls lccopy(), or if a change in that code makes the assumption about the size of str untrue, then lccopy() will overflow buf with the unbounded call to strcpy().


char *lccopy(const char *str) {
char buf[BUFSIZE];
char *p;

strcpy(buf, str);
for (p = buf; *p; p++) {
if (isupper(*p)) {
*p = tolower(*p);
}
}
return strdup(buf);
}
Example 4: The following code demonstrates the third scenario in which the code is so complex its behavior cannot be easily predicted. This code is from the popular libPNG image decoder, which is used by a wide array of applications.

The code appears to safely perform bounds checking because it checks the size of the variable length, which it later uses to control the amount of data copied by png_crc_read(). However, immediately before it tests length, the code performs a check on png_ptr->mode, and if this check fails a warning is issued and processing continues. Since length is tested in an else if block, length would not be tested if the first check fails, and is used blindly in the call to png_crc_read(), potentially allowing a stack buffer overflow.

Although the code in this example is not the most complex we have seen, it demonstrates why complexity should be minimized in code that performs memory operations.


if (!(png_ptr->mode & PNG_HAVE_PLTE)) {
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Missing PLTE before tRNS");
}
else if (length > (png_uint_32)png_ptr->num_palette) {
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
...
png_crc_read(png_ptr, readbuf, (png_size_t)length);
Example 5: This example also demonstrates the third scenario in which the program's complexity exposes it to buffer overflows. In this case, the exposure is due to the ambiguous interface of one of the functions rather than the structure of the code (as was the case in the previous example).

The getUserInfo() function takes a username specified as a multibyte string and a pointer to a structure for user information, and populates the structure with information about the user. Since Windows authentication uses Unicode for usernames, the username argument is first converted from a multibyte string to a Unicode string. This function then incorrectly passes the size of unicodeUser in bytes rather than characters. The call to MultiByteToWideChar() may therefore write up to (UNLEN+1)*sizeof(WCHAR) wide characters, or
(UNLEN+1)*sizeof(WCHAR)*sizeof(WCHAR) bytes, to the unicodeUser array, which has only (UNLEN+1)*sizeof(WCHAR) bytes allocated. If the username string contains more than UNLEN characters, the call to MultiByteToWideChar() will overflow the buffer unicodeUser.


void getUserInfo(char *username, struct _USER_INFO_2 info){
WCHAR unicodeUser[UNLEN+1];
MultiByteToWideChar(CP_ACP, 0, username, -1,
unicodeUser, sizeof(unicodeUser));
NetUserGetInfo(NULL, unicodeUser, 2, (LPBYTE *)&info);
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] About Strsafe.h Microsoft
[5] Standards Mapping - Common Weakness Enumeration CWE ID 120, CWE ID 129, CWE ID 131, CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [3] CWE ID 020, [12] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [3] CWE ID 020, [2] CWE ID 787
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787, [4] CWE ID 020, [17] CWE ID 119
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787, [4] CWE ID 020, [19] CWE ID 119
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787, [6] CWE ID 020, [17] CWE ID 119
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [2] CWE ID 787, [12] CWE ID 020, [20] CWE ID 119
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.17
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 18-0-5
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.2
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 5.4.1 Memory/String/Unmanaged Code Requirements (L1 L2 L3), 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3), 14.1.2 Build (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[24] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[25] Standards Mapping - OWASP Top 10 2013 A1 Injection
[26] Standards Mapping - OWASP Top 10 2017 A1 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[40] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 120, Risky Resource Management - CWE ID 129, Risky Resource Management - CWE ID 131
[41] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 120, Risky Resource Management - CWE ID 131
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3590.1 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3590.1 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3590.1 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.dataflow.cpp.buffer_overflow
Abstract
The program uses an improperly bounded format string, allowing it to write outside the bounds of allocated memory. This behavior could corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

In this case, an improperly constructed format string causes the program to write beyond the bounds of allocated memory.

Example 1: The following code overflows c because the double type requires more space than is allocated for c.


void formatString(double d) {
char c;

scanf("%d", &c)
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 134, CWE ID 787
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [12] CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [2] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [2] CWE ID 787, [12] CWE ID 020, [20] CWE ID 119
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.17
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[23] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[24] Standards Mapping - OWASP Top 10 2013 A1 Injection
[25] Standards Mapping - OWASP Top 10 2017 A1 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[39] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 134
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_format_string
Abstract
The program uses an improperly bounded format string that includes a %f or %F floating point specifier. Unexpectedly large floating point values will lead the program to write data outside the bounds of allocated memory, which can corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

In this case, an improperly constructed format string causes the program to write beyond the bounds of allocated memory.

Example 1: The following code overflows buf because, depending on the size of f, the format string specifier "%d %.1f ... " can exceed the amount of allocated memory.


void formatString(int x, float f) {
char buf[40];
sprintf(buf, "%d %.1f ... ", x, f);
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 787
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [12] CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [2] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [2] CWE ID 787, [12] CWE ID 020, [20] CWE ID 119
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.17
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A1 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[38] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 134
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_format_string_%f_%F
Abstract
The program writes just past the bounds of allocated memory, which could corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of off-by-one error is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including stack and heap buffer overflows among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

Example 1: The following code contains an off-by-one buffer overflow, which occurs when recv returns the maximum allowed sizeof(buf) bytes read. In this case, the subsequent dereference of buf[nbytes] will write the null byte outside the bounds of allocated memory.


void receive(int socket) {
char buf[MAX];
int nbytes = recv(socket, buf, sizeof(buf), 0);
buf[nbytes] = '\0';
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 129, CWE ID 131, CWE ID 193, CWE ID 787, CWE ID 805
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [3] CWE ID 020, [12] CWE ID 787
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [3] CWE ID 020, [2] CWE ID 787
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787, [4] CWE ID 020, [17] CWE ID 119
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787, [4] CWE ID 020, [19] CWE ID 119
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787, [6] CWE ID 020, [17] CWE ID 119
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [2] CWE ID 787, [12] CWE ID 020, [20] CWE ID 119
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.17
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 18-0-5
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.2
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[23] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[24] Standards Mapping - OWASP Top 10 2013 A1 Injection
[25] Standards Mapping - OWASP Top 10 2017 A1 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[39] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 805, Risky Resource Management - CWE ID 129, Risky Resource Management - CWE ID 131
[40] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 131
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3590.1 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3590.1 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_off_by_one
Abstract
The program uses a signed comparison to check a value that is later treated as unsigned. This could lead the program to write outside the bounds of allocated memory, which could corrupt data, crash the program, or lead to the execution of malicious code.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

Example 1: The following code attempts to prevent an off-by-one buffer overflow by checking that the untrusted value read from getInputLength() is less than the size of the destination buffer output. However, because the comparison between len and MAX is signed, if len is negative, it will be become a very large positive number when it is converted to an unsigned argument to memcpy().


void TypeConvert() {
char input[MAX];
char output[MAX];

fillBuffer(input);
int len = getInputLength();

if (len <= MAX) {
memcpy(output, input, len);
}
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - Common Weakness Enumeration CWE ID 195, CWE ID 805
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [17] CWE ID 119
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [19] CWE ID 119
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [17] CWE ID 119
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [20] CWE ID 119
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.17
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A1 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 805
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3550 CAT I, APP3590.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3550 CAT I, APP3590.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3550 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3550 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3550 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3550 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3550 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_signed_comparison
Abstract
The target application uses a version of Apache Struts known to contain a remote command injection vulnerability (CVE-2014-0112 and CVE-2014-0114).
Explanation
The target application uses Apache Struts [1] version 1.x (pre-1.3.10) or 2.x (pre-2.3.16), which contains a remote command injection vulnerability identified as CVE-2014-0112 and CVE-2014-0114. [2, 3, 4, 5] The vulnerability results from insufficient validation performed by the ParametersInterceptor, allowing access to the getClass() method through the class parameter. This can enable an attacker to manipulate the ClassLoader and execute arbitrary Java code using crafted action parameters.
References
[1] Apache Struts Apache Software Foundation
[2] CVE-2014-0112 Mitre
[3] CVE-2014-0114 Mitre
[4] S2-020 Apache Software Foundation
[5] S2-021 Apache Software Foundation
[6] Muñoz, A. Struts2 zero day in the wild HPE Security Fortify Software Security Research
[7] Standards Mapping - Common Weakness Enumeration CWE ID 470
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[17] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.dynamic.xtended_preview.classloader_manipulation_struts
Abstract
User-controlled data is used as a template engine's template, which allows attackers to access the template context and in some cases inject and run malicious code in the browser.
Explanation
Template engines are used to render content using dynamic data. This context data is normally controlled by the user and formatted by the template to generate web pages, emails, and so on. Template engines allow powerful language expressions to be used in templates to render dynamic content, by processing the context data with code constructs such as conditionals, loops, etc. If an attacker can control the template to be rendered, they can inject expressions that expose context data and run malicious code in the browser.

Example 1: The following example shows how a template is retrieved from the URL and used to render information with AngularJS.

function MyController(function($stateParams, $interpolate){
var ctx = { foo : 'bar' };
var interpolated = $interpolate($stateParams.expression);
this.rendered = interpolated(ctx);
...
}


In this case, $stateParams.expression will be taking potentially user-controlled data, and evaluating this as a template to be used with a specified context. This in turn may enable a malicious user to run any code they wish within the browser, retrieving information about the context it's run against, finding additional information about how the application is created, or turning this into a full blown XSS attack.
References
[1] AngularJS Security Guide Google
[2] Standards Mapping - Common Weakness Enumeration CWE ID 95
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [18] CWE ID 094
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [17] CWE ID 094
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [25] CWE ID 094
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [23] CWE ID 094
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [11] CWE ID 094
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.4 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[17] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.client_side_template_injection
Abstract
The program uses an arithmetic operator on a boolean value, which might not achieve what the programmer had in mind.
Explanation
Arithmetic operations will not act in the same way on boolean values as they would on integral values, which may lead to unexpected behavior.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 480
[2] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 13.4, Rule 14.3
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 13.4, Rule 14.3
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 5-0-13, Rule 6-2-1
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 7.0.1, Rule 8.14.1, Rule 8.18.2
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[12] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[13] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[14] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
desc.structural.cpp.code_correctness_arithmetic_operation_on_boolean