Kingdom: Input Validation and Representation

Input validation and representation problems ares caused by metacharacters, alternate encodings and numeric representations. Security problems result from trusting input. The issues include: "Buffer Overflows," "Cross-Site Scripting" attacks, "SQL Injection," and many others.

200 items found
Weaknesses
Abstract
HTML5 validation of input form fields is disabled.
Explanation
HTML5 provides a new ability to do simple input form fields validation. One can specify whether an input form field is required by using the required attribute. Specifying the field type makes sure that the input is checked against its type. One can even supply a customizable pattern attribute that checks the input against a regular expression. However, this validation gets disabled when adding a novalidate attribute on a form tag and a formnovalidate attribute on a submit input tag.

Example 1: The following sample disables form validation via a novalidate attribute.


<form action="demo_form.asp" novalidate="novalidate">
E-mail: <input type="email" name="user_email" />
<input type="submit" />
</form>
Example 2: The following sample disables form validation via a formnovalidate attribute.


<form action="demo_form.asp" >
E-mail: <input type="email" name="user_email" />
<input type="submit" formnovalidate="formnovalidate"/>
</form>


HTML forms with disabled validation are not user-friendly and can potentially expose the server to numerous types of attacks. Unchecked input is the root cause of vulnerabilities like cross-site scripting, process control, and SQL injection.
References
[1] HTML5 form novalidate Attribute W3Schools
[2] HTML5 input formnovalidate Attribute W3Schools
[3] Standards Mapping - Common Weakness Enumeration CWE ID 1173
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[19] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[20] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[21] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[22] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[23] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.content.html.html5_form_validation_turned_off
Abstract
Concatenating unvalidated input into a URL can allow an attacker to override the value of a request parameter. Attacker may be able to override existing parameter values, inject a new parameter or exploit variables out of a direct reach.
Explanation
HTTP Parameter Pollution (HPP) attacks consist of injecting encoded query string delimiters into other existing parameters. If a web application does not properly sanitize the user input, a malicious user may compromise the logic of the application to perform either client-side or server-side attacks. By submitting additional parameters to a web application, and if these parameters have the same name as an existing parameter, the web application may react in one of the following ways:

It may only take the data from the first parameter
It may take the data from the last parameter
It may take the data from all parameters and concatenate them together


For example:
- ASP.NET/IIS uses all occurrences of the parameters
- Apache Tomcat uses only the first occurrence and ignores others
- mod_perl/Apache converts the value into an array of values

Example 1: Depending on the application server and the logic of the application itself, the following request might cause confusion to the authentication system and allow an attacker to impersonate another user.
http://www.server.com/login.aspx?name=alice&name=hacker

Example 2: The following code uses input from an HTTP request to render two hyperlinks.

...
String lang = Request.Form["lang"];
WebClient client = new WebClient();
client.BaseAddress = url;
NameValueCollection myQueryStringCollection = new NameValueCollection();
myQueryStringCollection.Add("q", lang);
client.QueryString = myQueryStringCollection;
Stream data = client.OpenRead(url);
...


URL: http://www.host.com/election.aspx?poll_id=4567
Link1: <a href="http://www.host.com/vote.aspx?poll_id=4567&lang=en">English<a>
Link2: <a href="http://www.host.com/vote.aspx?poll_id=4567&lang=es">Spanish<a>

The programmer has not considered the possibility that an attacker could provide a lang such as en&poll_id=1, and then the attacker may be able to change the poll_id at will.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
[3] Standards Mapping - Common Weakness Enumeration CWE ID 235
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.http_parameter_pollution
Abstract
Concatenating unvalidated input into a URL can allow an attacker to override the value of a request parameter. Attacker may be able to override existing parameter values, inject a new parameter or exploit variables out of a direct reach.
Explanation
HTTP Parameter Pollution (HPP) attacks consist of injecting encoded query string delimiters into other existing parameters. If a web application does not properly sanitize the user input, a malicious user may compromise the logic of the application to perform either client-side or server-side attacks. By submitting additional parameters to a web application, and if these parameters have the same name as an existing parameter, the web application may react in one of the following ways:

It may only take the data from the first parameter
It may take the data from the last parameter
It may take the data from all parameters and concatenate them together


For example:
- ASP.NET/IIS uses all occurrences of the parameters
- Apache Tomcat uses only the first occurrence and ignores others
- mod_perl/Apache converts the value into an array of values

Example 1: Depending on the application server and the logic of the application itself, the following request might cause confusion to the authentication system and allow an attacker to impersonate another user.
http://www.example.com/login.php?name=alice&name=hacker

Example 2: The following code uses input from an HTTP request to render two hyperlinks.

...
String lang = request.getParameter("lang");
GetMethod get = new GetMethod("http://www.example.com");
get.setQueryString("lang=" + lang + "&poll_id=" + poll_id);
get.execute();
...


URL: http://www.example.com?poll_id=4567
Link1: <a href="http://www.example.com/vote.php?lang=en&poll_id=4567">English<a>
Link2: <a href="http://www.example.com/vote.php?lang=es&poll_id=4567">Spanish<a>

The programmer has not considered the possibility that an attacker could provide a lang such as en&poll_id=1, and then the attacker will be able to change the poll_id at will.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
[3] Standards Mapping - Common Weakness Enumeration CWE ID 235
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.http_parameter_pollution
Abstract
Concatenating unvalidated input into a URL can allow an attacker to override the value of a request parameter. Attacker may be able to override existing parameter values, inject a new parameter or exploit variables out of a direct reach.
Explanation
HTTP Parameter Pollution (HPP) attacks consist of injecting encoded query string delimiters into other existing parameters. If a web application does not properly sanitize the user input, a malicious user may compromise the logic of the application to perform either client-side or server-side attacks. By submitting additional parameters to a web application, and if these parameters have the same name as an existing parameter, the web application may react in one of the following ways:

It may only take the data from the first parameter
It may take the data from the last parameter
It may take the data from all parameters and concatenate them together


For example:
- ASP.NET/IIS uses all occurrences of the parameters
- Apache Tomcat uses only the first occurrence and ignores others
- mod_perl/Apache converts the value into an array of values

Example 1: Depending on the application server and the logic of the application itself, the following request might cause confusion to the authentication system and allow an attacker to impersonate another user.
http://www.server.com/login.php?name=alice&name=hacker

Example 2: The following code uses input from an HTTP request to render two hyperlinks.


<%
...
$id = $_GET["id"];
header("Location: http://www.host.com/election.php?poll_id=" . $id);
...
%>


URL: http://www.host.com/election.php?poll_id=4567
Link1: <a href="vote.php?poll_id=4567&candidate=white">Vote for Mr. White<a>
Link2: <a href="vote.php?poll_id=4567&candidate=green">Vote for Mrs. Green<a>

The programmer has not considered the possibility that an attacker could provide a poll_id such as "4567&candidate=green", and then the resulting page will contain the following injected links and hence Mrs. Green will always be voted on an application server which picks the first parameter.
<a href="vote.php?poll_id=4567&candidate=green&candidate=white">Vote for Mr. White<a>
<a href="vote.php?poll_id=4567&candidate=green&candidate=green">Vote for Mrs. Green<a>
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
[3] Standards Mapping - Common Weakness Enumeration CWE ID 235
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.php.http_parameter_pollution
Abstract
Concatenating unvalidated input into a URL can allow an attacker to override the value of a request parameter. Attacker may be able to override existing parameter values, inject a new parameter or exploit variables out of a direct reach.
Explanation
HTTP Parameter Pollution (HPP) attacks consist of injecting encoded query string delimiters into other existing parameters. If a web application does not properly sanitize the user input, a malicious user may compromise the logic of the application to perform either client-side or server-side attacks. By submitting additional parameters to a web application, and if these parameters have the same name as an existing parameter, the web application may react in one of the following ways:

It may only take the data from the first parameter.
It may take the data from the last parameter.
It may take the data from all parameters and concatenate them together.


For example:
- ASP.NET/IIS uses all occurrences of the parameters
- Apache Tomcat uses only the first occurrence and ignores others
- mod_perl/Apache converts the value into an array of values

Example 1: Depending on the application server and the logic of the application itself, the following request might cause confusion to the authentication system and allow an attacker to impersonate another user.
http://www.server.com/login.php?name=alice&name=hacker

As this shows, the attacker already has name=alice specified, but they have added an additional name=alice&, and if this is being used on a server that takes the first occurrence, then this may impersonate alice in order to get further information regarding her account.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
[3] Standards Mapping - Common Weakness Enumeration CWE ID 235
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.ruby.http_parameter_pollution
Abstract
Some functions can return a pointer to memory outside the bounds of the buffer to be searched. Subsequent operations on the pointer could have unintended consequences.
Explanation
Functions that search for characters within a buffer can return a pointer outside the bounds of the buffer provided under either of the following circumstances:

- A user controls the contents of the buffer to be searched.

- A user controls the value for which to search.

Example 1: The following short program uses an untrusted command-line argument as the search buffer in a call to rawmemchr().


int main(int argc, char** argv) {
char* ret = rawmemchr(argv[0], 'x');
printf("%s\n", ret);
}


The program is meant to print a substring of argv[0], but it might end up printing some portion of memory located above argv[0].

This issue is similar to a string termination error, where the programmer relies on a character array to contain a null-terminator.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[2] Standards Mapping - Common Weakness Enumeration CWE ID 466
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [17] CWE ID 119
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [19] CWE ID 119
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [17] CWE ID 119
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [20] CWE ID 119
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[16] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[32] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
desc.semantic.cpp.illegal_pointer_value.master
Abstract
Usage of user-controlled or untrusted data to define HTML sanitizer policy could allow an attacker to circumvent the sanitization requirements and launch cross-site scripting (XSS) attacks.
Explanation
The umbrella term "input handling" describes functions such as validation, sanitization, filtering, and encoding/decoding of input data. Cross-site scripting, SQL injection, and process control vulnerabilities all stem from incorrect or absent input handling. Sanitization of input, which entails transforming input to an acceptable form, is typically implemented in addition to input validation. HTML sanitization refers to cleansing and scrubbing user input to allow only tags, attributes, and elements that are deemed safe.
Implementing a thorough HTML sanitization policy is difficult; the key to successful implementation is understanding the context in which the data will be used. Each context has its own vulnerabilities, and one size does not fit all. While it is wise to use an HTML sanitizer (for example the OWASP HTML sanitizer) to protect against XSS vulnerabilities in web applications, improper implementation can lead to a false sense of security.
Example 1: The following Java code uses user-controlled input variable elements in building an HTML sanitizer policy:


...
String elements = prop.getProperty("AllowedElements");
...
public static final PolicyFactory POLICY_DEFINITION = new HtmlPolicyBuilder()
.allowElements(elements)
.toFactory();

....


A malicious user can cause the HTML sanitizer policy to accept dangerous elements like <script> by supplying them to elements.

References
[1] OWASP Cross-Site Scripting (XSS) Prevention Cheat Sheet
[2] Understanding Malicious Content Mitigation for Web Developers CERT
[3] HTML 4.01 Specification W3
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-15 Information Output Filtering (P0)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-15 Information Output Filtering
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[23] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[24] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II
[49] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[50] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.insecure_sanitizer_policy
Abstract
Not accounting for integer overflow can result in logic errors or buffer overflow.
Explanation
Integer overflow errors occur when a program fails to account for the fact that an arithmetic operation can result in a quantity either greater than a data type's maximum value or less than its minimum value. These errors often cause problems in memory allocation functions, where user input intersects with an implicit conversion between signed and unsigned values. If an attacker can cause the program to under-allocate memory or interpret a signed value as an unsigned value in a memory operation, the program might be vulnerable to a buffer overflow.

Example 1: The following code excerpt from OpenSSH 3.3 demonstrates a classic case of integer overflow:


nresp = packet_get_int();
if (nresp > 0) {
response = xmalloc(nresp*sizeof(char*));
for (i = 0; i < nresp; i++)
response[i] = packet_get_string(NULL);
}


If nresp has the value 1073741824 and sizeof(char*) has its typical value of 4, then the result of the operation nresp*sizeof(char*) overflows, and the argument to xmalloc() will be 0. Most malloc() implementations will allow for the allocation of a 0-byte buffer, causing the subsequent loop iterations to overflow the heap buffer response.

Example 2: This example processes user input comprised of a series of variable-length structures. The first 2 bytes of input dictate the size of the structure to be processed.


char* processNext(char* strm) {
char buf[512];
short len = *(short*) strm;
strm += sizeof(len);
if (len <= 512) {
memcpy(buf, strm, len);
process(buf);
return strm + len;
} else {
return -1;
}
}


The programmer has set an upper bound on the structure size: if it is larger than 512, the input will not be processed. The problem is that len is a signed integer, so the check against the maximum structure length is done with signed integers, but len is converted to an unsigned integer for the call to memcpy(). If len is negative, then it will appear that the structure has an appropriate size (the if branch will be taken), but the amount of memory copied by memcpy() will be quite large, and the attacker will be able to overflow the stack with data in strm.
References
[1] blexim Basic Integer Overflows Phrack
[2] D. Plakosh Coding Flaws That Lead to Security Failures 2nd Annual Hampton University Information Assurance Symposium
[3] Les Hatton Safer C: Developing Software for High-integrity and Safety-critical Systems McGraw-Hill Companies
[4] Standards Mapping - Common Weakness Enumeration CWE ID 190, CWE ID 191
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [8] CWE ID 190
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [11] CWE ID 190
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [12] CWE ID 190
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [13] CWE ID 190
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [14] CWE ID 190
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [23] CWE ID 190
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 7.5, Rule 7.6, Rule 21.18
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 5-19-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.3 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 682
[36] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 190
[37] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 190
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3550 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3550 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3550 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3550 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3550 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3550 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3550 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[60] Standards Mapping - Smart Contract Weakness Classification SWC-101
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Integer Overflows (WASC-03)
desc.dataflow.cpp.integer_overflow
Abstract
Not accounting for integer overflow can result in logic errors or buffer overflow.
Explanation
Integer overflow errors occur when a program fails to account for the fact that an arithmetic operation can result in a quantity either greater than a data type's maximum value or less than its minimum value. These errors often cause problems in memory allocation functions, where user input intersects with an implicit conversion between signed and unsigned values. If an attacker can cause the program to under-allocate memory or interpret a signed value as an unsigned value in a memory operation, the program might be vulnerable to a buffer overflow.

Example 1: The following code excerpt demonstrates a classic case of integer overflow:


77 accept-in PIC 9(10).
77 num PIC X(4) COMP-5. *> native 32-bit unsigned integer
77 mem-size PIC X(4) COMP-5.
...
ACCEPT accept-in
MOVE accept-in TO num
MULTIPLY 4 BY num GIVING mem-size

CALL "CBL_ALLOC_MEM" USING
mem-pointer
BY VALUE mem-size
BY VALUE 0
RETURNING status-code
END-CALL


If num has the value 1073741824, then the result of the operation MULTIPLY 4 BY num overflows, and the argument mem-size to malloc() will be 0. Most malloc() implementations will allow for the allocation of a 0-byte buffer, causing the heap buffer mem-pointer to overflow in subsequent statements.
References
[1] blexim Basic Integer Overflows Phrack
[2] D. Plakosh Coding Flaws That Lead to Security Failures 2nd Annual Hampton University Information Assurance Symposium
[3] Les Hatton Safer C: Developing Software for High-integrity and Safety-critical Systems McGraw-Hill Companies
[4] Standards Mapping - Common Weakness Enumeration CWE ID 190, CWE ID 191
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [8] CWE ID 190
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [11] CWE ID 190
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [12] CWE ID 190
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [13] CWE ID 190
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [14] CWE ID 190
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [23] CWE ID 190
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 7.5, Rule 7.6, Rule 21.18
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 5-19-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.3 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 682
[36] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 190
[37] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 190
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3550 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3550 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3550 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3550 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3550 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3550 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3550 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[60] Standards Mapping - Smart Contract Weakness Classification SWC-101
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Integer Overflows (WASC-03)
desc.dataflow.cobol.integer_overflow
Abstract
A function incorrectly handles an integer calculation that results in overflow/underflow.
Explanation
An integer overflow/underflow occurs when a calculation or an arithmetic operation results in a value that is over/under the maximum/minimum value of the integer type, causing the value to loop back to the lower/upper limit and continuing from there. The resulting value of an arithmetic operation is effectively the modulus of the integer range from the upper/lower boundaries.

For example, if a number is stored in a uint256 type, it means it is stored as a 256 bits unsigned number that ranges from 0 to 2^256-1. If an arithmetic operation results in a number that is larger than the upper limit, then an overflow occurs and the remainder is added from the starting value (0). If an arithmetic operation causes the number to go below than the lower limit, then an underflow occurs and the remainder is subtracted from the largest value (2^256-1).

Example 1: The following public function updates a uint256 mapping using an arithmetic operation that can lead to integer overflow/underflow and affect unintended indexes in the map.


contract overflow {
mapping(uint256 => uint256) map;

function init(uint256 k, uint256 v) public {
map[k] -= v;
}
}
References
[1] Enterprise Ethereum Alliance No Overflow/Underflow
[2] Standards Mapping - Common Weakness Enumeration CWE ID 190, CWE ID 191
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [8] CWE ID 190
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [11] CWE ID 190
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [12] CWE ID 190
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [13] CWE ID 190
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [14] CWE ID 190
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [23] CWE ID 190
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 7.5, Rule 7.6, Rule 21.18
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 5-19-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.3 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 682
[34] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 190
[35] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 190
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3550 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3550 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3550 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3550 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3550 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3550 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3550 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[58] Standards Mapping - Smart Contract Weakness Classification SWC-101
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Integer Overflows (WASC-03)
desc.structural.solidity.swc101
Abstract
Allowing user input to control Intent parameters could enable an attacker to control the behavior of the subsequent activity.
Explanation
An intent manipulation issue occurs when the following two conditions are met:

1. An attacker is able to specify the action, classname, or component of an Android Intent.

For example, an attacker may be able to specify the classname or the component to handle the intent.

2. By specifying the action, classname, or component, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party software on the device.

Example 1: The following code uses an argument read from an HTTP request to set the classname of an intent.


String arg = request.getParameter("arg");
...
Intent intent = new Intent();
...
intent.setClassName(arg);
ctx.startActivity(intent);
...
References
[1] Intent
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[11] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[12] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[13] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[14] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[15] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[16] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.intent_manipulation
Abstract
Using a nested Intent from external input to start an activity, start a service, or deliver a broadcast can enable an attacker to arbitrarily launch internal application components, control the behavior of an internal component, or indirectly access protected data from a content provider through temporary permission grants.
Explanation
A redirection intent manipulation issue occurs when the following conditions are met:
1. An exported component accepts an arbitrary Intent nested in the extras bundle of an externally provided Intent.

2. The exported component uses the arbitrary Intent to launch a component by calling startActivity, startService, or sendBroadcast.

An attacker can possibly gain a capability that would not otherwise be permitted when these conditions exist.
Example 1: The following code accepts a nested Intent from an external source and uses that Intent to start an activity.


...
Intent nextIntent = (Intent) getIntent().getParcelableExtra("next-intent");
startActivity(nextIntent);
...
References
[1] Intent
[2] Remediation for Intent Redirection Vulnerability - Google Help
[3] Nicole Borrelli Android Nesting Intents
[4] Standards Mapping - Common Weakness Enumeration CWE ID 99
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP API 2023 API2 Broken Authentication
[11] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[12] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.intent_manipulation_redirection
Abstract
The method writes unvalidated input into JSON. This call might allow an attacker to inject arbitrary elements or attributes into the JSON entity.
Explanation
JSON injection occurs when:

1. Data enters a program from an untrusted source.


2. The data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store data, JSON is often treated like cached data and may potentially contain sensitive information. When used to send messages, JSON is often used in conjunction with a RESTful service and can be used to transmit sensitive information such as authentication credentials.

The semantics of JSON documents and messages can be altered if an application constructs JSON from unvalidated input. In a relatively benign case, an attacker may be able to insert extraneous elements that cause an application to throw an exception while parsing a JSON document or request. In a more serious case, such as ones that involves JSON injection, an attacker may be able to insert extraneous elements that allow for the predictable manipulation of business critical values within a JSON document or request. In some cases, JSON injection can lead to cross-site scripting or dynamic code evaluation.

Example 1: The following C# code uses JSON.NET to serialize user account authentication information for non-privileged users (those with a role of "default" as opposed to privileged users with a role of "admin") from user-controlled input variables username and password to the JSON file located at C:\user_info.json:


...

StringBuilder sb = new StringBuilder();
StringWriter sw = new StringWriter(sb);

using (JsonWriter writer = new JsonTextWriter(sw))
{
writer.Formatting = Formatting.Indented;

writer.WriteStartObject();

writer.WritePropertyName("role");
writer.WriteRawValue("\"default\"");

writer.WritePropertyName("username");
writer.WriteRawValue("\"" + username + "\"");

writer.WritePropertyName("password");
writer.WriteRawValue("\"" + password + "\"");

writer.WriteEndObject();
}

File.WriteAllText(@"C:\user_info.json", sb.ToString());


Yet, because the JSON serialization is performed using JsonWriter.WriteRawValue(), the untrusted data in username and password will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory with password Evil123! were to append ","role":"admin to her username when entering it at the prompt that sets the value of the username variable, the resulting JSON saved to C:\user_info.json would be:


{
"role":"default",
"username":"mallory",
"role":"admin",
"password":"Evil123!"
}


If this serialized JSON file were then deserialized to a Dictionary object with JsonConvert.DeserializeObject() as so:


String jsonString = File.ReadAllText(@"C:\user_info.json");

Dictionary<string, string> userInfo = JsonConvert.DeserializeObject<Dictionary<string, strin>>(jsonString);


The resulting values for the username, password, and role keys in the Dictionary object would be mallory, Evil123!, and admin respectively. Without further verification that the deserialized JSON values are valid, the application will incorrectly assign user mallory "admin" privileges.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 91
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.json_injection
Abstract
The method writes unvalidated input to JSON. An attacker can inject arbitrary elements or attributes into the JSON entity.
Explanation
JSON injection occurs when:

1. Data enters a program from an untrusted source.


2. The data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store data, JSON is often treated like cached data and might contain sensitive information. When used to send messages, JSON is often used in conjunction with a RESTful service and can transmit sensitive information such as authentication credentials.

Attackers can alter the semantics of JSON documents and messages if an application constructs JSON from unvalidated input. In a relatively benign case, an attacker can insert extraneous elements that cause an application to throw an exception while parsing a JSON document or request. In more serious cases, such as those that involves JSON injection, an attacker can insert extraneous elements that allow for the predictable manipulation of business critical values within a JSON document or request. Sometimes JSON injection can lead to cross-site scripting or dynamic code evaluation.

Example 1: The following code serializes user account authentication information for non-privileged users (those with a role of "default" as opposed to privileged users with a role of "admin") from user-controlled input variables username and password to the JSON file located at ~/user_info.json:


...
func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
username := r.FormValue("username")
password := r.FormValue("password")
...
jsonString := `{
"username":"` + username + `",
"role":"default"
"password":"` + password + `",
}`
...
f, err := os.Create("~/user_info.json")
defer f.Close()

jsonEncoder := json.NewEncoder(f)
jsonEncoder.Encode(jsonString)
}


Because the code performs the JSON serialization using string concatenation, the untrusted data in username and password is not validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, which can possibly change the serialized JSON structure. In this example, if the non-privileged user mallory with password Evil123! appended ","role":"admin when she entered her username, the resulting JSON saved to ~/user_info.json would be:


{
"username":"mallory",
"role":"default",
"password":"Evil123!",
"role":"admin"
}

Without further verification that the deserialized JSON values are valid, the application unintentionally assigns user mallory "admin" privileges.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 91
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.json_injection
Abstract
The method writes unvalidated input into JSON. This call might allow an attacker to inject arbitrary elements or attributes into the JSON entity.
Explanation
JSON injection occurs when:

1. Data enters a program from an untrusted source.


2. The data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store data, JSON is often treated like cached data and may potentially contain sensitive information. When used to send messages, JSON is often used in conjunction with a RESTful service and can be used to transmit sensitive information such as authentication credentials.

The semantics of JSON documents and messages can be altered if an application constructs JSON from unvalidated input. In a relatively benign case, an attacker may be able to insert extraneous elements that cause an application to throw an exception while parsing a JSON document or request. In a more serious case, such as ones that involves JSON injection, an attacker may be able to insert extraneous elements that allow for the predictable manipulation of business critical values within a JSON document or request. In some cases, JSON injection can lead to cross-site scripting or dynamic code evaluation.

Example 1: The following Java code uses Jackson to serialize user account authentication information for non-privileged users (those with a role of "default" as opposed to privileged users with a role of "admin") from user-controlled input variables username and password to the JSON file located at ~/user_info.json:


...

JsonFactory jfactory = new JsonFactory();

JsonGenerator jGenerator = jfactory.createJsonGenerator(new File("~/user_info.json"), JsonEncoding.UTF8);

jGenerator.writeStartObject();

jGenerator.writeFieldName("username");
jGenerator.writeRawValue("\"" + username + "\"");

jGenerator.writeFieldName("password");
jGenerator.writeRawValue("\"" + password + "\"");

jGenerator.writeFieldName("role");
jGenerator.writeRawValue("\"default\"");

jGenerator.writeEndObject();

jGenerator.close();


Yet, because the JSON serialization is performed using JsonGenerator.writeRawValue(), the untrusted data in username and password will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory with password Evil123! were to append ","role":"admin to her username when entering it at the prompt that sets the value of the username variable, the resulting JSON saved to ~/user_info.json would be:


{
"username":"mallory",
"role":"admin",
"password":"Evil123!",
"role":"default"
}


If this serialized JSON file were then deserialized to an HashMap object with Jackson's JsonParser as so:


JsonParser jParser = jfactory.createJsonParser(new File("~/user_info.json"));

while (jParser.nextToken() != JsonToken.END_OBJECT) {

String fieldname = jParser.getCurrentName();

if ("username".equals(fieldname)) {
jParser.nextToken();
userInfo.put(fieldname, jParser.getText());
}

if ("password".equals(fieldname)) {
jParser.nextToken();
userInfo.put(fieldname, jParser.getText());
}

if ("role".equals(fieldname)) {
jParser.nextToken();
userInfo.put(fieldname, jParser.getText());
}

if (userInfo.size() == 3)
break;
}

jParser.close();


The resulting values for the username, password, and role keys in the HashMap object would be mallory, Evil123!, and admin respectively. Without further verification that the deserialized JSON values are valid, the application will incorrectly assign user mallory "admin" privileges.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 91
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.json_injection
Abstract
The method writes unvalidated input into JSON. This call might allow an attacker to inject arbitrary elements or attributes into the JSON entity.
Explanation
JSON injection occurs when:

1. Data enters a program from an untrusted source.


2. The data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store data, JSON is often treated like cached data and may potentially contain sensitive information. When used to send messages, JSON is often used in conjunction with a RESTful service and can be used to transmit sensitive information such as authentication credentials.

The semantics of JSON documents and messages can be altered if an application constructs JSON from unvalidated input. In a relatively benign case, an attacker may be able to insert extraneous elements that cause an application to throw an exception while parsing a JSON document or request. In a more serious case, such as ones that involves JSON injection, an attacker may be able to insert extraneous elements that allow for the predictable manipulation of business critical values within a JSON document or request. In some cases, JSON injection can lead to cross-site scripting or dynamic code evaluation.

Example 1: The following JavaScript code uses jQuery to parse JSON where a value comes from a URL:


var str = document.URL;
var url_check = str.indexOf('name=');
var name = null;
if (url_check > -1) {
name = decodeURIComponent(str.substring((url_check+5), str.length));
}

$(document).ready(function(){
if (name !== null){
var obj = jQuery.parseJSON('{"role": "user", "name" : "' + name + '"}');
...
}
...
});


Here the untrusted data in name will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory were to append ","role":"admin to the name parameter in the URL, the JSON would become:


{
"role":"user",
"username":"mallory",
"role":"admin"
}


This is parsed by jQuery.parseJSON() and set to a plain object, meaning that obj.role would now return "admin" instead of "user"
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 91
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.json_injection
Abstract
The method writes unvalidated input into JSON. This call might allow an attacker to inject arbitrary elements or attributes into the JSON entity.
Explanation
JSON injection occurs when:

1. Data enters a program from an untrusted source.


2. The data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store data, JSON is often treated like cached data and may potentially contain sensitive information. When used to send messages, JSON is often used in conjunction with a RESTful service and can be used to transmit sensitive information such as authentication credentials.

The semantics of JSON documents and messages can be altered if an application constructs JSON from unvalidated input. In a relatively benign case, an attacker may be able to insert extraneous elements that cause an application to throw an exception while parsing a JSON document or request. In a more serious case, such as ones that involves JSON injection, an attacker may be able to insert extraneous elements that allow for the predictable manipulation of business critical values within a JSON document or request. In some cases, JSON injection can lead to cross-site scripting or dynamic code evaluation.

Example 1: The following Objective-C code serializes user account authentication information for non-privileged users (those with a role of "default" as opposed to privileged users with a role of "admin") to JSON from user-controllable fields _usernameField and _passwordField:


...

NSString * const jsonString = [NSString stringWithFormat: @"{\"username\":\"%@\",\"password\":\"%@\",\"role\":\"default\"}" _usernameField.text, _passwordField.text];


Yet, because the JSON serialization is performed using NSString.stringWithFormat:, the untrusted data in _usernameField and _passwordField will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory with password Evil123! were to append ","role":"admin to her username when entering it into the _usernameField field, the resulting JSON would be:


{
"username":"mallory",
"role":"admin",
"password":"Evil123!",
"role":"default"
}


If this serialized JSON string were then deserialized to an NSDictionary object with NSJSONSerialization.JSONObjectWithData: as so:


NSError *error;
NSDictionary *jsonData = [NSJSONSerialization JSONObjectWithData:[jsonString dataUsingEncoding:NSUTF8StringEncoding] options:NSJSONReadingAllowFragments error:&error];


The resulting values for username, password, and role in the NSDictionary object would be mallory, Evil123!, and admin respectively. Without further verification that the deserialized JSON values are valid, the application will incorrectly assign user mallory "admin" privileges.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 91
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.objc.json_injection
Abstract
The method writes unvalidated input into JSON. This call might allow an attacker to inject arbitrary elements or attributes into the JSON entity.
Explanation
JSON injection occurs when:

1. Data enters a program from an untrusted source.


2. The data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store data, JSON is often treated like cached data and may potentially contain sensitive information. When used to send messages, JSON is often used in conjunction with a RESTful service and can be used to transmit sensitive information such as authentication credentials.

The semantics of JSON documents and messages can be altered if an application constructs JSON from unvalidated input. In a relatively benign case, an attacker may be able to insert extraneous elements that cause an application to throw an exception while parsing a JSON document or request. In a more serious case, such as ones that involves JSON injection, an attacker may be able to insert extraneous elements that allow for the predictable manipulation of business critical values within a JSON document or request. In some cases, JSON injection can lead to cross-site scripting or dynamic code evaluation.

Example 1: The following python code update a json file with an untrusted value comes from a URL:


import json
import requests
from urllib.parse import urlparse
from urllib.parse import parse_qs

url = 'https://www.example.com/some_path?name=some_value'
parsed_url = urlparse(url)
untrusted_values = parse_qs(parsed_url.query)['name'][0]

with open('data.json', 'r') as json_File:
data = json.load(json_File)

data['name']= untrusted_values

with open('data.json', 'w') as json_File:
json.dump(data, json_File)

...


Here the untrusted data in name will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory were to append ","role":"admin to the name parameter in the URL, the JSON would become:


{
"role":"user",
"username":"mallory",
"role":"admin"
}

The JSON file is now tampered with malicious data and the user has a privileged access of "admin" instead of "user"
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 91
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.json_injection
Abstract
The method writes unvalidated input into JSON. This call might allow an attacker to inject arbitrary elements or attributes into the JSON entity.
Explanation
JSON injection occurs when:

1. Data enters a program from an untrusted source.


2. The data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store data, JSON is often treated like cached data and may potentially contain sensitive information. When used to send messages, JSON is often used in conjunction with a RESTful service and can be used to transmit sensitive information such as authentication credentials.

The semantics of JSON documents and messages can be altered if an application constructs JSON from unvalidated input. In a relatively benign case, an attacker may be able to insert extraneous elements that cause an application to throw an exception while parsing a JSON document or request. In a more serious case, such as ones that involves JSON injection, an attacker may be able to insert extraneous elements that allow for the predictable manipulation of business critical values within a JSON document or request. In some cases, JSON injection can lead to cross-site scripting or dynamic code evaluation.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 91
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.scala.json_injection
Abstract
The method writes unvalidated input into JSON. This call might allow an attacker to inject arbitrary elements or attributes into the JSON entity.
Explanation
JSON injection occurs when:

1. Data enters a program from an untrusted source.


2. The data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store data, JSON is often treated like cached data and may potentially contain sensitive information. When used to send messages, JSON is often used in conjunction with a RESTful service and can be used to transmit sensitive information such as authentication credentials.

The semantics of JSON documents and messages can be altered if an application constructs JSON from unvalidated input. In a relatively benign case, an attacker may be able to insert extraneous elements that cause an application to throw an exception while parsing a JSON document or request. In a more serious case, such as ones that involves JSON injection, an attacker may be able to insert extraneous elements that allow for the predictable manipulation of business critical values within a JSON document or request. In some cases, JSON injection can lead to cross-site scripting or dynamic code evaluation.

Example 1: The following Swift code serializes user account authentication information for non-privileged users (those with a role of "default" as opposed to privileged users with a role of "admin") to JSON from user-controllable fields usernameField and passwordField:


...
let jsonString : String = "{\"username\":\"\(usernameField.text)\",\"password\":\"\(passwordField.text)\",\"role\":\"default\"}"


Yet, because the JSON serialization is performed using string interpolation, the untrusted data in usernameField and passwordField will not be validated to escape JSON-related special characters. This allows a user to arbitrarily insert JSON keys, possibly changing the structure of the serialized JSON. In this example, if the non-privileged user mallory with password Evil123! were to append ","role":"admin to her username when entering it into the usernameField field, the resulting JSON would be:


{
"username":"mallory",
"role":"admin",
"password":"Evil123!",
"role":"default"
}


If this serialized JSON string were then deserialized to an NSDictionary object with NSJSONSerialization.JSONObjectWithData: as so:


var error: NSError?
var jsonData : NSDictionary = NSJSONSerialization.JSONObjectWithData(jsonString.dataUsingEncoding(NSUTF8StringEncoding), options: NSJSONReadingOptions.MutableContainers, error: &error) as NSDictionary


The resulting values for username, password, and role in the NSDictionary object would be mallory, Evil123!, and admin respectively. Without further verification that the deserialized JSON values are valid, the application will incorrectly assign user mallory "admin" privileges.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 91
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[8] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.swift.json_injection
Abstract
The application performs a JSON query with untrusted data that might enable attackers to query unexpected parts of the JSON document.
Explanation
There are a number of technologies that provide the capacity to maneuver through JSON documents using a tree-like access syntax. Using this type of document traversal, an adversary can query parts of a JSON document to which they should not have access.

Example 1: The following code uses a user-defined keyword to access a JSON document that contains public user details, such as name and address, but the JSON document also contains private details such as their password.


$userInput = getUserIn();
$document = getJSONDoc();
$part = simdjson_key_value($document, $userInput);
echo json_decode($part);


Because userInput is user-controllable, a malicious user can leverage this to access any sensitive data in the JSON document.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[2] Standards Mapping - FIPS200 SI
[3] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[10] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
desc.dataflow.php.json_path_manipulation
Abstract
The application performs a JSON query with untrusted data that might enable attackers to query unexpected parts of the JSON document.
Explanation
There are a number of technologies that provide the capacity to maneuver through JSON documents using a tree-like access syntax. Using this type of document traversal, an adversary can query parts of a JSON document to which they should not have access.

Example 1: The following code uses a user-defined keyword to access a JSON document which contains public user details, such as name and address, but the JSON document also contains private details such as their password.


def searchUserDetails(key:String) = Action.async { implicit request =>
val user_json = getUserDataFor(user)
val value = (user_json \ key).get.as[String]
...
}


Since key is user-controllable, a malicious user can leverage this to access the user's passwords, and any other private data that may be contained within the JSON document.
References
[1] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[2] Standards Mapping - FIPS200 SI
[3] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[10] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
desc.dataflow.scala.json_path_manipulation
Abstract
An application that performs an object-returning LDAP search will allow attackers to control the LDAP response to run arbitrary code on the server.
Explanation
An attacker able to tamper with an LDAP response, either by modifying the entry at rest or by intercepting and modifying the response on the fly (man-in-the-middle attack) will be able to inject special Java attributes into the LDAP entry. When performing an object-returning search, the Java attributes are decoded as Java objects using Java deserialization or JNDI dereference allowing attackers to gain remote code execution on the application server performing the search.

The application performs an object-returning search by setting the returningObjectFlag to true on the javax.naming.directory.SearchControls instance passed to the search method or by using a library function that sets this flag on its behalf.

In this case, the application is using the Spring Security LDAP authorization module which performs object-returning searches and is therefore vulnerable to LDAP Entry Poisoning.

Example 1: The following Beans configuration file configures the application to use Spring Security LDAP module as the authentication provider.


<beans ... >
<authentication-manager>
<ldap-authentication-provider
user-search-filter="(uid={0})"
user-search-base="ou=users,dc=example,dc=org"
group-search-filter="(uniqueMember={0})"
group-search-base="ou=groups,dc=example,dc=org"
group-role-attribute="cn"
role-prefix="ROLE_">
</ldap-authentication-provider>
</authentication-manager>
</beans>
References
[1] Introducing JNDI Injection and LDAP Entry Poisoning OpenText Fortify
[2] A Journey from JNDI/LDAP manipulation to remote code execution dream land BlackHat
[3] Standards Mapping - Common Weakness Enumeration CWE ID 20
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
desc.configuration.java.ldap_entry_poisoning
Abstract
Constructing a dynamic LDAP filter with user input could allow an attacker to modify the statement's meaning.
Explanation
LDAP injection errors occur when:

1. Data enters a program from an untrusted source.

In this case, Fortify Static Code Analyzer could not determine that the source of the data is trusted.

2. The data is used to dynamically construct an LDAP filter.
Example 1: The following code dynamically constructs and executes an LDAP query that retrieves records for all the employees who report to a given manager. The manager's name is read from an HTTP request, and is therefore untrusted.


...
DirectorySearcher src =
new DirectorySearcher("(manager=" + managerName.Text + ")");
src.SearchRoot = de;
src.SearchScope = SearchScope.Subtree;

foreach(SearchResult res in src.FindAll()) {
...
}


Under normal conditions, such as searching for employees who report to the manager John Smith, the filter that this code executes will look like the following:


(manager=Smith, John)


However, because the filter is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if managerName does not contain any LDAP meta characters. If an attacker enters the string Hacker, Wiley)(|(objectclass=*) for managerName, then the query becomes the following:


(manager=Hacker, Wiley)(|(objectclass=*))


Based on the permissions with which the query is executed, the addition of the |(objectclass=*) condition causes the filter to match against all entries in the directory, and allows the attacker to retrieve information about the entire pool of users. Depending on the permissions with which the LDAP query is performed, the breadth of this attack may be limited, but if the attacker may control the command structure of the query, such an attack can at least affect all records that the user the LDAP query is executed as can access.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 90
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.7 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 LDAP Injection (WASC-29)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 LDAP Injection
desc.semantic.dotnet.ldap_injection
Abstract
Constructing a dynamic LDAP filter with user input could allow an attacker to modify the statement's meaning.
Explanation
LDAP injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used to dynamically construct an LDAP filter.
Example 1: The following code dynamically constructs and executes an LDAP query that retrieves records for all the employees who report to a given manager. The manager's name is read from a network socket, and is therefore untrusted.


fgets(manager, sizeof(manager), socket);

snprintf(filter, sizeof(filter, "(manager=%s)", manager);

if ( ( rc = ldap_search_ext_s( ld, FIND_DN, LDAP_SCOPE_BASE,
filter, NULL, 0, NULL, NULL, LDAP_NO_LIMIT,
LDAP_NO_LIMIT, &result ) ) == LDAP_SUCCESS ) {
...
}


Under normal conditions, such as searching for employees who report to the manager John Smith, the filter that this code executes will look like the following:


(manager=Smith, John)


However, because the filter is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if manager does not contain any LDAP meta characters. If an attacker enters the string Hacker, Wiley)(|(objectclass=*) for manager, then the query becomes the following:


(manager=Hacker, Wiley)(|(objectclass=*))


Based on the permissions with which the query is executed, the addition of the |(objectclass=*) condition causes the filter to match against all entries in the directory, and allows the attacker to retrieve information about the entire pool of users. Depending on the permissions with which the LDAP query is performed, the breadth of this attack may be limited, but if the attacker may control the command structure of the query, such an attack can at least affect all records that the user the LDAP query is executed as can access.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 90
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.7 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 LDAP Injection (WASC-29)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 LDAP Injection
desc.dataflow.cpp.ldap_injection
Abstract
Constructing a dynamic LDAP filter with user input could allow an attacker to modify the statement's meaning.
Explanation
LDAP injection errors occur when:
1. Data enters a program from an untrusted source.

2. The data is used to dynamically construct an LDAP filter.
Example 1: The following code dynamically constructs and executes an LDAP query that retrieves records for all the employees who report to a given manager. The manager's name is read from an HTTP request, and is therefore untrusted.


...
DirContext ctx = new InitialDirContext(env);

String managerName = request.getParameter("managerName");

//retrieve all of the employees who report to a manager

String filter = "(manager=" + managerName + ")";

NamingEnumeration employees = ctx.search("ou=People,dc=example,dc=com",
filter);
...


Under normal conditions, such as searching for employees who report to the manager John Smith, the filter that this code executes will look like the following:


(manager=Smith, John)


However, because the filter is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if managerName does not contain any LDAP meta characters. If an attacker enters the string Hacker, Wiley)(|(objectclass=*) for managerName, then the query becomes the following:


(manager=Hacker, Wiley)(|(objectclass=*))


Based on the permissions with which the query is executed, the addition of the |(objectclass=*) condition causes the filter to match against all entries in the directory, and allows the attacker to retrieve information about the entire pool of users. Depending on the permissions with which the LDAP query is performed, the breadth of this attack may be limited, but if the attacker may control the command structure of the query, such an attack can at least affect all records that the user the LDAP query is executed as can access.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 90
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.7 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 LDAP Injection (WASC-29)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 LDAP Injection
desc.dataflow.java.ldap_injection
Abstract
Constructing a dynamic LDAP filter with user input could allow an attacker to modify the statement's meaning.
Explanation
LDAP injection errors occur when:
1. Data enters a program from an untrusted source.

2. The data is used to dynamically construct an LDAP filter.
Example 1: The following code dynamically constructs and executes an LDAP query that retrieves records for all the employees who report to a given manager. The manager's name is read from an HTTP request, and is therefore untrusted.


...
$managerName = $_POST["managerName"]];

//retrieve all of the employees who report to a manager

$filter = "(manager=" . $managerName . ")";

$result = ldap_search($ds, "ou=People,dc=example,dc=com", $filter);
...


Under normal conditions, such as searching for employees who report to the manager John Smith, the filter that this code executes will look like the following:


(manager=Smith, John)


However, because the filter is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if managerName does not contain any LDAP meta characters. If an attacker enters the string Hacker, Wiley)(|(objectclass=*) for managerName, then the query becomes the following:


(manager=Hacker, Wiley)(|(objectclass=*))


Based on the permissions with which the query is executed, the addition of the |(objectclass=*) condition causes the filter to match against all entries in the directory, and allows the attacker to retrieve information about the entire pool of users. Depending on the permissions with which the LDAP query is performed, the breadth of this attack may be limited, but if the attacker may control the command structure of the query, such an attack can at least affect all records that the user the LDAP query is executed as can access.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 90
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.7 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[32] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 LDAP Injection (WASC-29)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 LDAP Injection
desc.dataflow.php.ldap_injection
Abstract
Executing an LDAP statement that contains a user-controlled value outside the filter string can allow an attacker to alter the statement's meaning or execute arbitrary LDAP commands.
Explanation
LDAP manipulation errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used outside the filter string in a dynamic LDAP statement.
Example 1: The following code reads an ou string from a hidden field submitted through an HTTP request and uses it to create a new DirectoryEntry.


...
de = new DirectoryEntry("LDAP://ad.example.com:389/ou="
+ hiddenOU.Text + ",dc=example,dc=com");
...


Because the connection string includes user input and is performed under an anonymous bind, an attacker could alter the results of the query by specifying an unexpected ou value. The problem is that the developer failed to leverage the appropriate access control mechanisms necessary to restrict subsequent queries to access only employee records that the current user is permitted to read.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 90
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.7 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.dotnet.ldap_manipulation
Abstract
Executing an LDAP statement that contains a user-controlled value outside the filter string can allow an attacker to alter the statement's meaning or execute arbitrary LDAP commands.
Explanation
LDAP manipulation errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used outside the filter string in a dynamic LDAP statement.
Example 1: The following code reads a dn string from a socket and uses it to perform an LDAP query.


...
rc = ldap_simple_bind_s( ld, NULL, NULL );
if ( rc != LDAP_SUCCESS ) {
...
}
...

fgets(dn, sizeof(dn), socket);

if ( ( rc = ldap_search_ext_s( ld, dn, LDAP_SCOPE_BASE,
filter, NULL, 0, NULL, NULL, LDAP_NO_LIMIT,
LDAP_NO_LIMIT, &result ) ) != LDAP_SUCCESS ) {
...


Because base DN originates from user input and the query is performed under an anonymous bind, an attacker could alter the results of the query by specifying an unexpected dn string. The problem is that the developer failed to leverage the appropriate access control mechanisms necessary to restrict subsequent queries to access only employee records that the current user is permitted to read.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 90
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.7 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.cpp.ldap_manipulation
Abstract
Executing an LDAP statement that contains a user-controlled value outside the filter string can allow an attacker to alter the statement's meaning or execute arbitrary LDAP commands.
Explanation
LDAP manipulation errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used outside the filter string in a dynamic LDAP statement.
Example 1: The following code reads a username and password from an HTTP request and uses it to perform an LDAP lookup.


env.put(Context.SECURITY_AUTHENTICATION, "none");
DirContext ctx = new InitialDirContext(env);

String empID = request.getParameter("empID");

try
{
BasicAttribute attr = new BasicAttribute("empID", empID);

NamingEnumeration employee =
ctx.search("ou=People,dc=example,dc=com",attr);
...


Because the query includes user input and is performed under an anonymous bind, the query will return the details for any username specified, regardless of whether it matches the specified password. An attacker may effectively use the following code to lookup the details of any employee in the system, representing a serious privacy violation. The problem is that the developer failed to leverage the appropriate access control mechanisms necessary to restrict the query to access only employee records that the current user is permitted to read.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 90
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.7 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.java.ldap_manipulation
Abstract
Executing an LDAP statement that contains a user-controlled value outside the filter string can allow an attacker to alter the statement's meaning or execute arbitrary LDAP commands.
Explanation
LDAP manipulation errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used outside the filter string in a dynamic LDAP statement.
Example 1: The following code reads a dn string from the user and uses it to perform an LDAP query.


$dn = $_POST['dn'];

if (ldap_bind($ds)) {
...

try {
$rs = ldap_search($ds, $dn, "ou=People,dc=example,dc=com", $attr);
...


Because base dn originates from user input and the query is performed under an anonymous bind, an attacker could alter the results of the query by specifying an unexpected dn string. The problem is that the developer failed to leverage the appropriate access control mechanisms necessary to restrict subsequent queries to access only employee records that the current user is permitted to read.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 90
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.7 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 116
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.php.ldap_manipulation
Abstract
The identified method loads a page into a webview but does not implement any controls to prevent auto-dialing attacks when visiting malicious sites.
Explanation
Unless the contents of the page are completely under your control, the user will be able to click on links that could be used by malicious attackers to initiate automatic telephone or FaceTime calls.

As an example, your application may be showing a blog post, or tweet, that may contain links. The author of the post or tweet your user is visiting will be able to use any arbitrary links on their pages. If your users visit a malicious site and are fooled, or automatically driven to click a link, an attacker may be able to initiate automatic FaceTime or telephone calls and block the device for a few seconds to prevent the user from cancelling the call. Note that even if you control the landing page, the user may end up navigating to different and untrusted sites.

Example 1: The following snippet of code uses a webview to load a site that may contain untrusted links but it does not specify a delegate capable of validating the requests initiated in this webview:


...
NSURL *webUrl = [[NSURL alloc] initWithString:@"https://some.site.com/"];
NSURLRequest *webRequest = [[NSURLRequest alloc] initWithURL:webUrl];
[_webView loadRequest:webRequest];
...
References
[1] Collin Mulliner iOS WebView auto dialer bug
[2] Apple UIWebViewDelegate
[3] Standards Mapping - Common Weakness Enumeration CWE ID 501
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001084, CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-3 Security Function Isolation (P1), SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-3 Security Function Isolation, SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1, MASVS-PLATFORM-2
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[16] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[19] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[20] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[21] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[22] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[23] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002360 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002360 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.objc.link_injection_auto_dial
Abstract
The identified method loads a page into a webview but does not implement any controls to prevent auto-dialing attacks when visiting malicious sites.
Explanation
Unless the contents of the page are completely under your control, the user will be able to click on links that could be used by malicious attackers to initiate automatic telephone or FaceTime calls.

As an example, your application may be showing a blog post, or tweet, that may contain links. The author of the post or tweet your user is visiting will be able to use any arbitrary links on their pages. If your users visit a malicious site and are fooled, or automatically driven to click a link, an attacker may be able to initiate automatic FaceTime or telephone calls and block the device for a few seconds to prevent the user from cancelling the call. Note that even if you control the landing page, the user may end up navigating to different and untrusted sites.

Example 1: The following snippet of code uses a webview to load a site that may contain untrusted links but it does not specify a delegate capable of validating the requests initiated in this webview:


...
let webUrl : NSURL = NSURL(string: "https://some.site.com/")!
let webRequest : NSURLRequest = NSURLRequest(URL: webUrl)
webView.loadRequest(webRequest)
...
References
[1] Collin Mulliner iOS WebView auto dialer bug
[2] Apple UIWebViewDelegate
[3] Standards Mapping - Common Weakness Enumeration CWE ID 501
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001084, CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-3 Security Function Isolation (P1), SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-3 Security Function Isolation, SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1, MASVS-PLATFORM-2
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[16] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[19] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[20] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[21] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[22] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[23] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002360 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002360 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.swift.link_injection_auto_dial
Abstract
The identified method loads a page into a webview but does not implement any controls to verify and validate the links the user will be able to click on.
Explanation
Unless the contents of the page are completely under your control, the user will be able to click on links that may be used by malicious attackers to initiate undesired actions.

As an example, your application may be showing a blog post, or tweet, that may contain links. The author of the post or tweet your user is visiting will be able to use any arbitrary links on their pages. If your users visit a malicious site and are fooled or automatically driven to click a link, an attacker may be able to initiate some potentially dangerous actions such as using special URL schemes to initiate FaceTime or telephone calls, send data or initiate actions in third party applications, etc. Note that even if you control the landing page, the user may end up navigating to different and untrusted sites.

Example 1: The following snippet of code uses a webview to load a site that may contain untrusted links but it does not specify a delegate capable of validating the requests initiated in this webview:


...
NSURL *webUrl = [[NSURL alloc] initWithString:@"https://some.site.com/"];
NSURLRequest *webRequest = [[NSURLRequest alloc] initWithURL:webUrl];
[webView loadRequest: webRequest];
References
[1] Collin Mulliner iOS WebView auto dialer bug
[2] Apple UIWebViewDelegate
[3] Standards Mapping - Common Weakness Enumeration CWE ID 501
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001084, CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-3 Security Function Isolation (P1), SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-3 Security Function Isolation, SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1, MASVS-PLATFORM-2
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[16] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[19] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[20] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[21] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[22] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[23] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002360 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002360 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.objc.link_injection_missing_validation
Abstract
The identified method loads a page into a webview but does not implement any controls to verify and validate the links the user will be able to click on.
Explanation
Unless the contents of the page are completely under your control, the user will be able to click on links that may be used by malicious attackers to initiate undesired actions.

As an example, your application may be showing a blog post, or tweet, that may contain links. The author of the post or tweet your user is visiting will be able to use any arbitrary links on their pages. If your users visit a malicious site and are fooled or automatically driven to click a link, an attacker may be able to initiate some potentially dangerous actions such as using special URL schemes to initiate FaceTime or telephone calls, send data or initiate actions in third party applications, etc. Note that even if you control the landing page, the user may end up navigating to different and untrusted sites.

Example 1: The following snippet of code uses a webview to load a site that may contain untrusted links but it does not specify a delegate capable of validating the requests initiated in this webview:


...
let webUrl = URL(string: "https://some.site.com/")!
let urlRequest = URLRequest(url: webUrl)
webView.load(webRequest)
...
References
[1] Collin Mulliner iOS WebView auto dialer bug
[2] Apple UIWebViewDelegate
[3] Standards Mapping - Common Weakness Enumeration CWE ID 501
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001084, CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-3 Security Function Isolation (P1), SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-3 Security Function Isolation, SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1, MASVS-PLATFORM-2
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[16] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[19] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[20] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[21] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[22] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[23] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002360 CAT II, APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002360 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002360 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[41] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.swift.link_injection_missing_validation
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read a value from a request object. The value then is logged.


...
DATA log_msg TYPE bal_s_msg.

val = request->get_form_field( 'val' ).

log_msg-msgid = 'XY'.
log_msg-msgty = 'E'.
log_msg-msgno = '123'.
log_msg-msgv1 = 'VAL: '.
log_msg-msgv2 = val.

CALL FUNCTION 'BAL_LOG_MSG_ADD'
EXPORTING
I_S_MSG = log_msg
EXCEPTIONS
LOG_NOT_FOUND = 1
MSG_INCONSISTENT = 2
LOG_IS_FULL = 3
OTHERS = 4.
...


If a user submits the string "FOO" for val, the following entry is logged:


XY E 123 VAL: FOO


However, if an attacker submits the string "FOO XY E 124 VAL: BAR", the following entry is logged:


XY E 123 VAL: FOO XY E 124 VAL: BAR


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.abap.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var val:String = String(params["username"]);
var value:Number = parseInt(val);
if (value == Number.NaN) {
trace("Failed to parse val = " + val);
}


If a user submits the string "twenty-one" for val, the following entry is logged:


Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


Failed to parse val=twenty-one

User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.actionscript.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1.Data enters an application from an untrusted source.

2.The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
string val = (string)Session["val"];
try {
int value = Int32.Parse(val);
}
catch (FormatException fe) {
log.Info("Failed to parse val= " + val);
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.log_forging
Abstract
Writing unvalidated user input to log files could allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending upon the nature of the application, log files can be reviewed manually as required, or culled automatically by tools that search the logs for important data points or trends.

Examination of the log files can be hindered or conclusions based on log data can be wrong if an attacker is allowed to supply data to the application that is subsequently logged verbatim. An attacker might insert false entries into the log file by including log entry separator characters in their data. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker injects code or other commands into the log file and takes advantage of a vulnerability in the log processing utility [2].

Example 1: The following code from a CGI script accepts a string submitted by the user and attempts to convert it into the long integer value it represents. If the value fails to parse as an integer, then its value is logged with an error message indicating what happened.


long value = strtol(val, &endPtr, 10);
if (*endPtr != '\0')
syslog(LOG_INFO,"Illegal value = %s",val);
...



If a user submits the string "twenty-one" for val, the following entry is logged:


Illegal value=twenty-one


However, if an attacker submits the string "twenty-one\n\nINFO: User logged out=evil", the following entry is logged:


INFO: Illegal value=twenty-one

INFO: User logged out=evil


Clearly, the attacker may use this same mechanism to insert arbitrary log entries. For this type of log forging attack to be effective, an attacker must first identify valid log entry formats, but this can often be accomplished by through system information leaks in the target application.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cpp.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker might insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker might render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read a value from an HTML form. The value then is logged.


...
01 LOGAREA.
05 VALHEADER PIC X(50) VALUE 'VAL: '.
05 VAL PIC X(50).
...

EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(VAL)
...
END-EXEC.

EXEC DLI
LOG
FROM(LOGAREA)
LENGTH(50)
END-EXEC.
...


If a user submits the string "FOO" for VAL, the following entry is logged:


VAL: FOO


However, if an attacker submits the string "FOO VAL: BAR", the following entry is logged:


VAL: FOO VAL: BAR


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cobol.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.


2. The data is written to an application or system log file.


Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a web form. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


<cflog file="app_log" application="No" Thread="No"
text="Failed to parse val="#Form.val#">


If a user submits the string "twenty-one" for val, the following entry is logged:


"Information",,"02/28/01","14:50:37",,"Failed to parse val=twenty-one"


However, if an attacker submits the string "twenty-one%0a%0a%22Information%22%2C%2C%2202/28/01%22%2C%2214:53:40%22%2C%2C%22User%20logged%20out:%20badguy%22", the following entry is logged:


"Information",,"02/28/01","14:50:37",,"Failed to parse val=twenty-one"

"Information",,"02/28/01","14:53:40",,"User logged out: badguy"


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cfml.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events, view transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
name := r.FormValue("name")
logout := r.FormValue("logout")
...
if (logout){
...
} else {
log.Printf("Attempt to log out: name: %s logout: %s", name, logout)
}
}


If a user submits the string "twenty-one" for logout and he was able to create a user with name "admin", the following entry is logged:


Attempt to log out: name: admin logout: twenty-one


However, if an attacker is able to create a username "admin+logout:+1+++++++++++++++++++++++", the following entry is logged:


Attempt to log out: name: admin logout: 1 logout: twenty-one
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
String val = request.getParameter("val");
try {
int value = Integer.parseInt(val);
}
catch (NumberFormatException nfe) {
log.info("Failed to parse val = " + val);
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.

Some think that in the mobile world, classic web application vulnerabilities, such as log forging, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 2: The following code adapts Example 1 to the Android platform.


...
String val = this.getIntent().getExtras().getString("val");
try {
int value = Integer.parseInt();
}
catch (NumberFormatException nfe) {
Log.e(TAG, "Failed to parse val = " + val);
}
...
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] IDS03-J. Do not log unsanitized user input CERT
[4] Standards Mapping - Common Weakness Enumeration CWE ID 117
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 AU, SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[19] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


var cp = require('child_process');
var http = require('http');
var url = require('url');

function listener(request, response){
var val = url.parse(request.url, true)['query']['val'];
if (isNaN(val)){
console.log("INFO: Failed to parse val = " + val);
}
...
}
...
http.createServer(listener).listen(8080);
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val = twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.log_forging
Abstract
The identified function writes unvalidated user input to the log. An attacker could take advantage of this behavior to forge log entries or inject malicious content into the log.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending upon the nature of the application, log files can be reviewed manually as required, or culled automatically by tools that search the logs for important data points or trends.

Examination of the log files can be hindered or conclusions based on log data can be wrong if an attacker is allowed to supply data to the application that is subsequently logged verbatim. An attacker might insert false entries into the log file by including log entry separator characters in their data. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker injects code or other commands into the log file and takes advantage of a vulnerability in the log processing utility [2].

Example 1: The following code from a CGI script accepts a string submitted by the user and attempts to convert it into the long integer value it represents. If the value fails to parse as an integer, then its value is logged with an error message indicating what happened.


long value = strtol(val, &endPtr, 10);
if (*endPtr != '\0')
NSLog("Illegal value = %s",val);
...



If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Illegal value=twenty-one


However, if an attacker submits the string "twenty-one\n\nINFO: User logged out=evil", the following entry is logged:


INFO: Illegal value=twenty-one

INFO: User logged out=evil


Clearly, the attacker may use this same mechanism to insert arbitrary log entries. For this type of log forging attack to be effective, an attacker must first identify valid log entry formats, but this can often be accomplished through system information leaks in the target application.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.objc.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


<?php
$name =$_GET['name'];
...
$logout =$_GET['logout'];

if(is_numeric($logout))
{
...
}
else
{
trigger_error("Attempt to log out: name: $name logout: $val");
}
?>


If a user submits the string "twenty-one" for logout and he was able to create a user with name "admin", the following entry is logged:


PHP Notice: Attempt to log out: name: admin logout: twenty-one


However, if an attacker is able to create a username "admin+logout:+1+++++++++++++++++++++++", the following entry is logged:


PHP Notice: Attempt to log out: name: admin logout: 1 logout: twenty-one
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.php.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


name = req.field('name')
...
logout = req.field('logout')

if (logout):
...
else:
logger.error("Attempt to log out: name: %s logout: %s" % (name,logout))


If a user submits the string "twenty-one" for logout and he was able to create a user with name "admin", the following entry is logged:


Attempt to log out: name: admin logout: twenty-one


However, if an attacker is able to create a username "admin+logout:+1+++++++++++++++++++++++", the following entry is logged:


Attempt to log out: name: admin logout: 1 logout: twenty-one
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
val = req['val']
unless val.respond_to?(:to_int)
logger.info("Failed to parse val")
logger.info(val)
end
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val
INFO: twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val
INFO: twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.ruby.log_forging
Abstract
The identified function writes unvalidated user input to the log. An attacker could take advantage of this behavior to forge log entries or inject malicious content into the log.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending upon the nature of the application, log files can be reviewed manually as required, or culled automatically by tools that search the logs for important data points or trends.

Examination of the log files can be hindered or conclusions based on log data can be wrong if an attacker is allowed to supply data to the application that is subsequently logged verbatim. An attacker might insert false entries into the log file by including log entry separator characters in their data. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker injects code or other commands into the log file and takes advantage of a vulnerability in the log processing utility [2].

Example 1: The following code accepts a string submitted by the user and attempts to convert it into the integer value it represents. If the value fails to parse as an integer, then its value is logged with an error message indicating what happened.


...
let num = Int(param)
if num == nil {
NSLog("Illegal value = %@", param)
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Illegal value = twenty-one


However, if an attacker submits the string "twenty-one\n\nINFO: User logged out=evil", the following entry is logged:


INFO: Illegal value=twenty-one

INFO: User logged out=evil


Clearly, the attacker may use this same mechanism to insert arbitrary log entries. For this type of log forging attack to be effective, an attacker must first identify valid log entry formats, but this can often be accomplished through system information leaks in the target application.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.swift.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
Dim Val As Variant
Dim Value As Integer
Set Val = Request.Form("val")
If IsNumeric(Val) Then
Set Value = Val
Else
App.EventLog "Failed to parse val=" & Val, 1
End If
...


If a user submits the string "twenty-one" for val, the following entry is logged:


Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0a+User+logged+out%3dbadguy", the following entry is logged:


Failed to parse val=twenty-one

User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.vb.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.



2. The data is written to an application or system log file.



Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker might inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following REST endpoint attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


@HttpGet
global static void doGet() {
RestRequest req = RestContext.request;
String val = req.params.get('val');
try {
Integer i = Integer.valueOf(val);
...
} catch (TypeException e) {
System.Debug(LoggingLevel.INFO, 'Failed to parse val: '+val);
}
}


If a user submits the string "twenty-one" for val, the following entry is logged:


Failed to parse val: twenty-one


However, if an attacker submits the string "twenty-one%0a%0aUser+logged+out%3dbadguy", the following entry is logged:


Failed to parse val: twenty-one

User logged out=badguy


Clearly, attackers might use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, SC-24 Fail in Known State, SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.apex.log_forging__debug_
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation

Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
String val = request.Params["val"];
try {
int value = Int.Parse(val);
}
catch (FormatException fe) {
log.Info("Failed to parse val = " + val);
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.

Some think that in the mobile world, classic web application vulnerabilities, such as log forging, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 2: The following code adapts Example 1 to the Android platform.


...
String val = this.Intent.Extras.GetString("val");
try {
int value = Int.Parse(val);
}
catch (FormatException fe) {
Log.E(TAG, "Failed to parse val = " + val);
}
...
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] IDS03-J. Do not log unsanitized user input CERT
[4] Standards Mapping - Common Weakness Enumeration CWE ID 117
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 AU, SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, SC-24 Fail in Known State, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.log_forging__debug_
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files might be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files might be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker can insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker can render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, an attacher can use corrupted log files to cover their tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker might inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message to indicate what happened.


...
var idValue string

idValue = req.URL.Query().Get("id")
num, err := strconv.Atoi(idValue)

if err != nil {
sysLog.Debug("Failed to parse value: " + idValue)
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers can use this same mechanism to insert arbitrary log entries.

References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] IDS03-J. Do not log unsanitized user input CERT
[4] Standards Mapping - Common Weakness Enumeration CWE ID 117
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 AU, SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, SC-24 Fail in Known State, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.log_forging__debug
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
String val = request.getParameter("val");
try {
int value = Integer.parseInt(val);
}
catch (NumberFormatException nfe) {
log.info("Failed to parse val = " + val);
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.

Some think that in the mobile world, classic web application vulnerabilities, such as log forging, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 2: The following code adapts Example 1 to the Android platform.


...
String val = this.getIntent().getExtras().getString("val");
try {
int value = Integer.parseInt();
}
catch (NumberFormatException nfe) {
Log.e(TAG, "Failed to parse val = " + val);
}
...
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] IDS03-J. Do not log unsanitized user input CERT
[4] Standards Mapping - Common Weakness Enumeration CWE ID 117
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 AU, SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, SC-24 Fail in Known State, SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[17] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.log_forging__debug_
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


var cp = require('child_process');
var http = require('http');
var url = require('url');

function listener(request, response){
var val = url.parse(request.url, true)['query']['val'];
if (isNaN(val)){
console.error("INFO: Failed to parse val = " + val);
}
...
}
...
http.createServer(listener).listen(8080);
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, SC-24 Fail in Known State, SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.log_forging__debug_
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
val = request.GET["val"]
try:
int_value = int(val)
except:
logger.debug("Failed to parse val = " + val)
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, SC-24 Fail in Known State, SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.log_forging__debug_
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
val = req['val']
unless val.respond_to?(:to_int)
logger.debug("Failed to parse val")
logger.debug(val)
end
...


If a user submits the string "twenty-one" for val, the following entry is logged:


DEBUG: Failed to parse val
DEBUG: twenty-one


However, if an attacker submits the string "twenty-one%0a%DEBUG:+User+logged+out%3dbadguy", the following entry is logged:


DEBUG: Failed to parse val
DEBUG: twenty-one

DEBUG: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, SC-24 Fail in Known State, SI-10 Information Input Validation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.ruby.log_forging__debug_
Abstract
Executing IMAP commands coming from an untrusted source can cause the IMAP server to execute malicious commands on behalf of an attacker.
Explanation
IMAP command injection vulnerabilities occur when an attacker may influence the commands sent to an IMAP mail server.

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the IMAP command, the attacker is able to instruct the server to carry out malicious actions such as sending spam.

Example 1: The following code uses an HTTP request parameter to craft a CREATE command that is sent to the IMAP server. An attacker may use this parameter to modify the command sent to the server and inject new commands using CRLF characters.


...
final String foldername = request.getParameter("folder");
IMAPFolder folder = (IMAPFolder) store.getFolder("INBOX");
...
folder.doCommand(new IMAPFolder.ProtocolCommand() {
@Override
public Object doCommand(IMAPProtocol imapProtocol) throws ProtocolException {
try {
imapProtocol.simpleCommand("CREATE " + foldername, null);
} catch (Exception e) {
// Handle Exception
}
return null;
}
});
...
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - Common Weakness Enumeration CWE ID 88, CWE ID 93, CWE ID 147
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [17] CWE ID 077
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [16] CWE ID 077
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[17] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Mail Command Injection (WASC-30)
desc.dataflow.java.mail_command_injection_imap
Abstract
Executing POP3 commands coming from an untrusted source can cause the POP3 server to execute malicious commands on behalf of an attacker.
Explanation
POP3 command injection vulnerabilities occur when an attacker may influence the commands sent to a POP3 mail server.

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the POP3 command, the attacker is able to instruct the server to carry out malicious actions such as sending spam.

Example 1: The following code uses an HTTP request parameter to craft a USER and PASS command that is sent to the POP3 server. An attacker may use this parameter to modify the command sent to the server and inject new commands using CRLF characters.


...
String username = request.getParameter("username");
String password = request.getParameter("password");
...
POP3SClient pop3 = new POP3SClient(proto, false);
pop3.login(username, password)
...
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - Common Weakness Enumeration CWE ID 88, CWE ID 93, CWE ID 147
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [17] CWE ID 077
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [16] CWE ID 077
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[17] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Mail Command Injection (WASC-30)
desc.dataflow.java.mail_command_injection_pop3
Abstract
Executing SMTP commands from an untrusted source can cause the SMTP server to execute malicious commands on behalf of an attacker.
Explanation
These types of vulnerabilities can occur when: SMTP command injection vulnerabilities occur when an attacker can influence the commands sent to an SMTP mail server.

1. Data enters the application from an untrusted source.

2. The data is used as or is part of a string representing a command that is executed by the application.

3. By executing the SMTP command, the attacker can instruct the server to carry out malicious actions such as sending spam.

Example 1: The following code uses an HTTP request parameter to craft a VRFY command that is sent to the SMTP server. An attacker might use this parameter to modify the command sent to the server and inject new commands using CRLF characters.


...
c, err := smtp.Dial(x)
if err != nil {
log.Fatal(err)
}
user := request.FormValue("USER")
c.Verify(user)
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 88, CWE ID 93, CWE ID 147
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [25] CWE ID 077
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [17] CWE ID 077
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [16] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[35] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3570 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Mail Command Injection (WASC-30)
desc.dataflow.golang.mail_command_injection_smtp
Abstract
Executing SMTP commands from an untrusted source can cause the SMTP server to execute malicious commands on behalf of an attacker.
Explanation
SMTP command injection vulnerabilities occur when an attacker may influence the commands sent to an SMTP mail server.

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the SMTP command, the attacker is able to instruct the server to carry out malicious actions such as sending spam.

Example 1: The following code uses an HTTP request parameter to craft a VRFY command that is sent to the SMTP server. An attacker may use this parameter to modify the command sent to the server and inject new commands using CRLF characters.


...
String user = request.getParameter("user");
SMTPSSLTransport transport = new SMTPSSLTransport(session,new URLName(Utilities.getProperty("smtp.server")));
transport.connect(Utilities.getProperty("smtp.server"), username, password);
transport.simpleCommand("VRFY " + user);
...
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - Common Weakness Enumeration CWE ID 88, CWE ID 93, CWE ID 147
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [17] CWE ID 077
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [16] CWE ID 077
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[37] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Mail Command Injection (WASC-30)
desc.dataflow.java.mail_command_injection_smtp
Abstract
Executing SMTP commands from an untrusted source can cause the SMTP server to execute malicious commands on behalf of an attacker.
Explanation
SMTP command injection vulnerabilities occur when an attacker may influence the commands sent to an SMTP mail server.

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the SMTP command, the attacker is able to instruct the server to carry out malicious actions such as sending spam.

Example 1: The following code uses an HTTP request parameter to craft a VRFY command that is sent to the SMTP server. An attacker may use this parameter to modify the command sent to the server and inject new commands using CRLF characters.


...
user = request.GET['user']
session = smtplib.SMTP(smtp_server, smtp_tls_port)
session.ehlo()
session.starttls()
session.login(username, password)
session.docmd("VRFY", user)
...
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - Common Weakness Enumeration CWE ID 88, CWE ID 93, CWE ID 147
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [17] CWE ID 077
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [16] CWE ID 077
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [13] CWE ID 077
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[37] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3570 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Mail Command Injection (WASC-30)
desc.dataflow.python.mail_command_injection_smtp
Abstract
Invoking a Memcached operation with input from an untrusted source might allow an attacker to introduce new key/value pairs in Memcached cache.
Explanation
Memcached injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a Memcached key or value.

Example 1: The following code dynamically constructs a Memcached key.


...
TextClient tc = (TextClient)Client.GetInstance("127.0.0.1", 11211, MemcachedFlags.TextProtocol);
tc.Open();
string id = txtID.Text;
var result = get_page_from_somewhere();
var response = Http_Response(result);
tc.Set("req-" + id, response, TimeSpan.FromSeconds(1000));
tc.Close();
tc = null;
...


The operation that this code intends to execute follows:


set req-1233 0 1000 n
<serialized_response_instance>

Where n is length of the response.

However, because the operation is constructed dynamically by concatenating a constant key prefix and a user input string, an attacker may send the string ignore 0 0 1\r\n1\r\nset injected 0 3600 10\r\n0123456789\r\nset req-, then the operation becomes the following:


set req-ignore 0 0 1
1
set injected 0 3600 10
0123456789
set req-1233 0 0 n
<serialized_response_instance>


The preceding key will successfully add a new key/value pair in the cache injected=0123456789 and the attackers will be able to poison the cache.
References
[1] Novikov The New Page Of Injections Book: Memcached Injections
[2] Standards Mapping - Common Weakness Enumeration CWE ID 20
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.memcached_injection
Abstract
Invoking a Memcached operation with input coming from an untrusted source might allow an attacker to introduce new key/value pairs in Memcached cache.
Explanation
Memcached injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a Memcached key or value.

Example 1: The following code dynamically constructs a Memcached key.


...
def store(request):
id = request.GET['id']
result = get_page_from_somewhere()
response = HttpResponse(result)
cache_time = 1800
cache.set("req-" % id, response, cache_time)
return response
...


The operation that this code intends to execute follows:


set req-1233 0 0 n
<serialized_response_instance>


However, because the operation is constructed dynamically by concatenating a constant key prefix and a user input string, an attacker may send the string ignore 0 0 1\r\n1\r\nset injected 0 3600 10\r\n0123456789\r\nset req-, then the operation becomes the following:


set req-ignore 0 0 1
1
set injected 0 3600 10
0123456789
set req-1233 0 0 n
<serialized_response_instance>


The preceding key will successfully add a new key/value pair in the cache injected=0123456789. Depending on the payload, attackers will be able to poison the cache or execute arbitrary code by injecting a Pickle-serialized payload that will execute arbitrary code upon deserialization.
References
[1] Novikov The New Page Of Injections Book: Memcached Injections
[2] Standards Mapping - Common Weakness Enumeration CWE ID 20
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.memcached_injection