458 items found
Weaknesses
Abstract
The program uses a signed comparison to check a value that is later treated as unsigned. This could lead the program to read data from outside the bounds of allocated memory.
Explanation
Buffer overflow is probably the best known form of software security vulnerability. Most software developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Although this type of stack buffer overflow is still common on some platforms and in some development communities, there are a variety of other types of buffer overflow, including heap buffer overflows and off-by-one errors among others. There are a number of excellent books that provide detailed information on how buffer overflow attacks work, including Building Secure Software [1], Writing Secure Code [2], and The Shellcoder's Handbook [3].

At the code level, buffer overflow vulnerabilities usually involve the violation of a programmer's assumptions. Many memory manipulation functions in C and C++ do not perform bounds checking and can easily exceed the allocated bounds of the buffers they operate upon. Even bounded functions, such as strncpy(), can cause vulnerabilities when used incorrectly. The combination of memory manipulation and mistaken assumptions about the size or makeup of a piece of data is the root cause of most buffer overflows.

In this case, the program reads from outside the bounds of allocated memory, which can allow access to sensitive information, introduce incorrect behavior, or cause the program to crash.

Example: The following code attempts to prevent an out-of-bounds read buffer overflow by checking that the untrusted value read from getInputLength() is less than the size of the destination buffer output. However, because the comparison between len and MAX is signed, if len is negative, it will be become a very large positive number when it is converted to an unsigned argument to memcpy().


void TypeConvert() {
char input[MAX];
char output[MAX];

fillBuffer(input);
int len = getInputLength();

if (len <= MAX) {
memcpy(output, input, len);
}
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 2
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark partial
[10] Standards Mapping - Common Weakness Enumeration CWE ID 195, CWE ID 805
[11] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119
[12] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119
[13] Standards Mapping - Common Weakness Enumeration Top 25 2021 [17] CWE ID 119
[14] Standards Mapping - Common Weakness Enumeration Top 25 2022 [19] CWE ID 119
[15] Standards Mapping - Common Weakness Enumeration Top 25 2023 [17] CWE ID 119
[16] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[17] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[20] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[21] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[22] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[23] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[24] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[25] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[26] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 805
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3550 CAT I, APP3590.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3550 CAT I, APP3590.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3550 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3550 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3550 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3550 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3550 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
desc.internal.cpp.out_of_bounds_read_signed_comparison
Abstract
The template defines an Azure Blob Storage container that allows anonymous access.
Explanation
By default, Azure Blob Storage containers prevent anonymous access to their Blobs.

Insufficient access configurations expose systems and broaden an organization's attack surface. Resources open to public access might unintentionally leak sensitive data.

Example 1: The following example template defines an Azure Blob Storage container with the publicAccess property set to Container. This allows anonymous access to all of the container's blobs and data.

param storageAccountName string
param containerName string

resource example 'Microsoft.Storage/storageAccounts/blobServices/containers@2021-04-01' = {
name: '${storageAccountName}/default/${containerName}'
...
properties: {
...
publicAccess: 'Container'
}
}
References
[1] Microsoft Secure your Azure Storage account
[2] Microsoft Prevent anonymous public read access to containers and blobs - Remediate anonymous public access
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 284, CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002475
[13] Standards Mapping - FIPS200 CM
[14] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[19] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration, A7 Insecure Cryptographic Storage, A8 Failure to Restrict URL Access
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[23] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.4.2 Access Control Architectural Requirements (L2 L3), 1.4.4 Access Control Architectural Requirements (L2 L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 863
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001520 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[61] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.bicep.azure_arm_misconfiguration_improper_blob_storage_access_control.base
Abstract
The template defines an Azure Blob Storage container that allows anonymous access.
Explanation
By default, Azure Blob Storage containers prevent anonymous access to their Blobs.

Insufficient access configurations expose systems and broaden an organization's attack surface. Resources open to public access might unintentionally leak sensitive data.

Example 1: The following example template defines an Azure Blob Storage container with the publicAccess property set to Container. This allows anonymous access to all of the Container's blobs and data.

{
"type": "Microsoft.Storage/storageAccounts/blobServices/containers",
"apiVersion": "2021-04-01",
"name": "[format('{0}/default/{1}', parameters('storageAccountName'), parameters('containerName'))]",
"properties":{
"publicAccess": "Container"
}
,
"dependsOn": [
"[resourceId('Microsoft.Storage/storageAccounts', parameters('storageAccountName'))]"
]
}
References
[1] Microsoft Secure your Azure Storage account
[2] Microsoft Prevent anonymous public read access to containers and blobs - Remediate anonymous public access
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 284, CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002475
[13] Standards Mapping - FIPS200 CM
[14] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[19] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration, A7 Insecure Cryptographic Storage, A8 Failure to Restrict URL Access
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[23] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.4.2 Access Control Architectural Requirements (L2 L3), 1.4.4 Access Control Architectural Requirements (L2 L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 863
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001520 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[61] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.json.azure_arm_misconfiguration_improper_blob_storage_access_control.base
Abstract
Families of functions that operate on shared resources and are implemented as macros on some platforms must be called in the same program scope.
Explanation
Certain families of functions are implemented as functions on some platforms and macros on others. If the functions rely on a shared resource that is maintained internally rather than passed in when they are invoked, they must be used in the same program scope because the otherwise the shared resource will be inaccessible.

Example 1: The following code uses pthread_cleanup_push() to push the function routine onto the calling thread's cleanup stack and returns. Since pthread_cleanup_push() and its partner function pthread_cleanup_pop() are implemented as macros on platforms other than IBM AIX, the data structure created by pthread_cleanup_push() will not be accessible to subsequent calls to pthread_cleanup_pop(). The code will either fail to compile or behave incorrectly at runtime on all platforms where these functions are implemented as macros.


void helper() {
...
pthread_cleanup_push (routine, arg);
}
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[2] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[4] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[5] Standards Mapping - Common Weakness Enumeration CWE ID 730
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[32] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[33] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.code_correctness_macro_misuse
Abstract
A Terraform configuration creates an AWS resource with insufficient transport layer protection.
Explanation
Connections to the AWS resources are insecure. These insecure connections expose data to unauthorized access, potential theft, and tampering.
References
[1] Amazon Web Services, Inc. or its affiliates Protecting data in transit
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.5
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000068, CCI-001453, CCI-002418, CCI-002420, CCI-002421, CCI-002422, CCI-002890, CCI-003123
[10] Standards Mapping - FIPS200 SC
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[16] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 9.1.1 Communications Security Requirements (L1 L2 L3), 9.2.1 Server Communications Security Requirements (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 4.1, Requirement 6.5.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 4.2.1, Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective B.2.5 - Terminal Software Design
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective B.2.5 - Terminal Software Design, Control Objective C.4.1 - Web Software Communications
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000160 CAT II, APSC-DV-000170 CAT II, APSC-DV-001940 CAT II, APSC-DV-001950 CAT II, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000160 CAT II, APSC-DV-000170 CAT II, APSC-DV-001940 CAT II, APSC-DV-001950 CAT II, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000160 CAT II, APSC-DV-000170 CAT II, APSC-DV-001940 CAT II, APSC-DV-001950 CAT II, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
desc.structural.hcl.iac.aws_misconfiguration_insecure_transport.base
Abstract
A Terraform configuration creates an AWS resource with insufficient transport layer protection.
Explanation
Connections to the AWS resources are insecure. These insecure connections expose data to unauthorized access, potential theft, and tampering.
References
[1] Amazon Web Services, Inc. or its affiliates Protecting data in transit
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.5
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000068, CCI-001453, CCI-002418, CCI-002420, CCI-002421, CCI-002422, CCI-002890, CCI-003123
[10] Standards Mapping - FIPS200 SC
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-8 Transmission Confidentiality and Integrity (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-8 Transmission Confidentiality and Integrity
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[16] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 9.1.1 Communications Security Requirements (L1 L2 L3), 9.2.1 Server Communications Security Requirements (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 4.1, Requirement 6.5.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 4.2.1, Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective B.2.5 - Terminal Software Design
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.2 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective B.2.5 - Terminal Software Design, Control Objective C.4.1 - Web Software Communications
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000160 CAT II, APSC-DV-000170 CAT II, APSC-DV-001940 CAT II, APSC-DV-001950 CAT II, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000160 CAT II, APSC-DV-000170 CAT II, APSC-DV-001940 CAT II, APSC-DV-001950 CAT II, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000160 CAT II, APSC-DV-000170 CAT II, APSC-DV-001940 CAT II, APSC-DV-001950 CAT II, APSC-DV-002440 CAT I, APSC-DV-002450 CAT II, APSC-DV-002460 CAT II, APSC-DV-002470 CAT II
desc.structural.hcl.iac.aws_misconfiguration_insecure_transport.base
Abstract
An Azure service does not enable host-based encryption.
Explanation
Azure offers several encryption options, each with specific benefits and limitations. For example, Azure storage server-side encryption (SSE) performs encryption by default without using compute resources, however, it does not encrypt the temporary disk or caches. It also does not protect data flowing from a compute instance to storage. Azure Disk Encryption (ADE), encrypts both temporary disks and caches, as well as data flowing to storage, but at the expense of compute resources.
References
[1] Microsoft Overview of managed disk encryption options
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[10] Standards Mapping - FIPS200 MP
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[16] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 3.5.1
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
desc.structural.iac.azure_misconfiguration_missing_host_based_encryption.base
Abstract
An Azure service does not enable host-based encryption.
Explanation
Azure offers several encryption options, each with specific benefits and limitations. For example, Azure storage server-side encryption (SSE) performs encryption by default without using compute resources, however, it does not encrypt the temporary disk or caches. It also does not protect data flowing from a compute instance to storage. Azure Disk Encryption (ADE), encrypts both temporary disks and caches, as well as data flowing to storage, but at the expense of compute resources.
References
[1] Microsoft Overview of managed disk encryption options
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[10] Standards Mapping - FIPS200 MP
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[16] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 3.5.1
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
desc.structural.iac.azure_misconfiguration_missing_host_based_encryption.base
Abstract
An Azure service does not enable host-based encryption.
Explanation
Azure offers several encryption options, each with specific benefits and limitations. For example, Azure storage server-side encryption (SSE) performs encryption by default without using compute resources, however, it does not encrypt the temporary disk or caches. It also does not protect data flowing from a compute instance to storage. Azure Disk Encryption (ADE), encrypts both temporary disks and caches, as well as data flowing to storage, but at the expense of compute resources.
References
[1] Microsoft Overview of managed disk encryption options
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[10] Standards Mapping - FIPS200 MP
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[16] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 3.5.1
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.2 - Use of Cryptography
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
desc.structural.iac.azure_misconfiguration_missing_host_based_encryption.base
Abstract
Calling sleep() while holding a lock can cause a loss of performance and might cause a deadlock.
Explanation
If multiple threads are trying to obtain a lock on a resource, calling sleep() while holding a lock can cause all of the other threads to wait for the resource to be released, which can result in degraded performance and deadlock.

Example 1: The following code calls sleep() while holding a lock.

ReentrantLock rl = new ReentrantLock();
...
rl.lock();
Thread.sleep(500);
...
rl.unlock();
References
[1] LCK09-J. Do not perform operations that can block while holding a lock CERT
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[6] Standards Mapping - Common Weakness Enumeration CWE ID 557
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[10] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[12] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II, APSC-DV-002950 CAT II
[33] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[34] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.code_correctness_call_to_sleep_in_lock
Abstract
Using XML parsers that are not configured to prevent or limit external entities resolution can expose the parser to an XML External Entities attack
Explanation
XML External Entities attacks benefit from an XML feature to build documents dynamically at the time of processing. An XML entity allows to include data dynamically from a given resource. External entities allow an XML document to include data from an external URI. Unless configured to do otherwise, external entities force the XML parser to access the resource specified by the URI, e.g., a file on the local machine or on a remote systems. This behavior exposes the application to XML External Entity (XXE) attacks, which can be used to perform denial of service of the local system, gain unauthorized access to files on the local machine, scan remote machines, and perform denial of service of remote systems.

The following XML document shows an example of an XXE attack.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///c:/winnt/win.ini" >]><foo>&xxe;</foo>


This example could disclose the contents of the C:\winnt\win.ini system file, if the XML parser attempts to substitute the entity with the contents of the file.
References
[1] XML Denial of Service Attacks and Defenses MSDN Magazine
[2] XML External Entity (XXE) Processing OWASP
[3] Testing for XML Injection OWASP
[4] XML External Entities The Web Application Security Consortium
[5] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[6] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[7] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[8] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[9] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[10] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[11] Standards Mapping - CIS Kubernetes Benchmark complete
[12] Standards Mapping - Common Weakness Enumeration CWE ID 611
[13] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[14] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[15] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[16] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[18] Standards Mapping - FIPS200 SI
[19] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[21] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[22] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[23] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[24] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[25] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2010 A1 Injection
[27] Standards Mapping - OWASP Top 10 2013 A1 Injection
[28] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[29] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[30] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[31] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[32] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[33] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[34] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[42] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[43] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[44] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[45] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.controlflow.dotnet.xml_external_entity_injection
Abstract
The identified method allows external entity references. This call could allow an attacker to inject an XML external entity into the XML document to reveal the contents of files or internal network resources.
Explanation
XML External Entity (XXE) injection occurs when:

1. Data enters a program from an untrusted source.

2. The data is written to an <ENTITY> element of the DTD (Document Type Definition) in an XML document.

Applications typically use XML to store data or send messages. When used to store data, XML documents are often treated like databases and can potentially contain sensitive information. XML messages are often used in web services and can also be used to transmit sensitive information. XML messages can even be used to send authentication credentials.

The semantics of XML documents and messages can be altered if an attacker has the ability to write raw XML. In the most benign case, an attacker may be able to insert nested entity references and cause an XML parser consume ever increasing amounts of CPU resources. In more nefarious cases of XML external entity injection, an attacker may be able to add XML elements that expose the contents of local file system resources or reveal the existence of internal network resources.

Example 1:Here is some Objective-C code that is vulnerable to XXE attacks:


- (void) parseSomeXML: (NSString *) rawXml {

BOOL success;
NSData *rawXmlConvToData = [rawXml dataUsingEncoding:NSUTF8StringEncoding];
NSXMLParser *myParser = [[NSXMLParser alloc] initWithData:rawXmlConvToData];
[myParser setShouldResolveExternalEntities:YES];
[myParser setDelegate:self];
}


Assume an attacker is able to control rawXml such that the XML looks like the following:


<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>


When the XML is evaluated by the server, the <foo> element will contain the contents of the boot.ini file.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 611
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[20] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2010 A1 Injection
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[25] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[28] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[29] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[30] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.semantic.cpp.xml_external_entity_injection
Abstract
Using XML parsers that are not configured to prevent or limit external entities resolution can expose the parser to an XML External Entities attack
Explanation
XML External Entities attacks benefit from an XML feature to build documents dynamically at the time of processing. An XML entity allows inclusion of data dynamically from a given resource. External entities allow an XML document to include data from an external URI. Unless configured to do otherwise, external entities force the XML parser to access the resource specified by the URI, e.g., a file on the local machine or on a remote system. This behavior exposes the application to XML External Entity (XXE) attacks, which can be used to perform denial of service of the local system, gain unauthorized access to files on the local machine, scan remote machines, and perform denial of service of remote systems.

The following XML document shows an example of an XXE attack.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///dev/random" >]><foo>&xxe;</foo>


This example could crash the server (on a UNIX system), if the XML parser attempts to substitute the entity with the contents of the /dev/random file.
References
[1] XML External Entity (XXE) Processing OWASP
[2] Testing for XML Injection OWASP
[3] XML External Entities The Web Application Security Consortium
[4] IDS17-J. Prevent XML External Entity Attacks CERT
[5] DOS-1: Beware of activities that may use disproportionate resources Oracle
[6] INJECT-5: Restrict XML inclusion Oracle
[7] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[8] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[9] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[10] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[11] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[12] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[13] Standards Mapping - CIS Kubernetes Benchmark complete
[14] Standards Mapping - Common Weakness Enumeration CWE ID 611
[15] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[16] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[17] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[18] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[19] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[20] Standards Mapping - FIPS200 SI
[21] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[22] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[23] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[24] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[25] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[26] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[28] Standards Mapping - OWASP Top 10 2010 A1 Injection
[29] Standards Mapping - OWASP Top 10 2013 A1 Injection
[30] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[31] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[32] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[33] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[34] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[35] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[36] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[42] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[43] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[44] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[45] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[46] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[47] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[48] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.semantic.java.xxe_injection
Abstract
Using XML processors that do not prevent or limit external entities resolution can expose the application to an XML External Entity attack.
Explanation
XML External Entity attacks benefit from an XML feature to dynamically build documents at runtime. An XML entity allows inclusion of data dynamically from a given resource. External entities allow an XML document to include data from an external URI. Unless configured to do otherwise, external entities force the XML parser to access the resource specified by the URI, such as a file on the local machine or on a remote system. This behavior exposes the application to XML External Entity (XXE) attacks, which enables attackers to perform denial of service of the local system, gain unauthorized access to files on the local machine, scan remote machines, and perform denial of service of remote systems.


Example 1: The following XML document shows an example of an XXE attack.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///dev/random" >]><foo>&xxe;</foo>


This example could crash the server (on a UNIX system) if the XML parser attempts to substitute the entity with the contents of the /dev/random file.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 611
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[20] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2010 A1 Injection
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[25] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[28] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[29] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[30] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.dataflow.javascript.xxe_injection
Abstract
The identified method allows external entity references. This call could allow an attacker to inject an XML external entity into the XML document to reveal the contents of files or internal network resources.
Explanation
XML External Entity (XXE) injection occurs when:

1. Data enters a program from an untrusted source.

2. The data is written to an <ENTITY> element of the DTD (Document Type Definition) in an XML document.

Applications typically use XML to store data or send messages. When used to store data, XML documents are often treated like databases and can potentially contain sensitive information. XML messages are often used in web services and can also be used to transmit sensitive information. XML messages can even be used to send authentication credentials.

The semantics of XML documents and messages can be altered if an attacker has the ability to write raw XML. In the most benign case, an attacker may be able to insert nested entity references and cause an XML parser consume ever increasing amounts of CPU resources. In more nefarious cases of XML external entity injection, an attacker may be able to add XML elements that expose the contents of local file system resources or reveal the existence of internal network resources.

Example 1:Here is some code that is vulnerable to XXE attacks:


- (void) parseSomeXML: (NSString *) rawXml {

BOOL success;
NSData *rawXmlConvToData = [rawXml dataUsingEncoding:NSUTF8StringEncoding];
NSXMLParser *myParser = [[NSXMLParser alloc] initWithData:rawXmlConvToData];
[myParser setShouldResolveExternalEntities:YES];
[myParser setDelegate:self];
}


Assume an attacker is able to control rawXml such that the XML looks like the following:


<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>


When the XML is evaluated by the server, the <foo> element will contain the contents of the boot.ini file.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 611
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[20] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2010 A1 Injection
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[25] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[28] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[29] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[30] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.semantic.objc.xml_external_entity_injection
Abstract
Processing an unvalidated XML document can allow an attacker to change the structure and contents of the XML, port scan the host server or host scan the internal network, include arbitrary files from the file system, or cause a denial of service of the application.
Explanation
XML External Entity (XXE) injection occurs when:

1. Data enters a program from an untrusted source.

2. The data is written to an XML document.

Applications typically use XML to store data or send messages. When used to store data, XML documents are often treated like databases and can potentially contain sensitive information. XML messages are often used in web services and can also be used to transmit sensitive information. XML messages can even be used to send authentication credentials.

The semantics of XML documents and messages can be altered if an attacker has the ability to write raw XML. In the most benign case, an attacker may be able to insert nested entity references and cause an XML parser to consume ever increasing amounts of CPU resources. In more nefarious cases of XML external entity injection, an attacker may be able to add XML elements that expose the contents of local file system resources, reveal the existence of internal network resources or expose backend content itself.

Example 1: Here is some code that is vulnerable to XXE attacks:

Assume an attacker is able to control the input XML to the following code:


...
<?php
$goodXML = $_GET["key"];
$doc = simplexml_load_string($goodXml);
echo $doc->testing;
?>
...


Now suppose that the following XML is passed by the attacker to the code in Example 2:



<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>



When the XML is processed, the content of the <foo> element is populated with the contents of the system's boot.ini file. The attacker may utilize XML elements which are returned to the client to exfiltrate data or obtain information as to the existence of network resources.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 611
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[20] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2010 A1 Injection
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[25] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[28] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[29] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[30] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.dataflow.php.xml_external_entity_injection
Abstract
Using XML processors that do not prevent or limit external entities resolution can expose the application to XML External Entities attacks.
Explanation
XML External Entities attacks benefit from an XML feature to dynamically build documents at runtime. An XML entity allows inclusion of data dynamically from a given resource. External entities allow an XML document to include data from an external URI. Unless configured to do otherwise, external entities force the XML parser to access the resource specified by the URI, such as a file on the local machine or on a remote system. This behavior exposes the application to XML External Entity (XXE) attacks, which attackers can use to perform denial of service of the local system, gain unauthorized access to files on the local machine, scan remote machines, and perform denial of service of remote systems.


Example 1: The following XML document shows an example of an XXE attack.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///dev/random" >]><foo>&xxe;</foo>


This example could crash the server (on a UNIX system), if the XML parser attempts to substitute the entity with the contents of the /dev/random file.
References
[1] XML vulnerabilities
[2] Announcing defusedxml, Fixes for XML Security Issues
[3] defusedxml
[4] defusedexpat
[5] XML External Entity (XXE) Processing OWASP
[6] Testing for XML Injection (OWASP-DV-008) OWASP
[7] XML External Entities The Web Application Security Consortium
[8] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[9] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[10] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[11] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[12] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[13] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[14] Standards Mapping - CIS Kubernetes Benchmark complete
[15] Standards Mapping - Common Weakness Enumeration CWE ID 611
[16] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[17] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[18] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[19] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[20] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[21] Standards Mapping - FIPS200 SI
[22] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[23] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[24] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[25] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[26] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[27] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[28] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[29] Standards Mapping - OWASP Top 10 2010 A1 Injection
[30] Standards Mapping - OWASP Top 10 2013 A1 Injection
[31] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[32] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[33] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[34] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[35] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[36] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[37] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[42] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[43] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[44] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[45] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[46] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[47] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[48] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[49] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[70] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.dataflow.python.xxe_injection
Abstract
Using XML parsers that are not configured to prevent or limit external entities resolution can expose the parser to an XML External Entities attack
Explanation
XML External Entities attacks benefit from an XML feature to build documents dynamically at the time of processing. An XML entity allows inclusion of data dynamically from a given resource. External entities allow an XML document to include data from an external URI. Unless configured to do otherwise, external entities force the XML parser to access the resource specified by the URI, e.g., a file on the local machine or on a remote system. This behavior exposes the application to XML External Entity (XXE) attacks, which can be used to perform denial of service of the local system, gain unauthorized access to files on the local machine, scan remote machines, and perform denial of service of remote systems.

The following XML document shows an example of an XXE attack.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]><foo>&xxe;</foo>


The example XML document will read the contents of /etc/passwd and include them into the document.

Example 1: The following code uses an insecure XML parser to process untrusted input from an HTTP request.


def readFile() = Action { request =>
val xml = request.cookies.get("doc")
val doc = XMLLoader.loadString(xml)
...
}
References
[1] XML External Entity (XXE) Processing OWASP
[2] Testing for XML Injection OWASP
[3] XML External Entities The Web Application Security Consortium
[4] IDS17-J. Prevent XML External Entity Attacks CERT
[5] DOS-1: Beware of activities that may use disproportionate resources Oracle
[6] INJECT-5: Restrict XML inclusion Oracle
[7] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[8] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[9] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[10] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[11] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[12] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[13] Standards Mapping - CIS Kubernetes Benchmark complete
[14] Standards Mapping - Common Weakness Enumeration CWE ID 611
[15] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[16] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[17] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[18] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[19] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[20] Standards Mapping - FIPS200 SI
[21] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[22] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[23] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[24] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[25] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[26] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[28] Standards Mapping - OWASP Top 10 2010 A1 Injection
[29] Standards Mapping - OWASP Top 10 2013 A1 Injection
[30] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[31] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[32] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[33] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[34] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[35] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[36] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[42] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[43] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[44] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[45] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[46] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[47] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[48] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.dataflow.scala.xml_external_entity_injection
Abstract
The identified method allows external entity references. This call could allow an attacker to inject an XML external entity into the XML document to reveal the contents of files or internal network resources.
Explanation
XML External Entity (XXE) injection occurs when:

1. Data enters a program from an untrusted source.

2. The data is written to an <ENTITY> element of the DTD (Document Type Definition) in an XML document.

Applications typically use XML to store data or send messages. When used to store data, XML documents are often treated like databases and can potentially contain sensitive information. XML messages are often used in web services and can also be used to transmit sensitive information. XML messages can even be used to send authentication credentials.

The semantics of XML documents and messages can be altered if an attacker has the ability to write raw XML. In the most benign case, an attacker may be able to insert nested entity references and cause an XML parser consume ever increasing amounts of CPU resources. In more nefarious cases of XML external entity injection, an attacker may be able to add XML elements that expose the contents of local file system resources or reveal the existence of internal network resources.

Example 1:Here is some code that is vulnerable to XXE attacks:


func parseXML(xml: String) {
parser = NSXMLParser(data: rawXml.dataUsingEncoding(NSUTF8StringEncoding)!)
parser.delegate = self
parser.shouldResolveExternalEntities = true
parser.parse()
}


Assume an attacker is able to control rawXml contents such that the XML looks like the following:


<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>


When the XML is evaluated by the server, the <foo> element will contain the contents of the boot.ini file.
References
[1] XML External Entity (XXE) Processing OWASP
[2] Testing for XML Injection OWASP
[3] XML External Entities The Web Application Security Consortium
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 1.0
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[8] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark availability
[10] Standards Mapping - CIS Kubernetes Benchmark complete
[11] Standards Mapping - Common Weakness Enumeration CWE ID 611
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [17] CWE ID 611
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [19] CWE ID 611
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [23] CWE ID 611
[15] Standards Mapping - Common Weakness Enumeration Top 25 2022 [24] CWE ID 611
[16] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094, CCI-001310, CCI-002385, CCI-002754
[17] Standards Mapping - FIPS200 SI
[18] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[23] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[24] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[25] Standards Mapping - OWASP Top 10 2010 A1 Injection
[26] Standards Mapping - OWASP Top 10 2013 A1 Injection
[27] Standards Mapping - OWASP Top 10 2017 A4 XML External Entities (XXE)
[28] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[29] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.5.2 Deserialization Prevention Requirements (L1 L2 L3)
[30] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[31] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[32] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[33] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-STORAGE-2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[43] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[44] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2.2 - Web Software Attack Mitigation
[45] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3810 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3810 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3810 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3810 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3810 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3810 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002390 CAT II, APSC-DV-002400 CAT II, APSC-DV-002530 CAT II, APSC-DV-002550 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Web Application Security Consortium Version 2.00 XML External Entities (WASC-43)
desc.structural.swift.xml_external_entity_injection
Abstract
The template fails to restrict access to a Kubernetes API server.
Explanation
A publicly accessible Kubernetes API server can expose the organization to attack.

Example 1: The following example shows a template that defines a Kubernetes service cluster that does not restrict the range of IP addresses that are allowed to connect to the API server.

param location string = resourceGroup().location

resource example 'Microsoft.ContainerService/managedClusters@2020-02-01' = {
name: 'TestCluster'
location: location
properties: {
...
servicePrincipalProfile: {
clientId: '422313d8-123a-41ea-8f8e-90821ff61c05'
secret: 'xxxxxxxxxxxxxxxxx'
}
}
}
References
[1] microsoft Secure access to the API server using authorized IP address ranges in Azure Kubernetes Service (AKS)
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[6] Standards Mapping - Common Weakness Enumeration CWE ID 749
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [25] CWE ID 862
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [18] CWE ID 862
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-6 Least Privilege (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-6 Least Privilege
[13] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[14] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[15] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[16] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[18] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[19] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3)
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 1.4.2
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 285
[33] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 863
[34] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.bicep.azure_arm_misconfiguration_improper_aks_network_access_control
Abstract
The template fails to restrict access to a Kubernetes API server.
Explanation
A publicly accessible Kubernetes API server can expose the organization to attack.

Example 1: The following example shows a template that defines a Kubernetes service cluster that does not restrict the range of IP addresses that are allowed to connect to the API server.

{
"name": "TestCluster",
"type": "Microsoft.ContainerService/managedClusters",
"apiVersion": "2020-02-01",
"location": "[resourceGroup().location]",
"properties": {
...
"servicePrincipalProfile": {
"clientId": "422313d8-123a-41ea-8f8e-90821ff61c05",
"secret": "xxxxxxxxxxxxxxxxx"
},
}
}
References
[1] microsoft Secure access to the API server using authorized IP address ranges in Azure Kubernetes Service (AKS)
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[6] Standards Mapping - Common Weakness Enumeration CWE ID 749
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [25] CWE ID 862
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [18] CWE ID 862
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-6 Least Privilege (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-6 Least Privilege
[13] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[14] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[15] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[16] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[18] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[19] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3)
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 1.4.2
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 285
[33] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 863
[34] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.json.azure_arm_misconfiguration_improper_aks_network_access_control
Abstract
The template defines an Azure App Service with remote debugging enabled.
Explanation
Debugging interfaces provide attackers with information that they can leverage for a more targeted attack.

Example 1: The following example template defines an Azure App Service with remote debugging enabled.

resource example 'Microsoft.Web/sites/config@2022-09-01' = {
...
properties: {
...
remoteDebuggingEnabled: true
}
}
References
[1] Chris Westbrook and Susan Leighton Remote debugging Azure App Services
[2] Microsoft Azure security baseline for App Service
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark Complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 11
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420, CCI-003272
[10] Standards Mapping - FIPS200 CM
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-11 Error Handling (P2)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-11 Error Handling
[14] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[20] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 14.1.3 Build (L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3120 CAT II, APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3120 CAT II, APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3120 CAT II, APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3120 CAT II, APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3120 CAT II, APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3120 CAT II, APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3120 CAT II, APP3620 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001520 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.bicep.azure_arm_misconfiguration_improper_app_service_access_control
Abstract
The template defines an Azure App Service with remote debugging enabled.
Explanation
Debugging interfaces provide attackers with information that they can leverage for a more targeted attack.

Example 1: The following example template defines an Azure App Service with remote debugging enabled.

{
...
"type": "Microsoft.Web/sites/config",
"properties":
{
...
"remoteDebuggingEnabled": true,
}
}
References
[1] Chris Westbrook and Susan Leighton Remote debugging Azure App Services
[2] Microsoft Azure security baseline for App Service
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark Complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 11
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420, CCI-003272
[10] Standards Mapping - FIPS200 CM
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-11 Error Handling (P2)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-11 Error Handling
[14] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[20] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 14.1.3 Build (L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3120 CAT II, APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3120 CAT II, APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3120 CAT II, APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3120 CAT II, APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3120 CAT II, APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3120 CAT II, APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3120 CAT II, APP3620 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001520 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.json.azure_arm_misconfiguration_improper_app_service_access_control
Abstract
The template defines an Azure Cosmos DB with unrestricted network access.
Explanation
Relaxed access configurations expose systems and broaden an organization's attack surface. Services open to interaction with the internet are subjected to almost continuous scanning and probing by malicious entities.

This is especially problematic when a zero-day exploit for an exposed service is discovered and published (e.g Heartbleed). Attackers can actively pursue and search for unpatched and exposed systems to exploit.

Example 1: The following example template defines an Azure Cosmos DB with unrestricted network access. The publicNetworkAccess property is set to Enabled and the IP address range includes all IPs.

resource example 'Microsoft.DocumentDB/databaseAccounts@2021-04-15' = {
...
properties: {
...
publicNetworkAccess: 'Enabled'
ipRules: [
{
ipAddressOrRange: '0.0.0.0'
}
]
}
}
References
[1] Microsoft Configure IP firewall in Azure Cosmos DB
[2] Microsoft Azure security baseline for Azure Cosmos DB
[3] Microsoft Configure access to Azure Cosmos DB from virtual networks (VNet)
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 749
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [25] CWE ID 862
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [18] CWE ID 862
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-6 Least Privilege (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-6 Least Privilege
[16] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[22] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3)
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 1.4.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 285
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 863
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001520 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.bicep.azure_arm_misconfiguration_improper_documentdb_network_access_control
Abstract
The template defines an Azure Cosmos DB with unrestricted network access.
Explanation
Relaxed access configurations expose systems and broaden an organization's attack surface. Services open to interaction with the internet are subjected to almost continuous scanning and probing by malicious entities.

This is especially problematic when a zero-day exploit for an exposed service is discovered and published (e.g Heartbleed). Attackers can actively pursue and search for unpatched and exposed systems to exploit.

Example 1: The following example template defines an Azure Cosmos DB with unrestricted network access. The publicNetworkAccess property is set to Enabled and the IP address range includes all IPs.

{
"type": "Microsoft.DocumentDB/databaseAccounts",
"apiVersion": "2021-04-15",
...
"properties": {
...
"publicNetworkAccess": "Enabled",
"ipRules":[{
"ipAddressOrRange": "0.0.0.0"
}]
...
}
References
[1] Microsoft Configure IP firewall in Azure Cosmos DB
[2] Microsoft Azure security baseline for Azure Cosmos DB
[3] Microsoft Configure access to Azure Cosmos DB from virtual networks (VNet)
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 749
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [25] CWE ID 862
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [18] CWE ID 862
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-6 Least Privilege (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-6 Least Privilege
[16] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[22] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3)
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 1.4.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 285
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 863
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001520 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.json.azure_arm_misconfiguration_improper_documentdb_network_access_control
Abstract
The template defines a network security group that allows access to administrative services.
Explanation
Overly broad configurations expose systems and broaden an organization's attack surface. Services open to interaction with the public are subjected to almost continuous scanning and probing by attackers.

This is especially problematic when a zero-day exploit for an exposed service is discovered and published (e.g. Heartbleed). Attackers can actively pursue and search for unpatched and exposed systems to exploit.

Example 1: The following example template allows unrestricted inbound traffic to a range of ports, including the RDP service port (3389).

resource example 'Microsoft.Network/networkSecurityGroups/securityRules@2020-11-01' = {
...
properties: {
...
description: 'Services Inbound Range'
protocol: 'Tcp'
sourcePortRange: '*'
destinationPortRanges: [ '3333-3389' ]
sourceAddressPrefix: '*'
destinationAddressPrefix: '*'
access: 'Allow'
priority: 100
direction: 'Inbound'
}
}
References
[1] Microsoft Network security groups
[2] David Geer Securing risky network ports
[3] Josh Fruhlinger CSO: What is the Heartbleed bug, how does it work and how was it fixed?
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[8] Standards Mapping - Common Weakness Enumeration CWE ID 749
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [25] CWE ID 862
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [18] CWE ID 862
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [16] CWE ID 862
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-6 Least Privilege (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-6 Least Privilege
[16] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[22] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3)
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 1.4.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 285
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 863
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001520 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.bicep.azure_arm_misconfiguration_improper_security_group_network_access_control.base
Abstract
The template defines a network security group that allows access to administrative services.
Explanation
Overly broad configurations expose systems and broaden an organization's attack surface. Services open to interaction with the public are subjected to almost continuous scanning and probing by attackers.

This is especially problematic when a zero-day exploit for an exposed service is discovered and published (e.g. Heartbleed). Attackers can actively pursue and search for unpatched and exposed systems to exploit.

Example 1: The following example template allows unrestricted inbound traffic to a range of ports, including the RDP service port (3389).

{
...
"name": "sample/securitygroup",
"type": "Microsoft.Network/networkSecurityGroups/securityRules",
"apiVersion": "2020-11-01",
"properties": {
"description": "Services Inbound Range",
"protocol": "Tcp",
"sourcePortRange": "*",
"destinationPortRanges": [
"3333-3389"
],
"sourceAddressPrefix": "*",
"destinationAddressPrefix": "*",
"access": "Allow",
"priority": 100,
"direction": "Inbound"
...
}
References
[1] Microsoft Network security groups
[2] David Geer Securing risky network ports
[3] Josh Fruhlinger CSOOnline: The Heartbleed bug: How a flaw in OpenSSL caused a security crisis
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[8] Standards Mapping - Common Weakness Enumeration CWE ID 749
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [25] CWE ID 862
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [18] CWE ID 862
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [16] CWE ID 862
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-6 Least Privilege (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-6 Least Privilege
[16] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[22] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3)
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 1.4.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 285
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 863
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001520 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.structural.json.azure_arm_misconfiguration_improper_security_group_network_access_control.base
Abstract
The template defines an AKS cluster that does not send log events to Azure Monitor.
Explanation
By default, Azure Kubernetes Service (AKS) clusters do not send log events to Azure Monitor. This can allow malicious behavior to go undetected and prevent forensic analysis in the event of a breach.

Example 1: The following example template shows an AKS cluster that does not send log events to Azure Monitor.

resource example 'Microsoft.ContainerService/managedClusters@2018-03-31' = {
...
properties: {
...
addonProfiles: {}
}
}
References
[1] CISA Alert (AA20-245A)- Technical Approaches to Uncovering and Remediating Malicious Activity
[2] Microsoft Enable monitoring of Azure Kubernetes Service (AKS) cluster already deployed
[3] Microsoft Enable monitoring of a new Azure Kubernetes Service (AKS) cluster
[4] Microsoft Azure security baseline for Azure Kubernetes Service
[5] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Microsoft Azure Foundations Benchmark Partial
[7] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[8] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark Integrity
[10] Standards Mapping - Common Weakness Enumeration CWE ID 778
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000172
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-12 Audit Generation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-12 Audit Record Generation
[16] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[17] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[20] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[21] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 7.1.3 Log Content Requirements (L2 L3), 7.1.4 Log Content Requirements (L2 L3), 7.2.1 Log Processing Requirements (L2 L3), 7.2.2 Log Processing Requirements (L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10, Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 10.2.1, Requirement 10.2.1.4, Requirement 10.2.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 8.2 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 8.2 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 8.2 - Activity Tracking
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3680.4 CAT II, APP3680.5 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3680.4 CAT II, APP3680.5 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3680.4 CAT II, APP3680.5 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3680.4 CAT II, APP3680.5 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3680.4 CAT II, APP3680.5 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3680.4 CAT II, APP3680.5 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3680.4 CAT II, APP3680.5 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000830 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000830 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000830 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000830 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000830 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000830 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000830 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000830 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000830 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000830 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000830 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000830 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000830 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.bicep.azure_arm_misconfiguration_insufficient_aks_monitoring.base
Abstract
The template defines an AKS cluster that does not send log events to Azure Monitor.
Explanation
By default, Azure Kubernetes Service (AKS) clusters do not send log events to Azure Monitor. This can allow malicious behavior to go undetected and prevent forensic analysis in the event of a breach.

Example 1: The following example template shows an AKS cluster that does not send log events to Azure Monitor.

{
"name": "[split(parameters('aksResourceId'),'/')[8]]",
"type": "Microsoft.ContainerService/managedClusters",
"apiVersion": "2018-03-31",
"properties": {
"mode": "Incremental",
"id": "[parameters('aksResourceId')]",
}
}
References
[1] CISA Alert (AA20-245A)- Technical Approaches to Uncovering and Remediating Malicious Activity
[2] Microsoft Enable monitoring of Azure Kubernetes Service (AKS) cluster already deployed
[3] Microsoft Enable monitoring of a new Azure Kubernetes Service (AKS) cluster
[4] Microsoft Azure security baseline for Azure Kubernetes Service
[5] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Microsoft Azure Foundations Benchmark Partial
[7] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[8] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark Integrity
[10] Standards Mapping - Common Weakness Enumeration CWE ID 778
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000172
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-12 Audit Generation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-12 Audit Record Generation
[16] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[17] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[20] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[21] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 7.1.3 Log Content Requirements (L2 L3), 7.1.4 Log Content Requirements (L2 L3), 7.2.1 Log Processing Requirements (L2 L3), 7.2.2 Log Processing Requirements (L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10, Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 10.2.1, Requirement 10.2.1.4, Requirement 10.2.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 8.2 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 8.2 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 8.2 - Activity Tracking
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3680.4 CAT II, APP3680.5 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3680.4 CAT II, APP3680.5 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3680.4 CAT II, APP3680.5 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3680.4 CAT II, APP3680.5 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3680.4 CAT II, APP3680.5 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3680.4 CAT II, APP3680.5 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3680.4 CAT II, APP3680.5 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000830 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000830 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000830 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000830 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000830 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000830 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000830 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000830 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000830 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000830 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000830 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000830 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000830 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.json.azure_arm_misconfiguration_insufficient_aks_monitoring.base
Abstract
The template defines an Azure Monitor log profile that does not collect all Activity Log administrative events.
Explanation
A lack of audit records limits the ability to detect and respond to security related incidents and prevents forensic investigation.

Example 1: The following example template defines an Azure Monitor log profile that does not collect all Activity Log administrative events.

targetScope = 'subscription'

resource example 'microsoft.insights/logprofiles@2016-03-01' = {
...
properties: {
...
categories: [ 'Write' ]
}
}
References
[1] Microsoft Azure Activity log
[2] Microsoft Overview of Azure platform logs
[3] Microsoft Azure Activity Log event schema - Administrative Category
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark partial
[10] Standards Mapping - Common Weakness Enumeration CWE ID 778
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000172
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-12 Audit Generation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-12 Audit Record Generation
[16] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[17] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2017 A10 Insufficient Logging and Monitoring
[20] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[21] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 7.1.3 Log Content Requirements (L2 L3), 7.1.4 Log Content Requirements (L2 L3), 7.2.1 Log Processing Requirements (L2 L3), 7.2.2 Log Processing Requirements (L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10, Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 10.2.1, Requirement 10.2.1.4, Requirement 10.2.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 8.2 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 8.2 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 8.2 - Activity Tracking
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3680.4 CAT II, APP3680.5 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3680.4 CAT II, APP3680.5 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3680.4 CAT II, APP3680.5 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3680.4 CAT II, APP3680.5 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3680.4 CAT II, APP3680.5 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3680.4 CAT II, APP3680.5 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3680.4 CAT II, APP3680.5 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000830 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000830 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000830 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000830 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000830 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000830 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000830 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000830 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000830 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000830 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000830 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000830 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000830 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.bicep.azure_arm_misconfiguration_insufficient_application_insights_monitoring.base
Abstract
The template defines an Azure Monitor log profile that does not collect all Activity Log administrative events.
Explanation
A lack of audit records limits the ability to detect and respond to security related incidents and prevents forensic investigation.

Example 1: The following example template defines an Azure Monitor log profile that does not collect all Activity Log administrative events.

{
"name": "string",
"type": "microsoft.insights/logprofiles",
"apiVersion": "2016-03-01",
...
"properties": {
...
"categories": [
"Write"
],
...
}
}
References
[1] Microsoft Azure Activity log
[2] Microsoft Overview of Azure platform logs
[3] Microsoft Azure Activity Log event schema - Administrative Category
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark partial
[10] Standards Mapping - Common Weakness Enumeration CWE ID 778
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000172
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-12 Audit Generation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-12 Audit Record Generation
[16] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[17] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2017 A10 Insufficient Logging and Monitoring
[20] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[21] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 7.1.3 Log Content Requirements (L2 L3), 7.1.4 Log Content Requirements (L2 L3), 7.2.1 Log Processing Requirements (L2 L3), 7.2.2 Log Processing Requirements (L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10, Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 10.2.1, Requirement 10.2.1.4, Requirement 10.2.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 8.2 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 8.2 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 8.2 - Activity Tracking
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3680.4 CAT II, APP3680.5 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3680.4 CAT II, APP3680.5 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3680.4 CAT II, APP3680.5 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3680.4 CAT II, APP3680.5 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3680.4 CAT II, APP3680.5 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3680.4 CAT II, APP3680.5 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3680.4 CAT II, APP3680.5 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000830 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000830 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000830 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000830 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000830 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000830 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000830 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000830 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000830 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000830 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000830 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000830 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000830 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.json.azure_arm_misconfiguration_insufficient_application_insights_monitoring.base
Abstract
The template defines a security contact without any email notification of security alerts.
Explanation
Unmonitored systems provide attackers with a way to probe and potentially penetrate defenses without detection.

If security personnel are not alerted in a timely fashion to security-related events, they cannot respond to incidents in time to reduce the impact of an attack or breach.

Example 1: The following example template successfully defines a security contact but explicitly disables the delivery of security alert email notifications to that contact.

targetScope = 'subscription'

param emailAddress string
param phoneNumber string

resource example 'Microsoft.Security/securityContacts@2020-01-01-preview' = {
...
properties: {
...
emails: emailAddress
phone: phoneNumber
alertNotifications: {
state: 'Off'
minimalSeverity: 'High'
}
}
}
References
[1] Microsoft Security alerts - a reference guide
[2] Microsoft Security alerts and incidents in Microsoft Defender for Cloud
[3] Paul Cichonski,Tom Millar,Tim Grance,Karen Scarfone NIST Special Publication 800-61 Revision 2 - Computer Security Incident Handling Guide
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark partial
[10] Standards Mapping - Common Weakness Enumeration CWE ID 778
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000172
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-12 Audit Generation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-12 Audit Record Generation
[16] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[17] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2017 A10 Insufficient Logging and Monitoring
[20] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[21] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 7.1.3 Log Content Requirements (L2 L3), 7.1.4 Log Content Requirements (L2 L3), 7.2.1 Log Processing Requirements (L2 L3), 7.2.2 Log Processing Requirements (L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10, Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 10.2.1, Requirement 10.2.1.4, Requirement 10.2.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 8.2 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 8.2 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 8.2 - Activity Tracking
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3680.4 CAT II, APP3680.5 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3680.4 CAT II, APP3680.5 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3680.4 CAT II, APP3680.5 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3680.4 CAT II, APP3680.5 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3680.4 CAT II, APP3680.5 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3680.4 CAT II, APP3680.5 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3680.4 CAT II, APP3680.5 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000830 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000830 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000830 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000830 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000830 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000830 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000830 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000830 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000830 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000830 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000830 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000830 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000830 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.bicep.azure_arm_misconfiguration_insufficient_microsoft_defender_monitoring
Abstract
The template defines a security contact without any email notification of security alerts.
Explanation
Unmonitored systems provide attackers with a way to probe and potentially penetrate defenses without detection.

If security personnel are not alerted in a timely fashion to security-related events, they cannot respond to incidents in time to reduce the impact of an attack or breach.

Example 1: The following example template successfully defines a security contact but explicitly disables the delivery of security alert email notifications to that contact.

{
"name": "Security Officer",
"type": "Microsoft.Security/securityContacts",
"apiVersion": "2020-01-01-preview",
"properties": {
"emails": "secofficer@example.com",
"phone": "1212131314",
"alertNotifications": {
"state": "Off",
"minimalSeverity": "High"
},
...
}
References
[1] Microsoft Security alerts - a reference guide
[2] Microsoft Security alerts and incidents in Microsoft Defender for Cloud
[3] Paul Cichonski,Tom Millar,Tim Grance,Karen Scarfone NIST Special Publication 800-61 Revision 2 - Computer Security Incident Handling Guide
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark partial
[10] Standards Mapping - Common Weakness Enumeration CWE ID 778
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000172
[12] Standards Mapping - FIPS200 CM
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-12 Audit Generation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-12 Audit Record Generation
[16] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[17] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[18] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[19] Standards Mapping - OWASP Top 10 2017 A10 Insufficient Logging and Monitoring
[20] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[21] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 7.1.3 Log Content Requirements (L2 L3), 7.1.4 Log Content Requirements (L2 L3), 7.2.1 Log Processing Requirements (L2 L3), 7.2.2 Log Processing Requirements (L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10, Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 10.2.1, Requirement 10.2.4, Requirement 10.3.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 10.2.1, Requirement 10.2.1.4, Requirement 10.2.2
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 8.2 - Activity Tracking
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 8.2 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 8.2 - Activity Tracking
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3680.4 CAT II, APP3680.5 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3680.4 CAT II, APP3680.5 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3680.4 CAT II, APP3680.5 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3680.4 CAT II, APP3680.5 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3680.4 CAT II, APP3680.5 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3680.4 CAT II, APP3680.5 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3680.4 CAT II, APP3680.5 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000830 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000830 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000830 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000830 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000830 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000830 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000830 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000830 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000830 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000830 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000830 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000830 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000830 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.json.azure_arm_misconfiguration_insufficient_microsoft_defender_monitoring
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
var storedPassword:String = null;
var temp:String;

if ((temp = readPassword()) != null) {
storedPassword = temp;
}

if(Utils.verifyPassword(userPassword, storedPassword))
// Access protected resources
...
}
...


If readPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for userPassword.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 259
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[41] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.actionscript.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it might enable attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
string storedPassword = null;
string temp;

if ((temp = ReadPassword(storedPassword)) != null) {
storedPassword = temp;
}

if (Utils.VerifyPassword(storedPassword, userPassword)) {
// Access protected resources
...
}
...


If ReadPassword() fails to retrieve the stored password due to a database error or other problem, then an attacker can easily bypass the password check by providing a null value for userPassword.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 259
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[27] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.apex.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
string storedPassword = null;
string temp;

if ((temp = ReadPassword(storedPassword)) != null) {
storedPassword = temp;
}

if(Utils.VerifyPassword(storedPassword, userPassword))
// Access protected resources
...
}
...


If ReadPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for userPassword.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 259
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[41] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.dotnet.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
char *stored_password = NULL;

readPassword(stored_password);

if(safe_strcmp(stored_password, user_password))
// Access protected resources
...
}
...


If readPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for user_password.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 259
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[41] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.cpp.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it might enable attackers to bypass password verification or it might indicate that resources are protected by an empty password.

References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 259
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[27] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.golang.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is a bad idea because it can allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example 1: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
String storedPassword = null;
String temp;

if ((temp = readPassword()) != null) {
storedPassword = temp;
}

if(Utils.verifyPassword(userPassword, storedPassword))
// Access protected resources
...
}
...


If readPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for userPassword.

In the mobile environment, password management is especially important given that there is such a high chance of device loss.
Example 2: The following code initializes username and password variables to null, reads credentials from an Android WebView store if they have not been previously rejected by the server for the current request, and uses them to setup authentication for viewing protected pages.

...
webview.setWebViewClient(new WebViewClient() {
public void onReceivedHttpAuthRequest(WebView view,
HttpAuthHandler handler, String host, String realm) {
String username = null;
String password = null;

if (handler.useHttpAuthUsernamePassword()) {
String[] credentials = view.getHttpAuthUsernamePassword(host, realm);
username = credentials[0];
password = credentials[1];
}
handler.proceed(username, password);
}
});
...


Similar to Example 1, if useHttpAuthUsernamePassword() returns false, an attacker will be able to view protected pages by supplying a null password.
References
[1] SQLCipher.
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 259
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[41] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.java.password_management_null_password
Abstract
Null passwords can lead to confusion in the code.
Explanation
It is not a good idea to have a null password.

Example: The following code sets the password initially to null:


...
var password=null;
...
{
password=getPassword(user_data);
...
}
...
if(password==null){
// Assumption that the get didn't work
...
}
...
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 259
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[27] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.javascript.password_management_null_password
Abstract
Null passwords can compromise system security in a way that is difficult to remedy.
Explanation
Never assign null to password variables because it might enable attackers to bypass password verification or indicate that resources are not protected by a password.

Example: The following JSON initializes a null password.


{
...
"password" : null
...
}
References
[1] Robyn Hicock Password Guidance Microsoft
[2] J. Yan, A. Blackwell, R. Anderson, and A. Grant The memorability and security of passwords -- some empirical results
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 259
[10] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[14] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[15] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[16] Standards Mapping - FIPS200 IA
[17] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[20] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[21] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[23] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[25] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[27] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[28] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[29] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[30] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[42] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.json.password_management_null_password
Abstract
The call uses a null password. Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example 1: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
NSString *stored_password = NULL;

readPassword(stored_password);

if(safe_strcmp(stored_password, user_password)) {
// Access protected resources
...
}
...


If readPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for user_password.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 259
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[27] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.objc.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


<?php
...
$storedPassword = NULL;

if (($temp = getPassword()) != NULL) {
$storedPassword = $temp;
}

if(strcmp($storedPassword,$userPassword) == 0) {
// Access protected resources
...
}
...
?>


If readPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for userPassword.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 259
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[41] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.php.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example: The following code initializes a password variable to null.


DECLARE
password VARCHAR(20);
BEGIN
password := null;
END;
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 259
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[41] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.sql.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
storedPassword = NULL;

temp = getPassword()
if (temp is not None) {
storedPassword = temp;
}

if(storedPassword == userPassword) {
// Access protected resources
...
}
...


If getPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for userPassword.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 259
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[27] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.python.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning nil to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example 1: The following code initializes a password variable to nil, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
@storedPassword = nil
temp = readPassword()
storedPassword = temp unless temp.nil?
unless Utils.passwordVerified?(@userPassword, @storedPassword)
...
end
...


If readPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for @userPassword.

Due to the dynamic nature of Ruby, many functions also take an optional number of arguments, so the password may be set to nil as a default value when none is specified. In this case you also need to make sure that the correct number of arguments are specified in order to make sure a password is passed to the function.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 259
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[27] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.ruby.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is a bad idea because it can allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
ws.url(url).withAuth("john", null, WSAuthScheme.BASIC)
...
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 259
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[27] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.scala.password_management_null_password
Abstract
The call uses a null password. Null passwords can compromise security.
Explanation
Assigning nil to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example 1: The following code initializes a password variable to null, attempts to read a stored value for the password, and compares it against a user-supplied value.


...
var stored_password = nil

readPassword(stored_password)

if(stored_password == user_password) {
// Access protected resources
...
}
...


If readPassword() fails to retrieve the stored password due to a database error or another problem, then an attacker could trivially bypass the password check by providing a null value for user_password.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 259
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[14] Standards Mapping - FIPS200 IA
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[27] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[40] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.swift.password_management_null_password
Abstract
Null passwords can compromise security.
Explanation
Assigning null to password variables is never a good idea as it may allow attackers to bypass password verification or might indicate that resources are protected by an empty password.

Example 1: The following code initializes a password variable to null and uses it to connect to a database.


...
Dim storedPassword As String
Set storedPassword = vbNullString

Dim con As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim rst As New ADODB.Recordset

con.ConnectionString = "Driver={Microsoft ODBC for Oracle};Server=OracleServer.world;Uid=scott;Passwd=" & storedPassword &";"
...


If the code in Example 1 succeeds, it indicates that the database user account "scott" is configured with an empty password, which an attacker can easily guess. After the program ships, updating the account to use a non-empty password will require a code change.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 259
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-003109
[15] Standards Mapping - FIPS200 IA
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[26] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2023 M1 Improper Credential Usage
[28] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6, Requirement 8.3.1
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 2.2 - Secure Defaults, Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls, Control Objective C.4.1 - Web Software Communications
[41] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.vb.password_management_null_password
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.abap.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation, or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently in an HTTP request.


2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code sets an HTTP header whose name and value could be controlled by an attacker:


@HttpGet
global static void doGet() {
...
Map<String, String> params = ApexPages.currentPage().getParameters();

RestResponse res = RestContext.response;
res.addHeader(params.get('name'), params.get('value'));
...
}


Assuming a name/value pair consisting of author and Jane Smith, the HTTP response including this header might take the following form:


HTTP/1.1 200 OK
...
author:Jane Smith
...


However, because the value of the header is formed from unvalidated user input, an attacker might submit a malicious name/value pair, such as HTTP/1.1 200 OK\r\n...foo and bar, then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker can make a single request to a vulnerable server that causes the server to create two responses, the second of which might be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker might leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker might provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: After attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker might cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks such as Cross-Site Request Forgery, attackers might change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.apex.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers and frameworks will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Microsoft's .NET framework will convert CR, LF, and NULL characters to %0d, %0a and %00 when they are sent to the HttpResponse.AddHeader() method. If you are using the latest .NET framework that prevents setting headers with new line characters, then your application might not be vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for Author.Text does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dotnet.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement or page hijacking attacks.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated for malicious characters.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTML form and sets it in a cookie header of an HTTP response.


...
EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(AUTHOR)
...
END-EXEC.

EXEC CICS
WEB WRITE
HTTPHEADER(COOKIE)
VALUE(AUTHOR)
...
END-EXEC.
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cobol.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently a web request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from a web form and sets it in a cookie header of an HTTP response.


<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1/1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the sever to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the sever. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response an executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] Amit Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Diabolic Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cfml.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without validation.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the 'content-type' from an HTTP request and sets it in a header of an new HTTP request.


final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final contentType = headers.value('content-type');
final client = HttpClient();
final clientRequest = await client.getUrl(Uri.parse('https://example.com'));
clientRequest.headers.add('Content-Type', contentType as Object);
});


Because the value of the 'Content-Type' header is formed of unvalidated user input, it can be manipulated by malicious actors to exploit vulnerabilities, execute code injection attacks, expose sensitive data, enable malicious file execution, or trigger denial of service situations, posing significant risks to the application's security and stability.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 113
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dart.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation, or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.


Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...


The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker can make a single request to a vulnerable server that causes the server to create two responses, the second of which can be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker might leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker might provide especially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance is affected.

Cross-Site Scripting: After attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker might cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers can change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 113
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[21] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.golang.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.java.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: web and browser cache poisoning, cross-site scripting, and page hijacking.


Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like cross-site request forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.javascript.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.


2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment assumes name and value may be controlled by an attacker. The code sets an HTTP header whose name and value may be controlled by an attacker:


...
NSURLSessionConfiguration * config = [[NSURLSessionConfiguration alloc] init];
NSMutableDictionary *dict = @{};
[dict setObject:value forKey:name];
[config setHTTPAdditionalHeaders:dict];
...


Assuming a name/value pair consisting of author and Jane Smith, the HTTP response including this header might take the following form:


HTTP/1.1 200 OK
...
author:Jane Smith
...


However, because the value of the header is formed of unvalidated user input, an attacker may submit a malicious name/value pair, such as HTTP/1.1 200 OK\r\n...foo and bar, then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.objc.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of PHP will generate a warning and stop header creation when new lines are passed to the header() function. If your version of PHP prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the location from an HTTP request and sets it in the header location field of an HTTP response.


<?php
$location = $_GET['some_location'];
...
header("location: $location");
?>


Assuming a string consisting of standard alphanumeric characters, such as "index.html", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
location: index.html
...


However, because the value of the location is formed of unvalidated user input the response will only maintain this form if the value submitted for some_location does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.php.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
-- Assume QUERY_STRING looks like AUTHOR_PARAM=Name
author := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 14);
OWA_UTIL.mime_header('text/html', false);
OWA_COOKE.send('author', author);
OWA_UTIL.http_header_close;
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.sql.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the location from an HTTP request and sets it in a the header its location field of an HTTP response.


location = req.field('some_location')
...
response.addHeader("location",location)


Assuming a string consisting of standard alphanumeric characters, such as "index.html", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
location: index.html
...


However, because the value of the location is formed of unvalidated user input the response will only maintain this form if the value submitted for some_location does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide especially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.python.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and uses this in a get request to another part of the site.


author = req.params[AUTHOR_PARAM]
http = Net::HTTP.new(URI("http://www.mysite.com"))
http.post('/index.php', "author=#{author}")


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith" is submitted in the request, the HTTP response might take the following form:


POST /index.php HTTP/1.1
Host: www.mysite.com
author=Jane Smith
...


However, because the value of the URL is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nPOST /index.php HTTP/1.1\r\n...", then the HTTP response would be split into two responses of the following form:


POST /index.php HTTP/1.1
Host: www.mysite.com
author=Wiley Hacker

POST /index.php HTTP/1.1
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue to receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 113
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.ruby.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, Play Framework will throw an exception if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.scala.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.


2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment assumes name and value may be controlled by an attacker. The code sets an HTTP header whose name and value may be controlled by an attacker:


...
var headers = []
headers[name] = value
let config = NSURLSessionConfiguration.backgroundSessionConfigurationWithIdentifier("com.acme")
config.HTTPAdditionalHeaders = headers
...


Assuming a name/value pair consisting of author and Jane Smith, the HTTP response including this header might take the following form:


HTTP/1.1 200 OK
...
author:Jane Smith
...


However, because the value of the header is formed of unvalidated user input, an attacker may submit a malicious name/value pair, such as HTTP/1.1 200 OK\r\n...foo and bar, then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.swift.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers, however, servers that support classic ASP often do not have that protection mechanism.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.vb.header_manipulation
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, Cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.abap.header_manipulation_cookies
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation, or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently in an HTTP request.



2. The data is included in an HTTP cookie sent to a web user without being validated.



As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks such as cross-site request forgery, attackers might change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, Cookie manipulation attacks can also lead to other types of attacks such as:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
Cookie cookie = new Cookie('author', author, '/', -1, false);
ApexPages.currentPage().setCookies(new Cookie[] {cookie});
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for author does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker can make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.apex.header_manipulation_cookies
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dotnet.header_manipulation_cookies
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, Cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] Amit Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Diabolic Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cfml.header_manipulation_cookies
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation, or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers can change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response only maintains this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response is split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker can make a single request to a vulnerable server that causes the server to create two responses, the second of which can be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker might leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker might provide especially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance is affected.

Cross-Site Scripting: After attackers have control of the responses sent by an application, they have a variety of malicious content they can provide to users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, an attacker can leverage the same root vulnerability to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker can cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 113
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.golang.header_manipulation_cookies
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Some think that in the mobile world, classic web application vulnerabilities, such as header and cookie manipulation, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 2: The following code adapts Example 1 to the Android platform.


...
CookieManager webCookieManager = CookieManager.getInstance();
String author = this.getIntent().getExtras().getString(AUTHOR_PARAM);
String setCookie = "author=" + author + "; max-age=" + cookieExpiration;
webCookieManager.setCookie(url, setCookie);

...
Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.java.header_manipulation_cookies
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like cross-site request forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, Cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker can make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.javascript.header_manipulation_cookies
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, Cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


<?php
$author = $_GET['AUTHOR_PARAM'];
...
header("author: $author");
?>


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.php.header_manipulation_cookies
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the location from an HTTP request and sets it in a the header its location field of an HTTP response.


location = req.field('some_location')
...
response.addHeader("location",location)


Assuming a string consisting of standard alphanumeric characters, such as "index.html", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
location: index.html
...


However, because the value of the location is formed of unvalidated user input the response will only maintain this form if the value submitted for some_location does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide especially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.python.header_manipulation
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.scala.header_manipulation_cookies
Abstract
Including unvalidated data in Cookies can lead to HTTP Response header manipulation and enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Cookie Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP cookie sent to a web user without being validated.

As with many software security vulnerabilities, cookie manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP cookie.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Being an HTTP Response header, Cookie manipulation attacks can also lead to other types of attacks like:

HTTP Response Splitting:
One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.vb.header_manipulation_cookies