allUsers
or allAuthenticatedUsers
a Cloud KMS CryptoKey role gives anyone access to sensitive data.
- name: AKS Instance
azure_rm_aks:
name:
resource_group: testResourceGroup
location: eastus
...
addon:
monitoring:
log_analytics_workspace_resource_id: logws001
enabled: no
resource example 'Microsoft.ContainerService/managedClusters@2018-03-31' = {
...
properties: {
...
addonProfiles: {}
}
}
{
"name": "[split(parameters('aksResourceId'),'/')[8]]",
"type": "Microsoft.ContainerService/managedClusters",
"apiVersion": "2018-03-31",
"properties": {
"mode": "Incremental",
"id": "[parameters('aksResourceId')]",
}
}
<div id="myDiv">
Employee ID: <input type="text" id="eid"><br>
...
<button>Show results</button>
</div>
<div id="resultsDiv">
...
</div>
$(document).ready(function(){
$("#myDiv").on("click", "button", function(){
var eid = $("#eid").val();
$("resultsDiv").append(eid);
...
});
});
eid
contains only standard alphanumeric text. If eid
has a value that includes metacharacters or source code, then after the user clicks the button, the code is added to the DOM for the browser to execute. If an attacker can convince a user to input malicious input into the text input, then this is simply a DOM-based XSS.
...
DATA: lo_hmac TYPE Ref To cl_abap_hmac,
Input_string type string.
CALL METHOD cl_abap_hmac=>get_instance
EXPORTING
if_algorithm = 'SHA3'
if_key = space
RECEIVING
ro_object = lo_hmac.
" update HMAC with input
lo_hmac->update( if_data = input_string ).
" finalise hmac
lo_digest->final( ).
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
using (HMAC hmac = HMAC.Create("HMACSHA512"))
{
string hmacKey = "";
byte[] keyBytes = Encoding.ASCII.GetBytes(hmacKey);
hmac.Key = keyBytes;
...
}
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
import "crypto/hmac"
...
hmac.New(md5.New, []byte(""))
...
Example 1
might run successfully, but anyone who has access to it can determine that it uses an empty HMAC key. After the program ships, there is no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
private static String hmacKey = "";
byte[] keyBytes = hmacKey.getBytes();
...
SecretKeySpec key = new SecretKeySpec(keyBytes, "SHA1");
Mac hmac = Mac.getInstance("HmacSHA1");
hmac.init(key);
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
let hmacKey = "";
let hmac = crypto.createHmac("SHA256", hmacKey);
hmac.update(data);
...
Example 1
might run successfully, but anyone with access to it might figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function.
...
CCHmac(kCCHmacAlgSHA256, "", 0, plaintext, plaintextLen, &output);
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
import hmac
...
mac = hmac.new("", plaintext).hexdigest()
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
digest = OpenSSL::HMAC.digest('sha256', '', data)
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.
...
CCHmac(UInt32(kCCHmacAlgSHA256), "", 0, plaintext, plaintextLen, &output)
...
Example 1
may run successfully, but anyone who has access to it will be able to figure out that it uses an empty HMAC key. After the program ships, there is likely no way to change the empty HMAC key unless the program is patched. A devious employee with access to this information could use it to compromise the HMAC function. Also, the code in Example 1
is vulnerable to forgery and key recovery attacks.--kubelet-client-certificate
flag and the --kubelet-client-key
flag respectively to enable certificate-based authentication to Kubelets.
...
spec:
containers:
- command:
- kube-apiserver
- --audit-log-maxage=50
- --audit-log-maxbackup=20
- --audit-log-maxsize=200
image: gcr.io/google_containers/kube-apiserver-amd64:v1.6.0
...
script-src
, img-src
, object-src
, style_src
, font-src
, media-src
, frame-src
, connect-src
.*
to indicate all or part of the source. None of the directives are mandatory. Browsers will either allow all sources for an unlisted directive or will derive its value from the optional default-src
directive. Furthermore, the specification for this header has evolved over time. It was implemented as X-Content-Security-Policy
in Firefox until version 23 and in IE until version 10, and was implemented as X-Webkit-CSP
in Chrome until version 25. Both of the names are deprecated in favor of the now standard name Content Security Policy
. Given the number of directives, two deprecated alternate names, and the way multiple occurrences of the same header and repeated directives in a single header are treated, there is a high probability that a developer might misconfigure this header.unsafe-inline
or unsafe-eval
defeats the purpose of CSP.script-src
directive is set but no script nonce
is configured.frame-src
is set but no sandbox
is configured.django-csp
configuration uses unsafe-inline
and unsafe-eval
insecure directives to allow inline scripts and code evaluation:
...
MIDDLEWARE = (
...
'csp.middleware.CSPMiddleware',
...
)
...
CSP_DEFAULT_SRC = ("'self'", "'unsafe-inline'", "'unsafe-eval'", 'cdn.example.net')
...
script-src
img-src
object-src
style_src
font-src
media-src
frame-src
connect-src
default-src
directive. Furthermore, the specification for this header has evolved over time. It was implemented as X-Content-Security-Policy
in Firefox until version 23, in Internet Explorer until version 10, and was implemented as X-Webkit-CSP
in Chrome until version 25. Both of the names are deprecated in favor of the now standard name Content Security Policy. Given the umber of directives, two deprecated alternate names, and the way multiple occurrences of the same header and repeat directives in a single header are treated, there is a high probability that a developer might misconfigure this header.throw
statement inside a finally
block breaks the logical progression through the try-catch-finally
.finally
blocks are always executed after their corresponding try-catch
blocks and are often used to free allocated resources, such as file handles or database cursors. Throwing an exception in a finally
block can bypass critical cleanup code since normal program execution will be disrupted.stmt.close()
is bypassed when the FileNotFoundException
is thrown.
public void processTransaction(Connection conn) throws FileNotFoundException
{
FileInputStream fis = null;
Statement stmt = null;
try
{
stmt = conn.createStatement();
fis = new FileInputStream("badFile.txt");
...
}
catch (FileNotFoundException fe)
{
log("File not found.");
}
catch (SQLException se)
{
//handle error
}
finally
{
if (fis == null)
{
throw new FileNotFoundException();
}
if (stmt != null)
{
try
{
stmt.close();
}
catch (SQLException e)
{
log(e);
}
}
}
}
--kubelet-certificate-authority
flag.
...
spec:
containers:
- command:
- kube-apiserver
- --audit-log-maxage=50
- --audit-log-maxbackup=20
- --audit-log-maxsize=200
image: gcr.io/google_containers/kube-apiserver-amd64:v1.6.0
...
services-config.xml
descriptor file specifies a "Logging" XML element to describe various aspects of logging. It looks like the following:
<logging>
<target class="flex.messaging.log.ConsoleTarget" level="Debug">
<properties>
<prefix>[BlazeDS]</prefix>
<includeDate>false</includeDate>
<includeTime>false</includeTime>
<includeLevel>false</includeLevel>
<includeCategory>false</includeCategory>
</properties>
<filters>
<pattern>Endpoint.*</pattern>
<pattern>Service.*</pattern>
<pattern>Configuration</pattern>
</filters>
</target>
</logging>
target
tag takes an optional attribute called level
, which indicates the log level. If the debug level is set to too detailed a level, your application may write sensitive data to the log file.http://www.example.com/sws/manager.pl?add&pass=PassWord
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
Cookie cookie = new Cookie('author', author, '/', -1, false);
ApexPages.currentPage().setCookies(new Cookie[] {cookie});
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
author
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response is split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
Example 1
to the Android platform.Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.
...
CookieManager webCookieManager = CookieManager.getInstance();
String author = this.getIntent().getExtras().getString(AUTHOR_PARAM);
String setCookie = "author=" + author + "; max-age=" + cookieExpiration;
webCookieManager.setCookie(url, setCookie);
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
<?php
$author = $_GET['AUTHOR_PARAM'];
...
header("author: $author");
?>
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
location = req.field('some_location')
...
response.addHeader("location",location)
HTTP/1.1 200 OK
...
location: index.html
...
some_location
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
location: index.html
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
sprintf()
, FormatMessageW()
, or syslog()
.snprintf()
.
int main(int argc, char **argv){
char buf[128];
...
snprintf(buf,128,argv[1]);
}
%x
, than the function takes as arguments to be formatted. (In this example, the function takes no arguments to be formatted.) By using the %n
formatting directive, the attacker may write to the stack, causing snprintf()
to write the number of bytes output thus far to the specified argument (rather than reading a value from the argument, which is the intended behavior). A sophisticated version of this attack will use four staggered writes to completely control the value of a pointer on the stack.
printf("%d %d %1$d %1$d\n", 5, 9);
5 9 5 5
Example 1
.syslog()
function is sometimes used as follows:
...
syslog(LOG_ERR, cmdBuf);
...
syslog()
is a format string, any formatting directives included in cmdBuf
are interpreted as described in Example 1
.syslog()
:
...
syslog(LOG_ERR, "%s", cmdBuf);
...
sprintf()
, FormatMessageW()
, syslog()
, NSLog
, or NSString.stringWithFormat
Example 1: The following code utilizes a command line argument as a format string in NSString.stringWithFormat:
.
int main(int argc, char **argv){
char buf[128];
...
[NSString stringWithFormat:argv[1], argv[2] ];
}
%x
, than the function takes as arguments to be formatted. (In this example, the function takes no arguments to be formatted.)
printf("%d %d %1$d %1$d\n", 5, 9);
5 9 5 5
Example 1
.syslog()
function is sometimes used as follows:
...
syslog(LOG_ERR, cmdBuf);
...
syslog()
is a format string, any formatting directives included in cmdBuf
are interpreted as described in Example 1
.syslog()
:Example 4: Apple core classes provide interesting avenues for exploiting format string vulnerabilities.
...
syslog(LOG_ERR, "%s", cmdBuf);
...
String.stringByAppendingFormat()
function is sometimes used as follows:
...
NSString test = @"Sample Text.";
test = [test stringByAppendingFormat:[MyClass
formatInput:inputControl.text]];
...
stringByAppendingFormat()
:
...
NSString test = @"Sample Text.";
test = [test stringByAppendingFormat:@"%@", [MyClass
formatInput:inputControl.text]];
...
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
@HttpGet
global static void doGet() {
...
Map<String, String> params = ApexPages.currentPage().getParameters();
RestResponse res = RestContext.response;
res.addHeader(params.get('name'), params.get('value'));
...
}
author
and Jane Smith
, the HTTP response including this header might take the following form:
HTTP/1.1 200 OK
...
author:Jane Smith
...
HTTP/1.1 200 OK\r\n...foo
and bar
, then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
HTTP/1.1 200 OK
...
foo:bar
HttpResponse.AddHeader()
method. If you are using the latest .NET framework that prevents setting headers with new line characters, then your application might not be vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
Author.Text
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
author
, from an HTML form and sets it in a cookie header of an HTTP response.
...
EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(AUTHOR)
...
END-EXEC.
EXEC CICS
WEB WRITE
HTTPHEADER(COOKIE)
VALUE(AUTHOR)
...
END-EXEC.
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from a web form and sets it in a cookie header of an HTTP response.
<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1/1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final contentType = headers.value('content-type');
final client = HttpClient();
final clientRequest = await client.getUrl(Uri.parse('https://example.com'));
clientRequest.headers.add('Content-Type', contentType as Object);
});
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and sets it in a cookie header of an HTTP response.
String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.name
and value
may be controlled by an attacker. The code sets an HTTP header whose name and value may be controlled by an attacker:
...
NSURLSessionConfiguration * config = [[NSURLSessionConfiguration alloc] init];
NSMutableDictionary *dict = @{};
[dict setObject:value forKey:name];
[config setHTTPAdditionalHeaders:dict];
...
author
and Jane Smith
, the HTTP response including this header might take the following form:
HTTP/1.1 200 OK
...
author:Jane Smith
...
HTTP/1.1 200 OK\r\n...foo
and bar
, then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
HTTP/1.1 200 OK
...
foo:bar
header()
function. If your version of PHP prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
<?php
$location = $_GET['some_location'];
...
header("location: $location");
?>
HTTP/1.1 200 OK
...
location: index.html
...
some_location
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
location: index.html
HTTP/1.1 200 OK
...
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
-- Assume QUERY_STRING looks like AUTHOR_PARAM=Name
author := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 14);
OWA_UTIL.mime_header('text/html', false);
OWA_COOKE.send('author', author);
OWA_UTIL.http_header_close;
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
location = req.field('some_location')
...
response.addHeader("location",location)
HTTP/1.1 200 OK
...
location: index.html
...
some_location
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
location: index.html
HTTP/1.1 200 OK
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.author
, from an HTTP request and uses this in a get request to another part of the site.
author = req.params[AUTHOR_PARAM]
http = Net::HTTP.new(URI("http://www.mysite.com"))
http.post('/index.php', "author=#{author}")
POST /index.php HTTP/1.1
Host: www.mysite.com
author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nPOST /index.php HTTP/1.1\r\n...", then the HTTP response would be split into two responses of the following form:
POST /index.php HTTP/1.1
Host: www.mysite.com
author=Wiley Hacker
POST /index.php HTTP/1.1
...
IllegalArgumentException
if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.name
and value
may be controlled by an attacker. The code sets an HTTP header whose name and value may be controlled by an attacker:
...
var headers = []
headers[name] = value
let config = NSURLSessionConfiguration.backgroundSessionConfigurationWithIdentifier("com.acme")
config.HTTPAdditionalHeaders = headers
...
author
and Jane Smith
, the HTTP response including this header might take the following form:
HTTP/1.1 200 OK
...
author:Jane Smith
...
HTTP/1.1 200 OK\r\n...foo
and bar
, then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
HTTP/1.1 200 OK
...
foo:bar
author
, from an HTTP request and sets it in a cookie header of an HTTP response.
...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
AUTHOR_PARAM
does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...
- name: Create Lambda policy statement for S3 event notification
community.aws.lambda_policy:
action: lambda:InvokeFunction
function_name: functionName
principal: *
statement_id: lambda-s3-demobucket-access-log
source_arn: arn:aws:s3:us-west-2:123456789012:demobucket
source_account: 123456789012
state: present
FileIOPermissions
required in the application.
...
String permissionsXml = GetPermissionsFromXmlFile();
FileIOPermission perm = new FileIOPermission(PermissionState.None);
perm.FromXml(permissionsXml);
perm.Demand();
...
DATA: result TYPE demo_update,
request TYPE REF TO IF_HTTP_REQUEST,
obj TYPE REF TO CL_SQL_CONNECTION.
TRY.
...
obj = cl_sql_connection=>get_connection( `R/3*my_conn`).
FINAL(sql) = NEW cl_sql_prepared_statement(
statement = `INSERT INTO demo_update VALUES( ?, ?, ?, ?, ?, ? )`).
CATCH cx_sql_exception INTO FINAL(exc).
...
ENDTRY.
SqlConnection
object. But if an exception occurs while executing the SQL or processing the results, the SqlConnection
object will not be closed. If this happens often enough, the database will run out of available cursors and not be able to execute any more SQL queries.
...
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();
...
- void insertUser:(NSString *)name {
...
sqlite3_stmt *insertStatement = nil;
NSString *insertSQL = [NSString stringWithFormat:@INSERT INTO users (name, age) VALUES (?, ?)];
const char *insert_stmt = [insertSQL UTF8String];
...
if ((result = sqlite3_prepare_v2(database, insert_stmt,-1, &insertStatement, NULL)) != SQLITE_OK) {
MyLog(@"%s: sqlite3_prepare error: %s (%d)", __FUNCTION__, sqlite3_errmsg(database), result);
return;
}
if ((result = sqlite3_step(insertStatement)) != SQLITE_DONE) {
MyLog(@"%s: step error: %s (%d)", __FUNCTION__, sqlite3_errmsg(database), result);
return;
}
...
}
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(CXN_SQL);
harvestResults(rs);
stmt.close();
func insertUser(name:String, age:int) {
let dbPath = URL(fileURLWithPath: Bundle.main.resourcePath ?? "").appendingPathComponent("test.sqlite").absoluteString
var db: OpaquePointer?
var stmt: OpaquePointer?
if sqlite3_open(dbPath, &db) != SQLITE_OK {
print("Error opening articles database.")
return
}
let queryString = "INSERT INTO users (name, age) VALUES (?,?)"
if sqlite3_prepare(db, queryString, -1, &stmt, nil) != SQLITE_OK{
let errmsg = String(cString: sqlite3_errmsg(db)!)
log("error preparing insert: \(errmsg)")
return
}
if sqlite3_bind_text(stmt, 1, name, -1, nil) != SQLITE_OK{
let errmsg = String(cString: sqlite3_errmsg(db)!)
log("failure binding name: \(errmsg)")
return
}
if sqlite3_bind_int(stmt, 2, age) != SQLITE_OK{
let errmsg = String(cString: sqlite3_errmsg(db)!)
log("failure binding name: \(errmsg)")
return
}
if sqlite3_step(stmt) != SQLITE_DONE {
let errmsg = String(cString: sqlite3_errmsg(db)!)
log("failure inserting user: \(errmsg)")
return
}
}