1576 items found
Weaknesses
Abstract
Not validating the Host header can allow an attacker to send a fake Host value that can be used for Cross-Site Request Forgery, cache poisoning attacks, and poisoning links in emails.
Explanation
The Django applications settings specifies "*" as an entry in the ALLOWED_HOSTS setting. This setting is used by django.http.HttpRequest.get_host() to validate the Host header. A value of "*" will allow any host in the Host header. An attacker may use this in cache poisoning attacks or for poisoning links in emails.

Example 1: An application offers a reset password feature where users can submit some kind of unique value to identify themselves (eg: email address) and then a password reset email will be sent with a link to a page to set up a new password. The link sent to the user can be constructed using the Host value to reference the site that serves the reset password feature in order to avoid hardcoded URLs. For example:


...
def reset_password(request):
url = "http://%s/new_password/?token=%s" % (request.get_host(), generate_token())
send_email(reset_link=url)
redirect("home")
...


An attacker may try to reset a victim's password by submitting the victim's email and a fake Host header value pointing to a server he controls. The victim will receive an email with a link to the reset password system and if he decides to visit the link, she will be visiting the attacker-controlled site which will serve a fake form to collect the victim's credentials.
References
[1] Django Foundation Host header validation
[2] Django Foundation ALLOWED_HOSTS
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective C.3.1 - Web Software Attack Mitigation
[5] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.python.django_bad_practices_overly_broad_host_header_verification
Abstract
Pickle-serialized sessions can lead to remote code execution if attackers can control session data.
Explanation
If cookie-based sessions are used and SECRET_KEY is leaked, an attacker will be able to store arbitrary data in the session cookie which will be deserialized in the server leading to arbitrary code execution.

If cookie-based sessions are used, take extra care to make sure that the secret key is always kept completely secret, for any system which might be remotely accessible.

Example 1: The following view method allows an attacker to steal the SECRET_KEY if it is hardcoded in settings.py configuration file:


...
def some_view_method(request):
url = request.GET['url']
if "http://" in url:
content = urllib.urlopen(url)
return HttpResponse(content)
...
Example 1 method checks that the url parameter is a valid URL by checking that "http://" is present in the URL. A malicious attacker may send the following URL to leak the settings.py configuration file that may contain the SECRET_KEY:


file://proc/self/cwd/app/settings.py#http://


Note: "/proc/self/cwd" in UNIX systems points to the process working directory. This allow attackers to reference files without knowing the exact location.
References
[1] Django Foundation Session serialization
[2] Balda Python web frameworks and pickles
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[5] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.python.django_bad_practices_pickle_serialized_sessions
Abstract
Functions that cannot be used safely should never be used.
Explanation
Certain functions behave in dangerous ways regardless of how they are used. Functions in this category were often implemented without taking security concerns into account.

References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 676
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[3] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.5
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-0-5
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.2.2
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[9] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[11] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 676
[25] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP2060.4 CAT II, APP3590.2 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP2060.4 CAT II, APP3590.2 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP2060.4 CAT II, APP3590.2 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP2060.4 CAT II, APP3590.2 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP2060.4 CAT II, APP3590.2 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP2060.4 CAT II, APP3590.2 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP2060.4 CAT II, APP3590.2 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002590 CAT I
[48] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.semantic.cpp.dangerous_function_strcpy
Abstract
Calling sleep() while holding a lock can cause a loss of performance and might cause a deadlock.
Explanation
If multiple threads are trying to obtain a lock on a resource, calling sleep() while holding a lock can cause all of the other threads to wait for the resource to be released, which can result in degraded performance and deadlock.

Example 1: The following code calls sleep() while holding a lock.

ReentrantLock rl = new ReentrantLock();
...
rl.lock();
Thread.sleep(500);
...
rl.unlock();
References
[1] LCK09-J. Do not perform operations that can block while holding a lock CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 662
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000336, CCI-000366, CCI-001094
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-4 Security Impact Analysis (P2), CM-6 Configuration Settings (P1), SC-5 Denial of Service Protection (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-4 Impact Analyses, CM-6 Configuration Settings, SC-5 Denial of Service Protection
[6] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[8] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II, APSC-DV-002950 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II, APSC-DV-002950 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II, APSC-DV-002950 CAT II
[31] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[32] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.code_correctness_call_to_sleep_in_lock
Abstract
Failure to follow security best practices guidelines established for the underlying technology can expose an application to exploits targeting known security weaknesses.
Explanation
Fingerprinting the technology underlying the target application allows attackers to:
1. Target security weaknesses resulting from insecure development practices commonly observed in applications based on detected technology

Example 1: Hardcoded credentials and encryption keys in Java applets
2. Exploit known security issues reported against the detected technology
References
[1] Standards Mapping - OWASP Mobile 2024 M2 Inadequate Supply Chain Security
[2] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 10.2 - Threat and Vulnerability Management
[3] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 10.2 - Threat and Vulnerability Management
[4] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 10.2 - Threat and Vulnerability Management, Control Objective C.1.6 - Web Software Components & Services
[5] Standards Mapping - Web Application Security Consortium Version 2.00 Fingerprinting (WASC-45)
desc.dynamic.xtended_preview.insecure_deployment_known_technology_fingerprint
Abstract
The variable is of a type which has been annotated as dangerous.
Explanation
The annotation FortifyDangerous has been applied to this type. This is used to indicate that it is dangerous and all uses should be examined for safety.

References
[1] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[2] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[3] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[4] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[5] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[8] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[9] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[10] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
desc.structural.java.dangerous_class_variable
Abstract
The program fails to set the handle owner in order to reliably release a handle.
Explanation
A handle is a reference that represents a system resource such as a portion of memory or a file. In this case, the code does not set the current object as the owner of the underlying handle, which fails to reliably release the handle after the object has been disposed.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, they can try to launch a denial of service by depleting the resource pool.

Example 1: The following code creates a new instance of SafeEvpPKeyHandle, but fails to reliably let the object release the handle during the finalization phase by setting the ownsHandle parameter to false.

var pkey = NativeMethods.ENGINE_LOAD_SSL_PRIVATE_KEY(...);

var safeEvpHandle = new SafeEvpPKeyHandle(handle: handle, ownsHandle: false);

if (safeEvpHandle.IsInvalid) {
...
}
safeEvpHandle.close();
References
[1] Microsoft SafeEvpPKeyHandle Constructors
[2] Standards Mapping - Common Weakness Enumeration CWE ID 772
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[15] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[16] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[18] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 404
[19] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.semantic.dotnet.unreleased_resource_handle_owner
Abstract
Explicit requests for garbage collection are a bellwether indicating likely performance problems.
Explanation
At some point in every Java developer's career, a problem surfaces that appears to be so mysterious, impenetrable, and impervious to debugging that there seems to be no alternative but to blame the garbage collector. Especially when the bug is related to time and state, there may be a hint of empirical evidence to support this theory: inserting a call to System.gc() sometimes seems to make the problem go away.

In almost every case we have seen, calling System.gc() is the wrong thing to do. In fact, calling System.gc() can cause performance problems if it is invoked too often.
References
[1] D. H. Hovermeyer FindBugs User Manual
[2] Standards Mapping - Common Weakness Enumeration CWE ID 664
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[6] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[8] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[32] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.java.code_correctness_call_to_system_gc
Abstract
The program calls a thread's run() method instead of calling start().
Explanation
In most cases a direct call to a Thread object's run() method is a bug. The programmer intended to begin a new thread of control, but accidentally called run() instead of start(), so the run() method will execute in the caller's thread of control.

Example 1: The following excerpt from a Java program mistakenly calls run() instead of start().


Thread thr = new Thread() {
public void run() {
...
}
};

thr.run();
References
[1] THI00-J. Do not invoke Thread.run() CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 572
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[6] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[8] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[32] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.java.code_correctness_call_to_thread_run
Abstract
This class implements a clone() method but does not implement the Cloneable interface.
Explanation
It appears that the programmer intended for this class to implement the Cloneable interface because it implements a method named clone(). However, the class does not implement the Cloneable interface and the clone() method will not behave correctly.

Example 1: Calling clone() for this class will result in a CloneNotSupportedException.

public class Kibitzer {
public Object clone() throws CloneNotSupportedException {
...
}
}

References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 498
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[5] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[7] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[30] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[31] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.java.code_correctness_class_does_not_implement_cloneable
Abstract
Freeing a stack buffer will result in unexpected program behavior.
Explanation
Do not explicitly deallocate stack memory. A function that defines a stack buffer will automatically deallocate the buffer when the function returns.
Example 1:

void clean_up()
{
char tmp[256];
...
free(tmp);
return;
}


Explicitly freeing stack memory can corrupt memory allocation data structures. It can lead to abnormal program termination or further data corruption.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 590
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 22.2
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 22.2
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[9] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[32] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[33] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.code_correctness_memory_free_on_stack_variable
Abstract
A web application should not attempt to shut down its container.
Explanation
It is never a good idea for a web application to attempt to shut down the application container. A call to a termination method is probably part of leftover debug code or code imported from a non-J2EE application.
References
[1] ERR09-J. Do not allow untrusted code to terminate the JVM CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 382
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[6] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[8] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[32] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.semantic.java.j2ee_badpractices_jvm_termination
Abstract
Explicitly deleting a managed pointer will cause the program to crash or otherwise misbehave.
Explanation
Deleting a managed pointer will cause the program to crash or otherwise do the wrong thing when, later on, the pointer management code assumes that the pointer is still valid. The following example illustrates the error.


std::auto_ptr<foo> p(new foo);
foo* rawFoo = p.get();
delete rawFoo;


The only exception to this rule comes when a managed pointer class supports a "detach" operation allowing the programmer to take control of memory management for the given pointer. If the program detaches the pointer from the management class before calling delete, the management class knows not to use the pointer any further.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 758
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[5] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[7] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[30] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[31] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.redundant_delete
Abstract
The _alloca() function can throw a stack overflow exception, potentially causing the program to crash.
Explanation
The _alloca() function allocates memory on the stack. If an allocation request is too large for the available stack space, _alloca() throws an exception. If the exception is not caught, the program will crash, potentially enabling a denial of service attack.
_alloca() has been deprecated as of Microsoft Visual Studio 2005(R). It has been replaced with the more secure _alloca_s().
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 248
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[3] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[9] Standards Mapping - OWASP Top 10 2004 A7 Improper Error Handling
[10] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.7
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.2, Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention, Control Objective B.3.2 - Terminal Software Attack Mitigation
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention, Control Objective B.3.2 - Terminal Software Attack Mitigation
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3120 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3120 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3120 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3120 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3120 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3120 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3120 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
desc.semantic.cpp.often_misused_exception_handling._alloca
Abstract
The program fails to reliably release a handle.
Explanation
A handle is a reference that represents a system resource such as a portion of memory or a file. In this case, the code fails to reliably release a handle by using the handle after it has been invalidated.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, they can try to launch a denial of service by depleting the resource pool.

Example 1: The following code creates a new instance of SafeEvpPKeyHandle, but calls the DangerousGetHandle after the handle has been invalidated by SetHandleAsInvalid, which potentially returns a stale handle value.

var pkey = NativeMethods.ENGINE_LOAD_SSL_PRIVATE_KEY(...);
var safeEvpHandle = new SafeEvpPKeyHandle(handle: handle, ownsHandle: true);
...
safeEvpHandle.SetHandleAsInvalid();
...
var handle = safeEvpHandle.DangerousGetHandle();
...
safeEvpHandle.close();
References
[1] Microsoft SafeHandle.DangerousGetHandle Method
[2] Standards Mapping - Common Weakness Enumeration CWE ID 772
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[15] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[16] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[18] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 404
[19] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[42] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[43] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.semantic.dotnet.unreleased_resource_handle_invalid
Abstract
The program creates a hidden form field.
Explanation
Programmers often trust the contents of hidden fields, expecting that users will not be able to view them or manipulate their contents. Attackers will violate these assumptions. They will examine the values written to hidden fields and alter them or replace the contents with attack data.

Example 1:

HtmlInputHidden hidden = new HtmlInputHidden();


If hidden fields carry sensitive information, this information will be cached the same way the rest of the page is cached. This can lead to sensitive information being tucked away in the browser cache without the user's knowledge.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 472
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002420
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity
[5] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[6] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[7] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[8] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 642
[9] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3610 CAT I
[10] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3610 CAT I
[11] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3610 CAT I
[12] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3610 CAT I
[13] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3610 CAT I
[14] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3610 CAT I
[15] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3610 CAT I
[16] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002485 CAT I
[17] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002485 CAT I
[18] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002485 CAT I
[19] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002485 CAT I
[20] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002485 CAT I
[21] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002485 CAT I
[22] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002485 CAT I
[23] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002485 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002485 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002485 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002485 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002485 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002485 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002485 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002485 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002485 CAT I
[32] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[33] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.dotnet.hidden_field
Abstract
The program creates a hidden form field.
Explanation
Programmers often trust the contents of hidden fields, expecting that users will not be able to view them or manipulate their contents. Attackers will violate these assumptions. They will examine the values written to hidden fields and alter them or replace the contents with attack data.

Example 1:

Hidden hidden = new Hidden(element);


If hidden fields carry sensitive information, this information will be cached the same way the rest of the page is cached. This can lead to sensitive information being tucked away in the browser cache without the user's knowledge.
References
[1] IDS14-J. Do not trust the contents of hidden form fields CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 472
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002420
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity
[6] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[7] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[8] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[9] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 642
[10] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3610 CAT I
[11] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3610 CAT I
[12] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3610 CAT I
[13] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3610 CAT I
[14] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3610 CAT I
[15] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3610 CAT I
[16] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3610 CAT I
[17] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002485 CAT I
[18] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002485 CAT I
[19] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002485 CAT I
[20] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002485 CAT I
[21] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002485 CAT I
[22] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002485 CAT I
[23] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002485 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002485 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002485 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002485 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002485 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002485 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002485 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002485 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002485 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002485 CAT I
[33] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[34] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.java.hidden_field
Abstract
A hidden form field is used.
Explanation
Programmers often trust the contents of hidden fields, expecting that users will not be able to view them or manipulate their contents. Attackers will violate these assumptions. They will examine the values written to hidden fields and alter them or replace the contents with attack data.

Example 1: An <input> tag of type hidden indicates the use of a hidden field.

<input type="hidden">


If hidden fields carry sensitive information, this information will be cached the same way the rest of the page is cached. This can lead to sensitive information being tucked away in the browser cache without the user's knowledge.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 472
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002420
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity
[5] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[6] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[7] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[8] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 642
[9] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3610 CAT I
[10] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3610 CAT I
[11] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3610 CAT I
[12] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3610 CAT I
[13] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3610 CAT I
[14] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3610 CAT I
[15] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3610 CAT I
[16] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002485 CAT I
[17] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002485 CAT I
[18] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002485 CAT I
[19] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002485 CAT I
[20] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002485 CAT I
[21] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002485 CAT I
[22] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002485 CAT I
[23] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002485 CAT I
[24] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002485 CAT I
[25] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002485 CAT I
[26] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002485 CAT I
[27] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002485 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002485 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002485 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002485 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002485 CAT I
[32] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[33] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.content.html.hidden_field
Abstract
An implicit PendingIntent has been detected. Implicit pending intents might result in security vulnerabilities such as denial of service, private and system information leakage, and privilege escalation.
Explanation
Android Intents are used to bind applications and application components together by providing instruction on actions that a given component performs. Pending intents are created to deliver the Intent at a later time. Implicit intents facilitate the calling of intents from any given external component, using a general name and filter to determine execution.

When an implicit Intent is created as a PendingIntent, this might allow for the Intent to be sent to an unintended component that runs outside of the intended temporal context, leaving the system vulnerable to exploit vectors such as denial of service, private and system information leakage, and privilege escalation.

Example 1: The following code uses an implicit PendingIntent.


...
val imp_intent = Intent()
val flag_mut = PendingIntent.FLAG_MUTABLE
val pi_flagmutable_impintintent = PendingIntent.getService(
this,
0,
imp_intent,
flag_mut
)
...
References
[1] Remediation for Implicit PendingIntent Vulnerability
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[40] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[41] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.intent_manipulation_implicit_pending_intent
Abstract
The use of hardcoded file separators causes portability problems.
Explanation
Different operating systems use different characters as file separators. For example, Microsoft Windows systems use "\", while UNIX systems use "/". When applications have to run on different platforms, the use of hardcoded file separators can lead to incorrect execution of application logic and potentially a denial of service.

Example 1: The following code uses a hardcoded file separator to open a file:


...
var file:File = new File(directoryName + "\\" + fileName);
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 474
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[5] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[11] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[12] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[13] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[14] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002520 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002520 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002520 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002520 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002520 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002520 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002520 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002520 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002520 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002520 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002520 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002520 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002520 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002520 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002520 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002520 CAT II
desc.dataflow.actionscript.portability_flaw_file_separator
Abstract
The use of hardcoded file separators causes portability problems.
Explanation
Different operating systems use different characters as file separators. For example, Microsoft Windows systems use "\", while UNIX systems use "/". When applications have to run on different platforms, the use of hardcoded file separators can lead to incorrect execution of application logic and potentially a denial of service.

Example 1: The following code uses a hardcoded file separator to open a file:


...
FileStream f = File.Create(directoryName + "\\" + fileName);
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 474
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[5] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[11] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[12] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[13] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[14] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002520 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002520 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002520 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002520 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002520 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002520 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002520 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002520 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002520 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002520 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002520 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002520 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002520 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002520 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002520 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002520 CAT II
desc.dataflow.dotnet.portability_flaw_file_separator
Abstract
The use of hardcoded file separators causes portability problems.
Explanation
Different operating systems use different characters as file separators. For example, Microsoft Windows systems use "\", while UNIX systems use "/". When applications have to run on different platforms, the use of hardcoded file separators can lead to incorrect execution of application logic and potentially a denial of service.

Example 1: The following code uses a hardcoded file separator to open a file:


...
File file = new File(directoryName + "\\" + fileName);
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 474
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[5] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[11] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[12] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[13] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[14] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002520 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002520 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002520 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002520 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002520 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002520 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002520 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002520 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002520 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002520 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002520 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002520 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002520 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002520 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002520 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002520 CAT II
desc.dataflow.java.portability_flaw_file_separator
Abstract
The use of hardcoded file separators causes portability problems.
Explanation
Different operating systems use different characters as file separators. For example, Microsoft Windows systems use "\", while UNIX systems use "/". When applications have to run on different platforms, the use of hardcoded file separators can lead to incorrect execution of application logic and potentially a denial of service.

Example 1: The following code uses a hardcoded file separator to open a file:


...
os.open(directoryName + "\\" + fileName);
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 474
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[5] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[11] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[12] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[13] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[14] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002520 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002520 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002520 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002520 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002520 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002520 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002520 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002520 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002520 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002520 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002520 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002520 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002520 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002520 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002520 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002520 CAT II
desc.dataflow.python.portability_flaw_file_separator
Abstract
An implicit internal Intent has been detected. Implicit internal intents might expose the system to man-in-the-middle style attacks on internal components.
Explanation
An internal Intent uses a custom action as defined by an internal component. Implicit intents can facilitate the calling of intents from any given external component without knowledge of the specific component. Combining the two allows for an application to access intents specified for a specific internal use from outside of the desired application context.

The ability to process an internal Intent from an external application can enable for a wide variety of man-in-the-middle exploits ranging in severity from information leakage and denial of service to remote code execution, depending on the capacity of the internal action specified by the Intent.

Example 1: The following code uses an implicit internal Intent.


...
val imp_internal_intent_action = Intent("INTERNAL_ACTION_HERE")
startActivity(imp_internal_intent_action)
...
References
[1] Remediation of Implicit Internal Intent Vulnerability
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[40] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[41] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.intent_manipulation_implicit_internal_intent
Abstract
A PendingIntent has been detected that has its flag value set to FLAG_MUTABLE. Pending intents created with the flag value of FLAG_MUTABLE are susceptible to having unspecified Intent fields set downstream, which can modify the capacity of the Intent and leave the system open to vulnerability.
Explanation
Allowing modification of the underlying Intent of a PendingIntent after its creation can leave a system open to attack. This mostly depends on the overall capability of the underlying Intent. In most cases, it is best practice to prevent potential issues by setting the PendingIntent flag to FLAG_IMMUTABLE.

Example 1: The following includes a PendingIntent created with a flag value of FLAG_MUTABLE.


...
val intent_flag_mut = Intent(Intent.ACTION_GTALK_SERVICE_DISCONNECTED, Uri.EMPTY, this, DownloadService::class.java)
val flag_mut = PendingIntent.FLAG_MUTABLE

val pi_flagmutable = PendingIntent.getService(
this,
0,
intent_flag_mut,
flag_mut
)
...
References
[1] Remediation for Implicit PendingIntent Vulnerability
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[40] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[41] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.intent_manipulation_mutable_pending_intent