CC
or BCC
that they can use to leak the mail contents to themselves or use the mail server as a spam bot.CC
header with a list of email addresses to spam anonymously because the email is sent from the victim's server.
func handler(w http.ResponseWriter, r *http.Request) {
subject := r.FormValue("subject")
body := r.FormValue("body")
auth := smtp.PlainAuth("identity", "user@example.com", "password", "mail.example.com")
to := []string{"recipient@example.net"}
msg := []byte("To: " + recipient1 + "\r\n" + subject + "\r\n" + body + "\r\n")
err := smtp.SendMail("mail.example.com:25", auth, "sender@example.org", to, msg)
if err != nil {
log.Fatal(err)
}
}
...
subject: [Contact us query] Page not working
...
subject
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Congratulations!! You won the lottery!!!\r\ncc:victim1@mail.com,victim2@mail.com ...", then the SMTP headers would be of the following form:
...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...
CC
or BCC
that they can use to leak the mail contents to themselves or use the mail server as a spam bot.CC
header with a list of email addresses to spam anonymously since the email will be sent from the victim server.
String subject = request.getParameter("subject");
String body = request.getParameter("body");
MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress("webform@acme.com"));
message.setRecipients(Message.RecipientType.TO, InternetAddress.parse("support@acme.com"));
message.setSubject("[Contact us query] " + subject);
message.setText(body);
Transport.send(message);
...
subject: [Contact us query] Page not working
...
subject
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Congratulations!! You won the lottery!!!\r\ncc:victim1@mail.com,victim2@mail.com ...", then the SMTP headers would be of the following form:
...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...
CC
or BCC
that they can use to leak the mail contents to themselves or use the mail server as a spam bot.CC
header with a list of email addresses to spam anonymously since the email will be sent from the victim server.
$subject = $_GET['subject'];
$body = $_GET['body'];
mail("support@acme.com", "[Contact us query] " . $subject, $body);
...
subject: [Contact us query] Page not working
...
subject
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Congratulations!! You won the lottery!!!\r\ncc:victim1@mail.com,victim2@mail.com ...", then the SMTP headers would be of the following form:
...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...
CC
or BCC
that they can use to leak the mail contents to themselves or use the mail server as a spam bot.CC
header with a list of email addresses to spam anonymously since the email will be sent from the victim server.
body = request.GET['body']
subject = request.GET['subject']
session = smtplib.SMTP(smtp_server, smtp_tls_port)
session.ehlo()
session.starttls()
session.login(username, password)
headers = "\r\n".join(["from: webform@acme.com",
"subject: [Contact us query] " + subject,
"to: support@acme.com",
"mime-version: 1.0",
"content-type: text/html"])
content = headers + "\r\n\r\n" + body
session.sendmail("webform@acme.com", "support@acme.com", content)
...
subject: [Contact us query] Page not working
...
subject
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Congratulations!! You won the lottery!!!\r\ncc:victim1@mail.com,victim2@mail.com ...", then the SMTP headers would be of the following form:
...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...
...
Using(SqlConnection DBconn = new SqlConnection("Data Source=210.10.20.10,1433; Initial Catalog=myDataBase;User ID=myUsername;Password=myPassword;"))
{
...
}
...
...
insecure_config = {
'user': username,
'password': retrievedPassword,
'host': databaseHost,
'port': "3306",
'ssl_disabled': True
}
mysql.connector.connect(**insecure_config)
...
HSTS
) headers. This enables attackers to replace SSL/TLS connections with plain HTTP connections and steal sensitive information by performing HTTPS stripping attacks.HSTS
) is a security header that instructs the browser to always connect to the site that returning the HSTS headers over SSL/TLS during a period specified within the header. Any connection to the server over HTTP is automatically replaced with an HTTPS connection, even if the user types a URL with http://
in the browser's URL bar.
<http auto-config="true">
...
<headers>
...
<hsts disabled="true" />
</headers>
</http>
HSTS
) headers, which allows attackers to replace SSL/TLS connections with plain HTTP ones and steal sensitive information by performing HTTPS stripping attacks.HSTS
) is a security header that instructs the browser to always connect to the site returning the HSTS headers over SSL/TLS during a period specified in the header itself. Any connection to the server over HTTP will be automatically replaced with an HTTPS one, even if the user types http://
in the browser URL bar.HSTS
) headers, allowing attackers to replace SSL/TLS connections with plain HTTP ones and steal sensitive information by performing HTTPS stripping attacks.HSTS
) is a security header that instructs the browser to always connect to the site returning the HSTS headers over SSL/TLS during a period specified in the header itself. Any connection to the server over HTTP will be automatically replaced with an HTTPS one, even if the user types http://
in the browser URL bar.
...
TextClient tc = (TextClient)Client.GetInstance("127.0.0.1", 11211, MemcachedFlags.TextProtocol);
tc.Open();
string id = txtID.Text;
var result = get_page_from_somewhere();
var response = Http_Response(result);
tc.Set("req-" + id, response, TimeSpan.FromSeconds(1000));
tc.Close();
tc = null;
...
set req-1233 0 1000 n
<serialized_response_instance>
n
is length of the response.ignore 0 0 1\r\n1\r\nset injected 0 3600 10\r\n0123456789\r\nset req-
, then the operation becomes the following:
set req-ignore 0 0 1
1
set injected 0 3600 10
0123456789
set req-1233 0 0 n
<serialized_response_instance>
injected=0123456789
and the attackers will be able to poison the cache.
...
def store(request):
id = request.GET['id']
result = get_page_from_somewhere()
response = HttpResponse(result)
cache_time = 1800
cache.set("req-" % id, response, cache_time)
return response
...
set req-1233 0 0 n
<serialized_response_instance>
ignore 0 0 1\r\n1\r\nset injected 0 3600 10\r\n0123456789\r\nset req-
, then the operation becomes the following:
set req-ignore 0 0 1
1
set injected 0 3600 10
0123456789
set req-1233 0 0 n
<serialized_response_instance>
injected=0123456789
. Depending on the payload, attackers will be able to poison the cache or execute arbitrary code by injecting a Pickle-serialized payload that will execute arbitrary code upon deserialization.
// Set up the context data
VelocityContext context = new VelocityContext();
context.put( "name", user.name );
// Load the template
String template = getUserTemplateFromRequestBody(request);
RuntimeServices runtimeServices = RuntimeSingleton.getRuntimeServices();
StringReader reader = new StringReader(template);
SimpleNode node = runtimeServices.parse(reader, "myTemplate");
template = new Template();
template.setRuntimeServices(runtimeServices);
template.setData(node);
template.initDocument();
// Render the template with the context data
StringWriter sw = new StringWriter();
template.merge( context, sw );
Example 1
uses Velocity
as the template engine. For that engine, an attacker could submit the following template to run arbitrary commands on the server:
$name.getClass().forName("java.lang.Runtime").getRuntime().exec(<COMMAND>)
app.get('/', function(req, res){
var template = _.template(req.params['template']);
res.write("<html><body><h2>Hello World!</h2>" + template() + "</body></html>");
});
Example 1
uses Underscore.js
as the template engine within a Node.js
application. For that engine, an attacker could submit the following template to run arbitrary commands on the server:
<% cp = process.mainModule.require('child_process');cp.exec(<COMMAND>); %>
Jinja2
template engine.
from django.http import HttpResponse
from jinja2 import Template as Jinja2_Template
from jinja2 import Environment, DictLoader, escape
def process_request(request):
# Load the template
template = request.GET['template']
t = Jinja2_Template(template)
name = source(request.GET['name'])
# Render the template with the context data
html = t.render(name=escape(name))
return HttpResponse(html)
Example 1
uses Jinja2
as the template engine. For that engine, an attacker could submit the following template to read arbitrary files from the server:Example 2: The following example shows how a template is retrieved from an HTTP request and rendered using the
template={{''.__class__.__mro__[2].__subclasses__()[40]('/etc/passwd').read()}}
Django
template engine.
from django.http import HttpResponse
from django.template import Template, Context, Engine
def process_request(request):
# Load the template
template = source(request.GET['template'])
t = Template(template)
user = {"name": "John", "secret":getToken()}
ctx = Context(locals())
html = t.render(ctx)
return HttpResponse(html)
Example 2
uses Django
as the template engine. For that engine, an attacker will not be able to execute arbitrary commands, but they will be able to access all the objects in the template context. In this example, a secret token is available in the context and could be leaked by the attacker.
import (
"crypto/aes"
"crypto/cipher"
"os"
)
...
iv = b'1234567890123456'
CTRstream = cipher.NewCTR(block, iv)
CTRstream.XORKeyStream(plaintext, ciphertext)
...
f := os.Create("data.enc")
f.Write(ciphertext)
f.Close()
Example 1
, because iv
is set as a constant initialization vector, this is susceptible to re-use attacks.
...
const cipher = crypto.createCipheriv("AES-256-CTR", key, 'iv')
const ciphertext = cipher.update(plaintext, 'utf8');
cipher.final();
fs.writeFile('my_encrypted_data', ciphertext, function (err) {
...
});
from Crypto.Cipher import AES
from Crypto import Random
...
key = Random.new().read(AES.block_size)
iv = b'1234567890123456'
cipher = AES.new(key, AES.MODE_CTR, iv, counter)
...
encrypted = cipher.encrypt(data)
f = open("data.enc", "wb")
f.write(encrypted)
f.close()
...
Example 1
, since iv
is set as a constant initialization vector, this will be susceptible to re-use attacks.
require 'openssl'
...
cipher = OpenSSL::Cipher.new('AES-256-CTR')
cipher.encrypt
cipher.iv='iv'
...
encrypted = cipher.update(data) + cipher.final
File.open('my_encrypted_data', 'w') do |file|
file.write(encrypted)
end
Example 1
, since OpenSSL::Cipher#iv=
is set as a constant initialization vector, this will be susceptible to re-use attacks.
@GetMapping("/ai")
String generation(String userInput) {
return this.chatClient.prompt()
.user(userInput)
.call()
.content();
}
message
, and displays it to the user.
const openai = new OpenAI({
apiKey: ...,
});
const chatCompletion = await openai.chat.completions.create(...);
message = res.choices[0].message.content
console.log(chatCompletion.choices[0].message.content)
val chatCompletionRequest = ChatCompletionRequest(
model = ModelId("gpt-3.5-turbo"),
messages = listOf(...)
)
val completion: ChatCompletion = openAI.chatCompletion(chatCompletionRequest)
response.getOutputStream().print(completion.choices[0].message)
message
, and displays it to the user.
client = openai.OpenAI()
res = client.chat.completions.create(...)
message = res.choices[0].message.content
self.writeln(f"<p>{message}<\p>")
chatService.createCompletion(
text,
settings = CreateCompletionSettings(...)
).map(completion =>
val html = Html(completion.choices.head.text)
Ok(html) as HTML
)
...
...
string password = Request.Form["db_pass"]; //gets POST parameter 'db_pass'
SqlConnection DBconn = new SqlConnection("Data Source = myDataSource; Initial Catalog = db; User ID = myUsername; Password = " + password + ";");
...
db_pass
parameter such as:
...
password := request.FormValue("db_pass")
db, err := sql.Open("mysql", "user:" + password + "@/dbname")
...
db_pass
parameter such as:
username = req.field('username')
password = req.field('password')
...
client = MongoClient('mongodb://%s:%s@aMongoDBInstance.com/?ssl=true' % (username, password))
...
password
parameter such as:
hostname = req.params['host'] #gets POST parameter 'host'
...
conn = PG::Connection.new("connect_timeout=20 dbname=app_development user=#{user} password=#{password} host=#{hostname}")
...
host
parameter such as:
permissions := strconv.Atoi(os.Getenv("filePermissions"));
fMode := os.FileMode(permissions)
os.chmod(filePath, fMode);
...
String permissionMask = System.getProperty("defaultFileMask");
Path filePath = userFile.toPath();
...
Set<PosixFilePermission> perms = PosixFilePermissions.fromString(permissionMask);
Files.setPosixFilePermissions(filePath, perms);
...
$rName = $_GET['publicReport'];
chmod("/home/". authenticateUser . "/public_html/" . rName,"0755");
...
publicReport
, such as "../../localuser/public_html/.htpasswd
", the application will make the specified file readable to the attacker.
...
$mask = $CONFIG_TXT['perms'];
chmod($filename,$mask);
...
permissions = os.getenv("filePermissions");
os.chmod(filePath, permissions);
...
...
rName = req['publicReport']
File.chmod("/home/#{authenticatedUser}/public_html/#{rName}", "0755")
...
publicReport
, such as "../../localuser/public_html/.htpasswd
", the application will make the specified file readable to the attacker.
...
mask = config_params['perms']
File.chmod(filename, mask)
...
services
.AddGraphQLServer()
.AddQueryType<Query>()
.AddMutationType<Mutation>();
app.use('/graphql', graphqlHTTP({
schema
}));
app.add_url_rule('/graphql', view_func=GraphQLView.as_view(
'graphql',
schema = schema
))
...
using var channel = GrpcChannel.ForAddress("https://grpcserver.com", new GrpcChannelOptions {
Credentials = ChannelCredentials.Insecure
});
...
...
ManagedChannel channel = Grpc.newChannelBuilder("hostname", InsecureChannelCredentials.create()).build();
...
None
. Data sent with insecure channel credential settings cannot be trusted.root_certificates
parameter will be set to None
, the value of the private_key
parameter will be set to None
, and the value of the certificate_chain
parameter will be set to None
.
...
channel_creds = grpc.ssl_channel_credentials()
...
SmtpClient
is configured incorrectly, not using SSL/TLS to communicate with an SMTP server:
string to = "bob@acme.com";
string from = "alice@acme.com";
MailMessage message = new MailMessage(from, to);
message.Subject = "SMTP client.";
message.Body = @"You can send an email message from an application very easily.";
SmtpClient client = new SmtpClient("smtp.acme.com");
client.UseDefaultCredentials = true;
client.Send(message);
<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
<property name="host" value="smtp.acme.com" />
<property name="port" value="25" />
<property name="javaMailProperties">
<props>
<prop key="mail.smtp.auth">true</prop>
</props>
</property>
</bean>
session = smtplib.SMTP(smtp_server, smtp_port)
session.ehlo()
session.login(username, password)
session.sendmail(frm, to, content)
...
String userName = User.Identity.Name;
String emailId = request["emailId"];
var coll = mongoClient.GetDatabase("MyDB").GetCollection<BsonDocument>("emails");
var docs = coll.Find(new BsonDocument("$where", "this.name == '" + name + "'")).ToList();
...
this.owner == "<userName>" && this.emailId == "<emailId>"
emailId
does not contain a single-quote character. If an attacker with the user name wiley
enters the string "123' || '4' != '5
" for emailId
, then the query becomes the following:
this.owner == 'wiley' && this.emailId == '123' || '4' != '5'
|| '4' != '5'
condition causes the where clause to always evaluate to true
, so the query returns all entries stored in the emails
collection, regardless of the email owner.
...
String userName = ctx.getAuthenticatedUserName();
String emailId = request.getParameter("emailId")
MongoCollection<Document> col = mongoClient.getDatabase("MyDB").getCollection("emails");
BasicDBObject Query = new BasicDBObject();
Query.put("$where", "this.owner == \"" + userName + "\" && this.emailId == \"" + emailId + "\"");
FindIterable<Document> find= col.find(Query);
...
this.owner == "<userName>" && this.emailId == "<emailId>"
emailId
does not contain a double-quote character. If an attacker with the user name wiley
enters the string 123" || "4" != "5
for emailId
, then the query becomes the following:
this.owner == "wiley" && this.emailId == "123" || "4" != "5"
|| "4" != "5"
condition causes the where clause to always evaluate to true, so the query returns all entries stored in the emails
collection, regardless of the email owner.
...
userName = req.field('userName')
emailId = req.field('emaiId')
results = db.emails.find({"$where", "this.owner == \"" + userName + "\" && this.emailId == \"" + emailId + "\""});
...
this.owner == "<userName>" && this.emailId == "<emailId>"
emailId
does not contain a double-quote character. If an attacker with the user name wiley
enters the string 123" || "4" != "5
for emailId
, then the query becomes the following:
this.owner == "wiley" && this.emailId == "123" || "4" != "5"
|| "4" != "5"
condition causes the where
clause to always evaluate to true, so the query returns all entries stored in the emails
collection, regardless of the email owner.root
privileges have caused innumerable Unix security disasters. It is imperative that you carefully review privileged programs for all kinds of security problems, but it is equally important that privileged programs drop back to an unprivileged state as quickly as possible in order to limit the amount of damage that an overlooked vulnerability might be able to cause.root
user to another.root
when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with root privileges. An attacker may be able to leverage these elevated privileges to do further damage.root
privileges have caused innumerable Unix security disasters. It is imperative that you carefully review privileged programs for all kinds of security problems, but it is equally important that privileged programs drop back to an unprivileged state as quickly as possible in order to limit the amount of damage that an overlooked vulnerability might cause.root
user to another.root
when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with root privileges. An attacker might be able to leverage these elevated privileges to do further damage.root
privileges have caused innumerable Unix security disasters. It is imperative that you carefully review privileged programs for all kinds of security problems, but it is equally important that privileged programs drop back to an unprivileged state as quickly as possible in order to limit the amount of damage that an overlooked vulnerability might be able to cause.root
user to another.root
when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with root privileges. An attacker may be able to leverage these elevated privileges to do further damage.root
privileges have caused innumerable Unix security disasters. It is imperative that you carefully review privileged programs for all kinds of security problems, but it is equally important that privileged programs drop back to an unprivileged state as quickly as possible in order to limit the amount of damage that an overlooked vulnerability might be able to cause.root
user to another.root
when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with root privileges. An attacker may be able to leverage these elevated privileges to do further damage.posted
object. FileUpload
is of type System.Web.UI.HtmlControls.HtmlInputFile
.
HttpPostedFile posted = FileUpload.PostedFile;
@Controller
public class MyFormController {
...
@RequestMapping("/test")
public String uploadFile (org.springframework.web.multipart.MultipartFile file) {
...
} ...
}
<?php
$udir = 'upload/'; // Relative path under Web root
$ufile = $udir . basename($_FILES['userfile']['name']);
if (move_uploaded_file($_FILES['userfile']['tmp_name'], $ufile)) {
echo "Valid upload received\n";
} else {
echo "Invalid upload rejected\n";
} ?>
from django.core.files.storage import default_storage
from django.core.files.base import File
...
def handle_upload(request):
files = request.FILES
for f in files.values():
path = default_storage.save('upload/', File(f))
...
<input>
tag of type file
indicates the program accepts file uploads.
<input type="file">
Secure
flag set to true
.Secure
flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.Secure
flag.
...
<configuration>
<system.web>
<authentication mode="Forms">
<forms requireSSL="false" loginUrl="login.aspx">
</forms>
</authentication>
</system.web>
</configuration>
...
Secure
flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Sniffing network traffic over unencrypted wireless connections is a trivial task for attackers, so sending cookies (especially those with session IDs) over HTTP can result in application compromise.Secure
flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.Secure
flag for session cookies.
server.servlet.session.cookie.secure=false
Secure
flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.Secure
flag to true
Secure
flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data or carries a session identifier.Secure
flag.
...
setcookie("emailCookie", $email, 0, "/", "www.example.com");
...
Secure
flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.SESSION_COOKIE_SECURE
property to True
or set it to False
.Secure
flag for each cookie. If the flag is set, the browser will only send the cookie over HTTPS. Sending cookies over an unencrypted channel can expose them to network sniffing attacks, so the secure flag helps keep a cookie's value confidential. This is especially important if the cookie contains private data, session identifiers, or carries a CSRF token.Secure
bit for session cookies.
...
MIDDLEWARE = (
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'csp.middleware.CSPMiddleware',
'django.middleware.security.SecurityMiddleware',
...
)
...
Secure
flag, cookies sent during an HTTPS request will also be sent during subsequent HTTP requests. Attackers can then compromise the cookie by sniffing the unencrypted network traffic, which is particularly easy over wireless networks.MyAccountActions
and a page action method pageAction()
. The pageAction()
method is executed when visiting the page URL, and the server does not check for anti-CSRF tokens.
<apex:page controller="MyAccountActions" action="{!pageAction}">
...
</apex:page>
public class MyAccountActions {
...
public void pageAction() {
Map<String,String> reqParams = ApexPages.currentPage().getParameters();
if (params.containsKey('id')) {
Id id = reqParams.get('id');
Account acct = [SELECT Id,Name FROM Account WHERE Id = :id];
delete acct;
}
}
...
}
<img src="http://my-org.my.salesforce.com/apex/mypage?id=YellowSubmarine" height=1 width=1/>
RequestBuilder rb = new RequestBuilder(RequestBuilder.POST, "/new_user");
body = addToPost(body, new_username);
body = addToPost(body, new_passwd);
rb.sendRequest(body, new NewAccountCallback(callback));
RequestBuilder rb = new RequestBuilder(RequestBuilder.POST, "http://www.example.com/new_user");
body = addToPost(body, "attacker";
body = addToPost(body, "haha");
rb.sendRequest(body, new NewAccountCallback(callback));
example.com
visits the malicious page while they have an active session on the site, they will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.
<http auto-config="true">
...
<csrf disabled="true"/>
</http>
var req = new XMLHttpRequest();
req.open("POST", "/new_user", true);
body = addToPost(body, new_username);
body = addToPost(body, new_passwd);
req.send(body);
var req = new XMLHttpRequest();
req.open("POST", "http://www.example.com/new_user", true);
body = addToPost(body, "attacker");
body = addToPost(body, "haha");
req.send(body);
example.com
visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.
<form method="POST" action="/new_user" >
Name of new user: <input type="text" name="username">
Password for new user: <input type="password" name="user_passwd">
<input type="submit" name="action" value="Create User">
</form>
<form method="POST" action="http://www.example.com/new_user">
<input type="hidden" name="username" value="hacker">
<input type="hidden" name="user_passwd" value="hacked">
</form>
<script>
document.usr_form.submit();
</script>
example.com
visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.buyItem
controller method.
+ nocsrf
POST /buyItem controllers.ShopController.buyItem
shop.com
, she will unwittingly buy items for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.
<form method="POST" action="/new_user" >
Name of new user: <input type="text" name="username">
Password for new user: <input type="password" name="user_passwd">
<input type="submit" name="action" value="Create User">
</form>
<form method="POST" action="http://www.example.com/new_user">
<input type="hidden" name="username" value="hacker">
<input type="hidden" name="user_passwd" value="hacked">
</form>
<script>
document.usr_form.submit();
</script>
example.com
visits the malicious page while she has an active session on the site, she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the application does not have a way to determine the provenance of the request. Any request could be a legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to see the Web page that the bogus request generates, so the attack technique is only useful for requests that alter the state of the application.
var yamlString = getYAMLFromUser();
// Setup the input
var input = new StringReader(yamlString);
// Load the stream
var yaml = new YamlStream();
yaml.Load(input);
var yaml = require('js-yaml');
var untrusted_yaml = getYAMLFromUser();
yaml.load(untrusted_yaml)
import yaml
yamlString = getYamlFromUser()
yaml.load(yamlString)
X-XSS-Protection
header is typically enabled by default in modern browsers. When the header value is set to false (0), cross-site scripting protection is disabled.X-XSS-Protection
header is explicitly disabled which might increase the risk of cross-site scripting attacks.X-XSS-Protection
header is typically enabled by default in modern browsers. When the header value is set to false (0), cross-site scripting protection is disabled.
<http auto-config="true">
...
<headers>
...
<xss-protection xss-protection-enabled="false" />
</headers>
</http>
X-XSS-Protection
header is explicitly disabled which may increase the risk of cross-site scripting attacks.X-XSS-Protection
header is typically enabled by default in modern browsers. When the header value is set to false (0), cross-site scripting protection is disabled.X-XSS-Protection
header is explicitly disabled which may increase the risk of cross-site scripting attacks.X-XSS-Protection
header is typically enabled by default in modern browsers. When the header value is set to false (0), cross-site scripting protection is disabled.Application_BeginRequest
is either empty or does not include a function call to set the X-Content-Type-Options
to nosniff
or attempts to remove that header.X-Content-Type-Options: nosniff
.X-Content-Type-Options
to nosniff
.X-Content-Type-Options: nosniff
for each page that could contain user-controllable content.net.http.DetectContentType()
to determine the response Content-Type:
...
resp, err := http.Get("http://example.com/")
if err != nil {
// handle error
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
content_type := DetectContentType(body)
...
X-Content-Type-Options
to nosniff
or explicitly disables this security header.X-Content-Type-Options: nosniff
.
<http auto-config="true">
...
<headers>
...
<content-type-options disabled="true"/>
</headers>
</http>
X-Content-Type-Options
to nosniff
or explicitly disables this security header.X-Content-Type-Options: nosniff
.X-Content-Type-Options
to nosniff
or explicitly disables this security header.X-Content-Type-Options: nosniff
.