156 elementos encontrados
Debilidades
Abstract
Si se permite que la entrada de usuario modifique directamente los permisos de archivo, un atacante podría acceder a los recursos del sistema protegidos de otra forma.
Explanation
Se producen errores File Permission Manipulation cuando se cumplen algunas de las siguientes condiciones:

1. Un atacante puede especificar una ruta de acceso utilizada en una operación que modifica los permisos del sistema de archivos.

2. Un atacante puede especificar los permisos asignados por una operación en el sistema de archivos.

Ejemplo 1: El siguiente código utiliza la entrada de las variables de entorno del sistema para establecer los permisos de archivo. Si los atacantes pueden modificar las variables de entorno del sistema, pueden utilizar el programa para obtener acceso a los archivos que el programa ha manipulado. Si el programa también es vulnerable a Path Manipulation, un atacante puede utilizar esta vulnerabilidad para obtener acceso a archivos arbitrarios del sistema.


permissions := strconv.Atoi(os.Getenv("filePermissions"));
fMode := os.FileMode(permissions)
os.chmod(filePath, fMode);
...
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 264, CWE ID 732
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [15] CWE ID 732
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [16] CWE ID 732
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [22] CWE ID 732
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-002165
[13] Standards Mapping - FIPS200 AC
[14] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement
[17] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[18] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 4.3.3 Other Access Control Considerations (L2 L3), 7.3.3 Log Protection Requirements (L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[21] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 732
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 732
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 732
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.file_permission_manipulation
Abstract
Si se permite que la entrada de usuario modifique directamente los permisos de archivo, un atacante puede acceder a los recursos del sistema protegidos de otra forma.
Explanation
Se producen errores de File Permission Manipulation cuando se cumplen algunas de las siguientes condiciones:

1. Un atacante puede especificar una ruta de acceso utilizada en una operación que modifica los permisos del sistema de archivos.

2. Un atacante puede especificar los permisos asignados por una operación en el sistema de archivos.

Ejemplo 1: el siguiente código utiliza la entrada desde las propiedades del sistema para establecer la máscara de permisos predeterminada. Si los atacantes pueden modificar las propiedades del sistema, pueden utilizar el programa para obtener acceso a los archivos que el programa ha manipulado. Si el programa también es vulnerable a la manipulación de rutas de acceso, un usuario malintencionado puede utilizar esta vulnerabilidad para obtener acceso a archivos arbitrarios del sistema.


String permissionMask = System.getProperty("defaultFileMask");
Path filePath = userFile.toPath();
...
Set<PosixFilePermission> perms = PosixFilePermissions.fromString(permissionMask);
Files.setPosixFilePermissions(filePath, perms);
...
References
[1] FIO01-J. Create files with appropriate access permissions CERT
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark complete
[9] Standards Mapping - Common Weakness Enumeration CWE ID 264, CWE ID 732
[10] Standards Mapping - Common Weakness Enumeration Top 25 2019 [15] CWE ID 732
[11] Standards Mapping - Common Weakness Enumeration Top 25 2020 [16] CWE ID 732
[12] Standards Mapping - Common Weakness Enumeration Top 25 2021 [22] CWE ID 732
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-002165
[14] Standards Mapping - FIPS200 AC
[15] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement
[18] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[19] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 4.3.3 Other Access Control Considerations (L2 L3), 7.3.3 Log Protection Requirements (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 732
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 732
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 732
[39] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.file_permission_manipulation
Abstract
Si se permite que la entrada de usuario modifique directamente los permisos de archivo, un atacante puede acceder a los recursos del sistema protegidos de otra forma.
Explanation
Se producen errores de manipulación de permisos de archivo cuando se cumplen algunas de las siguientes condiciones:

1. Un atacante puede especificar una ruta de acceso utilizada en una operación que modifica los permisos del sistema de archivos.

2. Un atacante puede especificar los permisos asignados por una operación en el sistema de archivos.

Ejemplo: el siguiente código se ha diseñado para establecer los permisos de archivo adecuados para los usuarios que cargan las páginas web a través de FTP. Utiliza la entrada de una solicitud HTTP para marcar un archivo como visible para los usuarios externos.


$rName = $_GET['publicReport'];
chmod("/home/". authenticateUser . "/public_html/" . rName,"0755");
...


Sin embargo, si un usuario malintencionado proporciona un valor malicioso para publicReport como, por ejemplo, "../../localuser/public_html/.htpasswd", la aplicación hará que el archivo especificado sea legible para el usuario malintencionado.

Ejemplo 2: el siguiente código utiliza la entrada desde un archivo de configuración para establecer la máscara de permisos predeterminada. Si los usuarios malintencionados pueden modificar el archivo de configuración, pueden utilizar el programa para obtener acceso a los archivos que el programa ha manipulado. Si el programa también es vulnerable a la manipulación de rutas de acceso, un usuario malintencionado puede utilizar esta vulnerabilidad para obtener acceso a archivos arbitrarios del sistema.


...
$mask = $CONFIG_TXT['perms'];
chmod($filename,$mask);
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark complete
[9] Standards Mapping - Common Weakness Enumeration CWE ID 264, CWE ID 732
[10] Standards Mapping - Common Weakness Enumeration Top 25 2019 [15] CWE ID 732
[11] Standards Mapping - Common Weakness Enumeration Top 25 2020 [16] CWE ID 732
[12] Standards Mapping - Common Weakness Enumeration Top 25 2021 [22] CWE ID 732
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-002165
[14] Standards Mapping - FIPS200 AC
[15] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement
[18] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[19] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 4.3.3 Other Access Control Considerations (L2 L3), 7.3.3 Log Protection Requirements (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 732
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 732
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 732
[39] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.php.file_permission_manipulation
Abstract
Si se permite que la entrada de usuario modifique directamente los permisos de archivo, un atacante puede acceder a los recursos del sistema protegidos de otra forma.
Explanation
Se producen errores de File Permission Manipulation cuando se cumplen algunas de las siguientes condiciones:

1. Un atacante puede especificar una ruta de acceso utilizada en una operación que modifica los permisos del sistema de archivos.

2. Un atacante puede especificar los permisos asignados por una operación en el sistema de archivos.

Ejemplo 1: El siguiente código utiliza la entrada de las variables de entorno del sistema para establecer los permisos de archivo. Si los atacantes pueden modificar las variables de entorno del sistema, pueden utilizar el programa para obtener acceso a los archivos que el programa ha manipulado. Si el programa también es vulnerable a Path Manipulation, un atacante puede utilizar esta vulnerabilidad para obtener acceso a archivos arbitrarios del sistema.


permissions = os.getenv("filePermissions");
os.chmod(filePath, permissions);
...
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[5] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 264, CWE ID 732
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [15] CWE ID 732
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [16] CWE ID 732
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [22] CWE ID 732
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-002165
[13] Standards Mapping - FIPS200 AC
[14] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement
[17] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[18] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 4.3.3 Other Access Control Considerations (L2 L3), 7.3.3 Log Protection Requirements (L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[21] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 732
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 732
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 732
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.file_permission_manipulation
Abstract
Si se permite que la entrada de usuario modifique directamente los permisos de archivo, un atacante puede acceder a los recursos del sistema protegidos de otra forma.
Explanation
Se producen errores de manipulación de permisos de archivo cuando se cumplen algunas de las siguientes condiciones:

1. Un atacante puede especificar una ruta de acceso utilizada en una operación que modifica los permisos del sistema de archivos.

2. Un atacante puede especificar los permisos asignados por una operación en el sistema de archivos.

Ejemplo: el siguiente código se ha diseñado para establecer los permisos de archivo adecuados para los usuarios que cargan las páginas web a través de FTP. Utiliza la entrada de una solicitud HTTP para marcar un archivo como visible para los usuarios externos.


...
rName = req['publicReport']
File.chmod("/home/#{authenticatedUser}/public_html/#{rName}", "0755")
...


Sin embargo, si un usuario malintencionado proporciona un valor malicioso para publicReport como, por ejemplo, "../../localuser/public_html/.htpasswd", la aplicación hará que el archivo especificado sea legible para el usuario malintencionado.

Ejemplo 2: el siguiente código utiliza la entrada desde un archivo de configuración para establecer la máscara de permisos predeterminada. Si los atacantes pueden modificar el archivo de configuración, podrían utilizar el programa para obtener acceso a los archivos que el programa ha manipulado. Si el programa también es vulnerable a la manipulación de rutas de acceso, un usuario malintencionado puede utilizar esta vulnerabilidad para obtener acceso a archivos arbitrarios del sistema.


...
mask = config_params['perms']
File.chmod(filename, mask)
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark complete
[9] Standards Mapping - Common Weakness Enumeration CWE ID 264, CWE ID 732
[10] Standards Mapping - Common Weakness Enumeration Top 25 2019 [15] CWE ID 732
[11] Standards Mapping - Common Weakness Enumeration Top 25 2020 [16] CWE ID 732
[12] Standards Mapping - Common Weakness Enumeration Top 25 2021 [22] CWE ID 732
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-002165
[14] Standards Mapping - FIPS200 AC
[15] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement
[18] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[19] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 4.3.3 Other Access Control Considerations (L2 L3), 7.3.3 Log Protection Requirements (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 732
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 732
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 732
[39] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.ruby.file_permission_manipulation
Abstract
La información de depuración ayuda a los atacantes a conocer el sistema y planificar una forma de ataque.
Explanation
Si está utilizando Blaze DS para llevar a cabo el registro de eventos inesperados, el archivo del descriptor services-config.xml especifica un elemento XML "Logging" (Registro) para describir los diferentes aspectos del registro. Tiene un formato similar al siguiente:

Ejemplo:

<logging>
<target class="flex.messaging.log.ConsoleTarget" level="Debug">
<properties>
<prefix>[BlazeDS]</prefix>
<includeDate>false</includeDate>
<includeTime>false</includeTime>
<includeLevel>false</includeLevel>
<includeCategory>false</includeCategory>
</properties>
<filters>
<pattern>Endpoint.*</pattern>
<pattern>Service.*</pattern>
<pattern>Configuration</pattern>
</filters>
</target>
</logging>


Esta etiqueta target toma un atributo opcional que se llama level, el cual indica el nivel de registro. Si el nivel de depuración se establece en un nivel demasiado detallado, su aplicación puede escribir datos confidenciales en el archivo de registro.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[2] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[3] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[4] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[5] Standards Mapping - CIS Kubernetes Benchmark complete
[6] Standards Mapping - Common Weakness Enumeration CWE ID 11
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420, CCI-003272
[8] Standards Mapping - FIPS200 CM
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-11 Error Handling (P2)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-11 Error Handling
[12] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[13] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[14] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[15] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[16] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[18] Standards Mapping - OWASP API 2023 API8 Security Misconfiguration
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 14.1.3 Build (L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3120 CAT II, APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3120 CAT II, APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3120 CAT II, APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3120 CAT II, APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3120 CAT II, APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3120 CAT II, APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3120 CAT II, APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[54] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.config.java.flex_misconfiguration_debug_information
Abstract
Al permitir que un usuario malintencionado controle la cadena de formato de una función, se puede producir un buffer overflow.
Explanation
Las vulnerabilidades de cadena de formato se producen cuando:

1. Los datos entran en la aplicación desde una fuente no confiable.



2. Los datos se transfieren como argumento de cadena de formato a una función, como sprintf(), FormatMessageW() o syslog().
Ejemplo 1: el siguiente código copia un argumento de línea de comandos en un búfer mediante snprintf().


int main(int argc, char **argv){
char buf[128];
...
snprintf(buf,128,argv[1]);
}


Este código permite a un usuario malintencionado ver el contenido de la pila y escribir en esta mediante el argumento de línea de comandos que contiene una secuencia de directivas de formato. El atacante puede leer desde la pila proporcionando más directivas de formato como, por ejemplo, %x, que la función utiliza como argumentos a los que aplicar un formato. (En este ejemplo, la función no utiliza ningún argumento al que se le vaya aplicar un formato.) Mediante la directiva de formato %n, el usuario malintencionado puede escribir en la pila lo que provoca que snprintf() escriba la salida de un número de bytes hasta el momento en el argumento especificado (en lugar de leer un valor del argumento, que es el comportamiento previsto). Una versión sofisticada de este ataque utilizará cuatro operaciones de escritura escalonadas para controlar por completo el valor de un puntero en la pila.

Ejemplo 2: determinadas implementaciones realizan ataques más avanzados de forma más fácil al proporcionar directivas de formato que controlan la ubicación en la memoria para leer esta o escribir en ella. A continuación se muestra un ejemplo de estas directivas con el siguiente código, escrito para glibc:


printf("%d %d %1$d %1$d\n", 5, 9);


Este código genera la siguiente salida:


5 9 5 5


También se pueden utilizan medias operaciones de escritura (%hn) para controlar elementos DWORDS arbitrarios en la memoria, lo que reduce considerablemente la complejidad necesaria para ejecutar un ataque que, de otro modo, requeriría cuatro operaciones de escritura escalonadas como la que se menciona en el Example 1.

Ejemplo 3: las vulnerabilidades de cadena de formato sencillo a menudo proceden de atajos aparentemente inofensivos. El uso de estos atajos está tan arraigado que es posible que los programadores ni siquiera se den cuenta de que la función que están utilizando espera un argumento de cadena de formato.

Por ejemplo, la función syslog() se usa a menudo de la siguiente forma:


...
syslog(LOG_ERR, cmdBuf);
...


Como el segundo parámetro en syslog() es una cadena de formato, todas las directivas de formato incluidas en cmdBuf se interpretan como se describe en el Example 1.

El siguiente código muestra un uso correcto de syslog():


...
syslog(LOG_ERR, "%s", cmdBuf);
...
References
[1] T. Newsham Format String Attacks Guardent, Inc.
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark complete
[9] Standards Mapping - Common Weakness Enumeration CWE ID 134
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[16] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 134
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Format String (WASC-06)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Format String Attack
desc.dataflow.cpp.format_string
Abstract
Un atacante puede controlar el argumento de cadena de formato que permite un ataque muy similar a un desbordamiento de búfer.
Explanation
Las vulnerabilidades de cadena de formato se producen cuando:

1. Los datos entran en la aplicación desde una fuente no confiable.



2. Los datos se pasan como argumento de cadena de formato a una función como sprintf(), FormatMessageW(), syslog(), NSLog o NSString.stringWithFormatEjemplo 1: el código siguiente utiliza un argumento de línea de comandos como una cadena de formato en NSString.stringWithFormat:.


int main(int argc, char **argv){
char buf[128];
...
[NSString stringWithFormat:argv[1], argv[2] ];
}


Este código permite a un usuario malintencionado ver el contenido de la pila y dañarla mediante un argumento de línea de comandos que contenga una secuencia de directivas de formato. El atacante puede leer desde la pila proporcionando más directivas de formato como, por ejemplo, %x, que la función utiliza como argumentos a los que aplicar un formato. (En este ejemplo, la función no utiliza ningún argumento al que se le vaya aplicar un formato.)

Objective-C es compatible con las bibliotecas estándar de C heredadas, por lo que los ejemplos siguientes son aprovechables si la aplicación utiliza las API de C.

Ejemplo 2: determinadas implementaciones realizan ataques más avanzados de forma más fácil al proporcionar directivas de formato que controlan la ubicación en la memoria para leer esta o escribir en ella. A continuación se muestra un ejemplo de estas directivas con el siguiente código, escrito para glibc:


printf("%d %d %1$d %1$d\n", 5, 9);


Este código genera la siguiente salida:


5 9 5 5


También se pueden utilizan medias operaciones de escritura (%hn) para controlar elementos DWORDS arbitrarios en la memoria, lo que reduce considerablemente la complejidad necesaria para ejecutar un ataque que, de otro modo, requeriría cuatro operaciones de escritura escalonadas como la que se menciona en el Example 1.

Ejemplo 3: las vulnerabilidades de cadena de formato sencillo a menudo proceden de atajos aparentemente inofensivos. El uso de estos atajos está tan arraigado que es posible que los programadores ni siquiera se den cuenta de que la función que están utilizando espera un argumento de cadena de formato.

Por ejemplo, la función syslog() se usa a menudo de la siguiente forma:


...
syslog(LOG_ERR, cmdBuf);
...


Como el segundo parámetro en syslog() es una cadena de formato, todas las directivas de formato incluidas en cmdBuf se interpretan como se describe en el Example 1.

El siguiente código muestra un uso correcto de syslog():


...
syslog(LOG_ERR, "%s", cmdBuf);
...
Ejemplo 4: las clases principales de Apple proporcionan vías interesantes para explotar las vulnerabilidades de la cadena de formato.

Por ejemplo, la función String.stringByAppendingFormat() se usa a menudo de la siguiente forma:


...
NSString test = @"Sample Text.";
test = [test stringByAppendingFormat:[MyClass
formatInput:inputControl.text]];
...


stringByAppendingFormat analiza los caracteres de la cadena de formato contenidos en la NSString pasados a ella.

El siguiente código muestra un uso correcto de stringByAppendingFormat():


...
NSString test = @"Sample Text.";
test = [test stringByAppendingFormat:@"%@", [MyClass
formatInput:inputControl.text]];
...
References
[1] T. Newsham Format String Attacks Guardent, Inc.
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark complete
[9] Standards Mapping - Common Weakness Enumeration CWE ID 134
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[16] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.2 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 134
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Format String (WASC-06)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Format String Attack
desc.dataflow.objc.format_string
Abstract
El programa usa una cadena de formato incorrecto que tiene un número de especificadores de conversión distinto del de los argumentos de la función. Las cadenas de formato incorrecto pueden hacer que el programa lea datos fuera de los límites de la memoria asignada, lo que puede dar acceso a información confidencial, introducir un comportamiento incorrecto o bloquear el programa.
Explanation
El buffer overflow es probablemente la forma más conocida de vulnerabilidad de seguridad de software. La mayoría de los desarrolladores de software saben lo que es una vulnerabilidad de buffer overflow, pero a menudo este tipo de ataques contra las aplicaciones existentes y desarrolladas recientemente son aún bastante habituales. Parte del problema se debe a la amplia variedad de formas en las que puede producirse un buffer overflow y otra parte se debe a las técnicas proclives a errores que a menudo se utilizan para evitarlas.

En un ataque de buffer overflow clásico, el usuario malintencionado envía datos a un programa, que los almacena en un búfer de pila demasiado pequeño. El resultado es que se sobrescribe la información de la pila de llamadas, incluido el puntero de devolución de la función. Los datos establecen el valor del puntero de devolución para que, cuando se devuelva la función, esta transfiera el control al código malicioso incluido en los datos del usuario malintencionado.

Aunque este tipo de buffer overflow de pila aún es frecuente en algunas plataformas y comunidades de desarrolladores, existen diversos tipos adicionales de buffer overflow, incluidos los desbordamientos del búfer de montón y los errores por uno ("off-by-one"), entre otros. Hay una serie de libros excelentes que ofrecen información detallada sobre cómo funcionan los ataques de buffer overflow, incluidos "Bilding Secure Software" [1], "Writing Secure Code" [2] y "The Shellcoder's Handbook" [3].

En el nivel de código, las vulnerabilidades de buffer overflow normalmente conllevan la infracción de las presuposiciones de un programador. Muchas funciones de manipulación de la memoria de C y C++ no realizan la comprobación de límites y pueden traspasar fácilmente los límites asignados de los búferes en los que operan. Incluso las funciones limitadas como, por ejemplo, strncpy(), pueden provocar vulnerabilidades cuando se utilizan incorrectamente. La combinación de manipulación de memoria y presuposiciones erróneas acerca del tamaño y la formación de una unidad de datos es el motivo principal de la mayoría de desbordamientos del búfer.

En este caso, una cadena de formato construida incorrectamente provoca que el programa pueda acceder a valores fuera de los límites de la memoria asignada.

Ejemplo: el siguiente lee valores arbitrarios desde la pila porque el número de especificadores de formato no se corresponde con el número de argumentos transferidos a la función.

void wrongNumberArgs(char *s, float f, int d) {
char buf[1024];
sprintf(buf, "Wrong number of %.512s");
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[8] Standards Mapping - Common Weakness Enumeration CWE ID 126
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [5] CWE ID 125
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [4] CWE ID 125
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [3] CWE ID 125, [17] CWE ID 119
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [5] CWE ID 125, [19] CWE ID 119
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [7] CWE ID 125, [17] CWE ID 119
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[19] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[20] Standards Mapping - OWASP Mobile 2014 M4 Unintended Data Leakage
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002590 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Format String (WASC-06)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Format String Attack
desc.internal.cpp.format_string_argument_number_mismatch
Abstract
El programa usa una cadena de formato incorrecto con especificadores de conversión que no corresponden a los tipos de argumentos transferidos a la función. Las cadenas incorrectas pueden hacer que el programa convierta valores incorrectamente y que lea o escriba fuera de los límites de memoria asignada, lo que introduciría un comportamiento incorrecto o bloquearía el programa.
Explanation
El buffer overflow es probablemente la forma más conocida de vulnerabilidad de seguridad de software. La mayoría de los desarrolladores de software saben lo que es una vulnerabilidad de buffer overflow, pero a menudo este tipo de ataques contra las aplicaciones existentes y desarrolladas recientemente son aún bastante habituales. Parte del problema se debe a la amplia variedad de formas en las que puede producirse un buffer overflow y otra parte se debe a las técnicas proclives a errores que a menudo se utilizan para evitarlas.

En un ataque de buffer overflow clásico, el usuario malintencionado envía datos a un programa, que los almacena en un búfer de pila demasiado pequeño. El resultado es que se sobrescribe la información de la pila de llamadas, incluido el puntero de devolución de la función. Los datos establecen el valor del puntero de devolución para que, cuando se devuelva la función, esta transfiera el control al código malicioso incluido en los datos del usuario malintencionado.

Aunque este tipo de buffer overflow de pila aún es frecuente en algunas plataformas y comunidades de desarrolladores, existen diversos tipos adicionales de buffer overflow, incluidos los desbordamientos del búfer de montón y los errores por uno ("off-by-one"), entre otros. Hay una serie de libros excelentes que ofrecen información detallada sobre cómo funcionan los ataques de buffer overflow, incluidos "Bilding Secure Software" [1], "Writing Secure Code" [2] y "The Shellcoder's Handbook" [3].

En el nivel de código, las vulnerabilidades de buffer overflow normalmente conllevan la infracción de las presuposiciones de un programador. Muchas funciones de manipulación de la memoria de C y C++ no realizan la comprobación de límites y pueden traspasar fácilmente los límites asignados de los búferes en los que operan. Incluso las funciones limitadas como, por ejemplo, strncpy(), pueden provocar vulnerabilidades cuando se utilizan incorrectamente. La combinación de manipulación de memoria y presuposiciones erróneas acerca del tamaño y la formación de una unidad de datos es el motivo principal de la mayoría de desbordamientos del búfer.

En este caso, una cadena de formato construida incorrectamente provoca que el programa convierta incorrectamente valores de datos o que tenga acceso a valores fuera de los límites de la memoria asignada.

Ejemplo: el código siguiente convierte incorrectamente f desde un flotador usando un especificador de formato %d.


void ArgTypeMismatch(float f, int d, char *s, wchar *ws) {
char buf[1024];
sprintf(buf, "Wrong type of %d", f);
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[8] Standards Mapping - Common Weakness Enumeration CWE ID 125, CWE ID 787
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [5] CWE ID 125, [12] CWE ID 787
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [4] CWE ID 125, [2] CWE ID 787
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787, [3] CWE ID 125, [17] CWE ID 119
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787, [5] CWE ID 125, [19] CWE ID 119
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787, [7] CWE ID 125, [17] CWE ID 119
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 10.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 5-0-3
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[20] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[21] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002590 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Format String (WASC-06)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Format String Attack
desc.internal.cpp.format_string_argument_type_mismatch
Abstract
Si se incluye un script de otro dominio, la seguridad de esta página web dependerá de la seguridad del otro dominio.
Explanation
Incluir contenido ejecutable de otro sitio web es una proposición arriesgada. Vincula la seguridad de nuestro sitio con la seguridad del otro sitio.

Ejemplo: Observe la siguiente etiqueta script.

<script src="http://www.example.com/js/fancyWidget.js"></script>


Si esta etiqueta aparece en otro sitio web distinto de www.example.com, este sitio dependerá de www.example.com para suministrar código válido y malintencionado. Si los atacantes consiguen comprometer www.example.com, podrán alterar el contenido de fancyWidget.js para trastornar la seguridad del sitio. Podrían, por ejemplo, añadir código a fancyWidget.js para robar los datos confidenciales de un usuario.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[2] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 2
[4] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[5] Standards Mapping - CIS Kubernetes Benchmark partial
[6] Standards Mapping - Common Weakness Enumeration CWE ID 494, CWE ID 829
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001167
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-18 Mobile Code (P2)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-18 Mobile Code
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.3.9 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 12.3.6 File Execution Requirements (L2 L3), 14.2.3 Dependency (L1 L2 L3), 14.2.4 Dependency (L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[13] Standards Mapping - OWASP Mobile 2023 M7 Insufficient Binary Protections
[14] Standards Mapping - OWASP Mobile 2024 M7 Insufficient Binary Protections
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2
[16] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 094
[17] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-003300 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-003300 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-003300 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-003300 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-003300 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-003300 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-003300 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-003300 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-003300 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-003300 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-003300 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-003300 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-003300 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-003300 CAT II
[31] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Process Validation (WASC-40)
[32] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Process Validation
desc.content.html.hardcoded_domain
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.abap.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, cross-site scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies u open redirect.
Explanation
Se producen vulnerabilidades Header Manipulation cuando:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.


2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, Header Manipulation es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de Header Manipulation es la división de respuesta HTTP. Para realizar un ataque de división de respuesta HTTP con éxito, la aplicación debe permitir entradas que contengan caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación pretende enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernos de hoy impiden la inyección de caracteres malintencionados en los encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojan una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.

Ejemplo 1: El siguiente código establece un encabezado HTTP cuyo nombre y valor podría controlar un atacante:


@HttpGet
global static void doGet() {
...
Map<String, String> params = ApexPages.currentPage().getParameters();

RestResponse res = RestContext.response;
res.addHeader(params.get('name'), params.get('value'));
...
}


Suponiendo que un par de nombre/valor consta de author y Jane Smith, la respuesta HTTP que incluye este encabezado podría tener la siguiente forma:


HTTP/1.1 200 OK
...
author:Jane Smith
...


Sin embargo, debido a que el valor del encabezado se forma a partir de una entrada de usuario no validada, un atacante podría enviar un par de nombre/valor malicioso, como HTTP/1.1 200 OK\r\n...foo y bar, por lo que la respuesta HTTP se dividiría en dos respuestas de la siguiente forma:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Claramente, el atacante controla la segunda respuesta, y esta se puede crear con cualquier contenido de cuerpo y encabezado deseado. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y de la Web, Cross-Site Scripting y el secuestro de páginas.

Desfiguración de usuarios de sitios: Un atacante puede realizar una única solicitud en un servidor vulnerable que haga que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparte la misma conexión TCP con el servidor. Esto se puede lograr si se convence al usuario de que envíe la solicitud malintencionada por sí mismo o de forma remota en situaciones donde el atacante y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque y hacer que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un atacante puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación, pero que redirija información privada, como los números de cuenta y las contraseñas, al atacante.

Envenenamiento de caché: El impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilizan varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas (la respuesta prevista del servidor y la respuesta generada por el atacante), un atacante puede hacer que un nodo intermedio, como un servidor proxy compartido, desvíe al atacante una respuesta generada por el servidor destinada al usuario. Como la solicitud realizada por el atacante genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del atacante, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del atacante ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El atacante envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar toda la información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como Cross-Site Request Forgery, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Open Redirect: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede ayudar a los ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.apex.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchas de las estructuras y los servidores de aplicaciones actuales impiden la introducción de código malintencionado en los encabezados HTTP. Por ejemplo, las versiones recientes de .NET Framework de Microsoft convertirán los caracteres CR, LF y NULL a %0d, %0a y %00 cuando se envíen al método HttpResponse.AddHeader(). Si utiliza la versión más reciente de .NET que impide establecer encabezados con nuevos caracteres de línea, es posible que la aplicación no sea vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para Author.Text no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dotnet.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede provocar ataques como el envenenamiento de caché, los Cross-Site Scripting (XSS), la degradación de usuarios o el secuestro de páginas.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin que se hayan validado para comprobar que existe código malintencionado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el siguiente segmento de código lee el nombre del autor de una entrada de blog, author, de un formulario HTML y lo establece en un encabezado de cookies de una respuesta HTTP.


...
EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(AUTHOR)
...
END-EXEC.

EXEC CICS
WEB WRITE
HTTPHEADER(COOKIE)
VALUE(AUTHOR)
...
END-EXEC.
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cobol.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos tienen acceso a una aplicación web a través de una fuente que no es de confianza; la mayoría de las veces mediante una solicitud web.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el siguiente segmento de código lee el nombre del autor de una entrada de blog, author, desde un formulario web y lo establece como encabezado de cookie de una respuesta HTTP.


<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1/1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] Amit Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Diabolic Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cfml.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o ataques de redireccionamiento abierto.
Explanation
Se producen vulnerabilidades Header Manipulation cuando:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin validación.

Al igual que con muchas vulnerabilidades de seguridad de software, Header Manipulation es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de Header Manipulation es la división de respuesta HTTP. Para realizar un ataque de división de respuesta HTTP con éxito, la aplicación debe permitir entradas que contengan caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación pretende enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernos impiden la inyección de caracteres malintencionados en los encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.

Ejemplo: El siguiente segmento de código lee el 'tipo de contenido' de una solicitud HTTP y lo establece en un encabezado de una nueva solicitud HTTP.


final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final contentType = headers.value('content-type');
final client = HttpClient();
final clientRequest = await client.getUrl(Uri.parse('https://example.com'));
clientRequest.headers.add('Content-Type', contentType as Object);
});


Debido a que el valor del encabezado de tipo de contenido está formado por una entrada de usuario no validada, puede ser manipulado por personas malintencionadas para explotar vulnerabilidades, ejecutar ataques de inyección de código, exponer datos confidenciales, habilitar la ejecución de archivos maliciosos o desencadenar situaciones de denegación de servicio, lo que representa riesgos significativos para la seguridad y la estabilidad de la aplicación.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 113
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dart.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, cross-site scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies u open redirect.
Explanation
Se producen vulnerabilidades Header Manipulation cuando:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, Header Manipulation es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.


Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...


La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y de la Web, Cross-Site Scripting y el secuestro de páginas.

Desfiguración de usuarios de sitios: Un atacante puede realizar una única solicitud en un servidor vulnerable que haga que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparte la misma conexión TCP con el servidor. Esto se puede lograr si se convence al usuario de que envíe la solicitud malintencionada por sí mismo o de forma remota en situaciones donde el atacante y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque y hacer que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un atacante puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación, pero que redirija información privada, como los números de cuenta y las contraseñas, al atacante.

Envenenamiento de caché: El impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilizan varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas (la respuesta prevista del servidor y la respuesta generada por el atacante), un atacante puede hacer que un nodo intermedio, como un servidor proxy compartido, desvíe al atacante una respuesta generada por el servidor destinada al usuario. Como la solicitud realizada por el atacante genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del atacante, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del atacante ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El atacante envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar toda la información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como la falsificación de solicitudes entre sitios, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Open Redirect: Si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede contribuir a los ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 113
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[21] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.golang.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.java.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: envenenamiento de caché de web y explorador, scripts de sitios y suplantación de páginas.


Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.javascript.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.


2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: en el siguiente segmento de código se asume que name y value pueden ser controlados por un usuario malintencionado. El código establece un encabezado HTTP cuyo nombre y valor son controlados por un usuario malintencionado:


...
NSURLSessionConfiguration * config = [[NSURLSessionConfiguration alloc] init];
NSMutableDictionary *dict = @{};
[dict setObject:value forKey:name];
[config setHTTPAdditionalHeaders:dict];
...


Si se asume un par de nombre/valor que consiste en author y Jane Smith, la respuesta de HTTP incluida en este encabezado podría tomar la siguiente forma:


HTTP/1.1 200 OK
...
author:Jane Smith
...


Sin embargo, debido a que el valor del encabezado se forma con entradas del usuario sin validar, los usuarios malintencionados pueden enviar un par de nombre/valor malintencionado, como HTTP/1.1 200 OK\r\n...foo y bar, y la respuesta de HTTP se dividiría en dos respuestas de la siguiente forma:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.objc.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de PHP generarán una advertencia y detendrán la creación de encabezados cuando las líneas nuevas se pasen a la función header() . Si su versión de PHP impide la configuración de los encabezados con los nuevos caracteres de línea, la aplicación no será vulnerable a la División de respuestas HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el siguiente segmento de código lee la ubicación desde una solicitud HTTP y establece en un encabezado el campo de ubicación de una respuesta HTTP.


<?php
$location = $_GET['some_location'];
...
header("location: $location");
?>


Si una cadena compuesta por caracteres alfanuméricos, como “index.html”, se envía en la solicitud, la respuesta HTTP que incluye esta cookie podría mostrarse de la siguiente forma:


HTTP/1.1 200 OK
...
location: index.html
...


Sin embargo, dado que el valor de la ubicación se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para some_location no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "index.html\r\nHTTP/1.1 200 OK\r\n...", la respuesta HTTP debería dividirse en dos respuestas de la siguiente forma:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.php.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
-- Assume QUERY_STRING looks like AUTHOR_PARAM=Name
author := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 14);
OWA_UTIL.mime_header('text/html', false);
OWA_COOKE.send('author', author);
OWA_UTIL.http_header_close;
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.sql.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el siguiente segmento de código lee la ubicación desde una solicitud HTTP y establece en un encabezado el campo de ubicación de una respuesta HTTP.


location = req.field('some_location')
...
response.addHeader("location",location)


Si una cadena compuesta por caracteres alfanuméricos, como “index.html”, se envía en la solicitud, la respuesta HTTP que incluye esta cookie podría mostrarse de la siguiente forma:


HTTP/1.1 200 OK
...
location: index.html
...


Sin embargo, dado que el valor de la ubicación se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para some_location no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "index.html\r\nHTTP/1.1 200 OK\r\n...", la respuesta HTTP debería dividirse en dos respuestas de la siguiente forma:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.python.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el siguiente segmento de código lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo utiliza en una solicitud GET para otra parte del sitio.


author = req.params[AUTHOR_PARAM]
http = Net::HTTP.new(URI("http://www.mysite.com"))
http.post('/index.php', "author=#{author}")


Suponiendo que se envía en la solicitud una cadena formada por caracteres alfanuméricos estándar, tales como “Julia Díaz”, la respuesta HTTP podría tener el formato siguiente:


POST /index.php HTTP/1.1
Host: www.mysite.com
author=Jane Smith
...


Sin embargo, dado que el valor de la dirección URL se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "Wiley Hacker\r\nPOST /index.php HTTP/1.1\r\n...", la respuesta HTTP se dividiría en dos respuestas de la siguiente forma:


POST /index.php HTTP/1.1
Host: www.mysite.com
author=Wiley Hacker

POST /index.php HTTP/1.1
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 113
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.ruby.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar Cache-Poisoning, Cross-Site Scripting, Cross-User Defacement, Page Hijacking, Cookie Manipulation u Open Redirect.
Explanation
Las vulnerabilidades de Header Manipulation se producen cuando:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, Header Manipulation es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de Header Manipulation es HTTP Response Splitting. Para realizar un ataque de HTTP Response Splitting con éxito, la aplicación debe permitir entradas que contengan los caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, Play Framework arrojará una excepción si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.scala.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.


2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: en el siguiente segmento de código se asume que name y value pueden ser controlados por un usuario malintencionado. El código establece un encabezado HTTP cuyo nombre y valor son controlados por un usuario malintencionado:


...
var headers = []
headers[name] = value
let config = NSURLSessionConfiguration.backgroundSessionConfigurationWithIdentifier("com.acme")
config.HTTPAdditionalHeaders = headers
...


Si se asume un par de nombre/valor que consiste en author y Jane Smith, la respuesta de HTTP incluida en este encabezado podría tomar la siguiente forma:


HTTP/1.1 200 OK
...
author:Jane Smith
...


Sin embargo, debido a que el valor del encabezado se forma con entradas del usuario sin validar, los usuarios malintencionados pueden enviar un par de nombre/valor malintencionado, como HTTP/1.1 200 OK\r\n...foo y bar, y la respuesta de HTTP se dividiría en dos respuestas de la siguiente forma:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.swift.header_manipulation
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP, sin embargo, los servidores que admiten aplicaciones ASP clásicas a menudo carecen de ese mecanismo de protección.

Ejemplo: el segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.vb.header_manipulation
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.abap.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca Header Manipulation de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies u Open Redirect.
Explanation
Se producen vulnerabilidades de manipulación de cookies cuando ocurre lo siguiente:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.



2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.



Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como Cross-Site Request Forgery, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Al tratarse de un encabezado de respuesta HTTP, los ataques de manipulación de cookies también pueden provocar otros tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de Header Manipulation es la división de respuesta HTTP. Para realizar un ataque de división de respuesta HTTP con éxito, la aplicación debe permitir entradas que contengan caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación pretende enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernos impiden la inyección de caracteres malintencionados en los encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.

Ejemplo 1: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
Cookie cookie = new Cookie('author', author, '/', -1, false);
ApexPages.currentPage().setCookies(new Cookie[] {cookie});
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, como el valor de la cookie se compone de la entrada de usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para author no contiene ningún carácter CR ni LF. Si un atacante envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", la respuesta HTTP se dividiría en dos respuestas con el siguiente formato:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el atacante controla la segunda respuesta, y esta se puede crear con cualquier contenido de cuerpo y encabezado deseado. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y de la Web, Cross-Site Scripting y el secuestro de páginas.

Desfiguración de usuarios de sitios: Un atacante puede realizar una única solicitud en un servidor vulnerable que haga que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparte la misma conexión TCP con el servidor. Esto se puede lograr si se convence al usuario de que envíe la solicitud malintencionada por sí mismo o de forma remota en situaciones donde el atacante y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque y hacer que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un atacante puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación, pero que redirija información privada, como los números de cuenta y las contraseñas, al atacante.

Envenenamiento de caché: El impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilizan varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas (la respuesta prevista del servidor y la respuesta generada por el atacante), un atacante puede hacer que un nodo intermedio, como un servidor proxy compartido, desvíe al atacante una respuesta generada por el servidor destinada al usuario. Como la solicitud realizada por el atacante genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del atacante, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del atacante ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El atacante envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar toda la información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Open Redirect: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede ayudar a los ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.apex.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dotnet.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] Amit Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Diabolic Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cfml.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca Header Manipulation de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies u Open Redirect.
Explanation
Se producen vulnerabilidades de manipulación de cookies cuando ocurre lo siguiente:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Cookie Manipulation: Cuando se combina con ataques como la falsificación de solicitudes entre sitios, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Al tratarse de un encabezado de respuesta HTTP, los ataques de manipulación de cookies también pueden provocar otros tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de Header Manipulation es la división de respuesta HTTP. Para realizar un ataque de división de respuesta HTTP con éxito, la aplicación debe permitir entradas que contengan caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación pretende enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernos de hoy impiden la inyección de caracteres malintencionados en los encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, como el valor de la cookie se compone de la entrada de usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un atacante envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", la respuesta HTTP se dividiría en dos respuestas con el siguiente formato:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el atacante controla la segunda respuesta, y esta se puede crear con cualquier contenido de cuerpo y encabezado deseado. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios: Un atacante puede realizar una única solicitud en un servidor vulnerable que haga que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparte la misma conexión TCP con el servidor. Esto se puede lograr si se convence al usuario de que envíe la solicitud malintencionada por sí mismo o de forma remota en situaciones donde el atacante y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque y hacer que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un atacante puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación, pero que redirija información privada, como los números de cuenta y las contraseñas, al atacante.

Envenenamiento de caché: El impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilizan varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes adquieren el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, un atacante puede aprovechar la misma vulnerabilidad de raíz para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas (la respuesta prevista del servidor y la respuesta generada por el atacante), un atacante puede hacer que un nodo intermedio, como un servidor proxy compartido, desvíe al atacante una respuesta generada por el servidor destinada al usuario. Como la solicitud realizada por el atacante genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del atacante, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del atacante ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El atacante envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar toda la información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Open Redirect: Si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede contribuir a los ataques de suplantación de identidad.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 113
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.golang.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo 1: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Algunos piensan que en el mundo de las plataformas móviles, las vulnerabilidades de las aplicaciones web clásicas como la manipulación de encabezados y cookies no tienen ningún sentido: ¿por qué se atacaría un usuario a sí mismo? Sin embargo, tenga en cuenta que la esencia de las plataformas móviles consiste en aplicaciones que se descargan desde varias fuentes y se ejecutan junto con otras en el mismo dispositivo. La probabilidad de ejecutar un malware junto a una aplicación de banca es bastante alta, de modo que se necesita expandir la superficie expuesta a ataques de las aplicaciones móviles para que incluyan las comunicaciones entre procesos.

Ejemplo 2: el siguiente código adapta el Example 1 a la plataforma Android.


...
CookieManager webCookieManager = CookieManager.getInstance();
String author = this.getIntent().getExtras().getString(AUTHOR_PARAM);
String setCookie = "author=" + author + "; max-age=" + cookieExpiration;
webCookieManager.setCookie(url, setCookie);

...
Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.java.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Cross-User Defacement: Un atacante puede realizar una única solicitud en un servidor vulnerable que haga que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparte la misma conexión TCP con el servidor. Esto se puede lograr si se convence al usuario de que envíe la solicitud malintencionada por sí mismo o de forma remota en situaciones donde el atacante y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque y hacer que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un atacante puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación, pero que redirija información privada, como los números de cuenta y las contraseñas, al atacante.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.javascript.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


<?php
$author = $_GET['AUTHOR_PARAM'];
...
header("author: $author");
?>


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.php.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el siguiente segmento de código lee la ubicación desde una solicitud HTTP y establece en un encabezado el campo de ubicación de una respuesta HTTP.


location = req.field('some_location')
...
response.addHeader("location",location)


Si una cadena compuesta por caracteres alfanuméricos, como “index.html”, se envía en la solicitud, la respuesta HTTP que incluye esta cookie podría mostrarse de la siguiente forma:


HTTP/1.1 200 OK
...
location: index.html
...


Sin embargo, dado que el valor de la ubicación se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para some_location no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "index.html\r\nHTTP/1.1 200 OK\r\n...", la respuesta HTTP debería dividirse en dos respuestas de la siguiente forma:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.python.header_manipulation
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar Cache-Poisoning, Cross-Site Scripting, Cross-User Defacement, Page Hijacking, Cookie Manipulation u Open Redirect.
Explanation
Las vulnerabilidades de Cookie Manipulation se producen cuando:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, Cookie Manipulation es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Cookie Manipulation: Cuando se combina con ataques como Cross-Site Request Forgery, los usuarios malintencionados pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de Cookie Manipulation también pueden provocar otro tipos de ataques como:

HTTP Response Splitting:
Uno de los ataques más comunes de Header Manipulation es HTTP Response Splitting. Para realizar un ataque de HTTP Response Splitting con éxito, la aplicación debe permitir entradas que contengan los caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.scala.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[58] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.vb.header_manipulation_cookies
Abstract
Incluir datos no validados en un encabezado SMTP puede permitir que los atacantes agreguen encabezados arbitrarios, como CC o BCC, que pueden usar para filtrar el contenido del correo hacia ellos mismos o para utilizar el servidor de correo como un bot de spam.
Explanation
Se producen vulnerabilidades de SMTP Header Manipulation cuando:

1. Los datos entran en una aplicación a través de un origen no confiable, más frecuentemente en una solicitud HTTP en una aplicación web.

2. Los datos se incluyen en un encabezado SMTP enviado a un servidor de correo sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, SMTP Header Manipulation es un medio para lograr un fin, no un fin en sí mismo. En esencia, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado SMTP.

Uno de los ataques más comunes de SMTP Header Manipulation se utiliza para distribuir mensajes de correo electrónico no deseado. Si una aplicación contiene un formulario de contacto vulnerable que permite definir el asunto y el cuerpo del mensaje de correo electrónico, un usuario malintencionado puede definir cualquier contenido arbitrario e inyectar un encabezado CC con una lista de direcciones a las que enviar correo no deseado de forma anónima, ya que el correo electrónico se enviará desde el servidor de la víctima.

Ejemplo: El siguiente segmento de código lee el asunto y el cuerpo de un formulario de contacto:


func handler(w http.ResponseWriter, r *http.Request) {
subject := r.FormValue("subject")
body := r.FormValue("body")
auth := smtp.PlainAuth("identity", "user@example.com", "password", "mail.example.com")
to := []string{"recipient@example.net"}
msg := []byte("To: " + recipient1 + "\r\n" + subject + "\r\n" + body + "\r\n")
err := smtp.SendMail("mail.example.com:25", auth, "sender@example.org", to, msg)
if err != nil {
log.Fatal(err)
}
}


Si una cadena compuesta por caracteres alfanuméricos estándar, como “La página no funciona”, se envía en la solicitud, los encabezados SMTP podrían mostrarse de la siguiente forma:


...
subject: [Contact us query] Page not working
...


Sin embargo, como el valor del encabezado se construye a partir de la entrada de usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para subject no contiene ningún carácter CR ni LF. Si un atacante envía una cadena maliciosa, como "¡¡Felicitaciones!! ¡¡Ha ganado la lotería!!!\r\ncc:victim1@mail.com,victim2@mail.com ...", los encabezados SMTP tendrían el siguiente formato:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


Esto permite que un atacante genere mensajes de spam o envíe correos electrónicos anónimos, entre otros ataques.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.1
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Cloud Computing Platform Benchmark partial
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 93
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[21] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.golang.header_manipulation_smtp
Abstract
La inclusión de datos sin validar en un encabezado SMTP puede permitir a los usuarios malintencionados agregar encabezados arbitrarios, como CC o BCC, que pueden utilizar para acceder al contenido del correo o utilizar el servidor de correo como un bot de correo no deseado.
Explanation
Las vulnerabilidades de manipulación de encabezado SMTP se producen cuando:

1. Los datos entran en una aplicación a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP en una aplicación web.

2. Los datos se incluyen en un encabezado HTTP que se envía a un servidor de correo sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado SMTP es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado SMTP.

Uno de los ataques más comunes de manipulación de encabezado SMTP se utiliza para distribuir mensajes de correo electrónico no deseado. Si una aplicación contiene un formulario de contacto vulnerable que permite definir el asunto y el cuerpo del mensaje de correo electrónico, un usuario malintencionado podrá definir cualquier contenido arbitrario e inyectar un encabezado CC con una lista de direcciones a las que enviar correo no deseado de forma anónima, ya que el correo electrónico se enviará desde el servidor de la víctima.

Ejemplo: el siguiente fragmento de código lee el asunto y el cuerpo de un formulario de contacto:


String subject = request.getParameter("subject");
String body = request.getParameter("body");
MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress("webform@acme.com"));
message.setRecipients(Message.RecipientType.TO, InternetAddress.parse("support@acme.com"));
message.setSubject("[Contact us query] " + subject);
message.setText(body);
Transport.send(message);


Si una cadena compuesta por caracteres alfanuméricos estándar, como “La página no funciona”, se envía en la solicitud, los encabezados SMTP podrían mostrarse de la siguiente forma:


...
subject: [Contact us query] Page not working
...


Sin embargo, dado que el valor del encabezado se crea a partir de la entrada de un usuario no validado, la respuesta solo mantendrá esta forma si el valor introducido para subject no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "¡Felicidades! ¡¡Ha ganado la lotería!!\r\ncc:victim1@mail.com,victim2@mail.com ...", entonces los encabezados SMTP tendrían la siguiente forma:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


En la práctica, esto permitirá a un usuario malintencionado elaborar mensajes de correo no deseado o enviar mensajes anónimos entre otros ataques.
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.1
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Cloud Computing Platform Benchmark partial
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark complete
[10] Standards Mapping - Common Weakness Enumeration CWE ID 93
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.java.header_manipulation_smtp
Abstract
La inclusión de datos sin validar en un encabezado SMTP puede permitir a los usuarios malintencionados agregar encabezados arbitrarios, como CC o BCC, que pueden utilizar para acceder al contenido del correo o utilizar el servidor de correo como un bot de correo no deseado.
Explanation
Las vulnerabilidades de manipulación de encabezado SMTP se producen cuando:

1. Los datos entran en una aplicación a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP en una aplicación web.

2. Los datos se incluyen en un encabezado HTTP que se envía a un servidor de correo sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado SMTP es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado SMTP.

Uno de los ataques más comunes de manipulación de encabezado SMTP se utiliza para distribuir mensajes de correo electrónico no deseado. Si una aplicación contiene un formario de contacto vulnerable que permite definir el asunto y el cuerpo del mensaje de correo electrónico, un usuario malintencionado podrá definir cualquier contenido arbitrario e inyectar un encabezado CC con una lista de direcciones a las que enviar correo no deseado de forma anónima, ya que el correo electrónico se enviará desde el servidor de la víctima.

Ejemplo: el siguiente fragmento de código lee el asunto y el cuerpo de un formulario de contacto:


$subject = $_GET['subject'];
$body = $_GET['body'];
mail("support@acme.com", "[Contact us query] " . $subject, $body);


Si una cadena compuesta por caracteres alfanuméricos estándar, como “La página no funciona”, se envía en la solicitud, los encabezados SMTP podrían mostrarse de la siguiente forma:


...
subject: [Contact us query] Page not working
...


Sin embargo, dado que el valor del encabezado se crea a partir de la entrada de un usuario no validado, la respuesta solo mantendrá esta forma si el valor introducido para subject no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "¡Felicidades! ¡¡Ha ganado la lotería!!\r\ncc:victim1@mail.com,victim2@mail.com ...", entonces los encabezados SMTP tendrían la siguiente forma:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


En la práctica, esto permitirá a un usuario malintencionado elaborar mensajes de correo no deseado o enviar mensajes anónimos entre otros ataques.
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.1
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Cloud Computing Platform Benchmark partial
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark complete
[10] Standards Mapping - Common Weakness Enumeration CWE ID 93
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.php.header_manipulation_smtp
Abstract
La inclusión de datos sin validar en un encabezado SMTP puede permitir a los usuarios malintencionados agregar encabezados arbitrarios, como CC o BCC, que pueden utilizar para acceder al contenido del correo o utilizar el servidor de correo como un bot de correo no deseado.
Explanation
Las vulnerabilidades de manipulación de encabezado SMTP se producen cuando:

1. Los datos entran en una aplicación a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP en una aplicación web.

2. Los datos se incluyen en un encabezado HTTP que se envía a un servidor de correo sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado SMTP es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado SMTP.

Uno de los ataques más comunes de manipulación de encabezado SMTP se utiliza para distribuir mensajes de correo electrónico no deseado. Si una aplicación contiene un formario de contacto vulnerable que permite definir el asunto y el cuerpo del mensaje de correo electrónico, un usuario malintencionado podrá definir cualquier contenido arbitrario e inyectar un encabezado CC con una lista de direcciones a las que enviar correo no deseado de forma anónima, ya que el correo electrónico se enviará desde el servidor de la víctima.

Ejemplo: el siguiente fragmento de código lee el asunto y el cuerpo de un formulario de contacto:


body = request.GET['body']
subject = request.GET['subject']
session = smtplib.SMTP(smtp_server, smtp_tls_port)
session.ehlo()
session.starttls()
session.login(username, password)
headers = "\r\n".join(["from: webform@acme.com",
"subject: [Contact us query] " + subject,
"to: support@acme.com",
"mime-version: 1.0",
"content-type: text/html"])
content = headers + "\r\n\r\n" + body
session.sendmail("webform@acme.com", "support@acme.com", content)


Si una cadena compuesta por caracteres alfanuméricos estándar, como “La página no funciona”, se envía en la solicitud, los encabezados SMTP podrían mostrarse de la siguiente forma:


...
subject: [Contact us query] Page not working
...


Sin embargo, dado que el valor del encabezado se crea a partir de la entrada de un usuario no validado, la respuesta solo mantendrá esta forma si el valor introducido para subject no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "¡Felicidades! ¡¡Ha ganado la lotería!!\r\ncc:victim1@mail.com,victim2@mail.com ...", entonces los encabezados SMTP tendrían la siguiente forma:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


En la práctica, esto permitirá a un usuario malintencionado elaborar mensajes de correo no deseado o enviar mensajes anónimos entre otros ataques.
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.1
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Cloud Computing Platform Benchmark partial
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark complete
[10] Standards Mapping - Common Weakness Enumeration CWE ID 93
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.python.header_manipulation_smtp
Abstract
La concatenación de entradas sin validar en una dirección URL puede permitir a un usuario malintencionado anular el valor de un parámetro de solicitud. El usuario malintencionado puede anular los valores de los parámetros existentes, inyectar un nuevo parámetro o atacar las variables fuera de un alcance directo.
Explanation
Los ataques HPP (HTTP Parameter Pollution) consisten en inyectar delimitadores de cadenas de consulta codificados en otros parámetros existentes. Si una aplicación web no corrige adecuadamente la entrada del usuario, un usuario malintencionado puede poner en peligro la lógica de la aplicación para llevar a cabo ataques del lado de cliente o del servidor. Mediante el envío de parámetros adicionales a una aplicación web y si estos parámetros tienen el mismo nombre que un parámetro existente, la aplicación web puede reaccionar de una de las siguientes maneras:

Solo puede obtener los datos del primer parámetro
Puede obtener los datos del último parámetro
Puede obtener los datos de todos los parámetros y concatenarlos juntos


Por ejemplo:
- ASP.NET/IIS utiliza todas las apariciones de los parámetros
- Apache Tomcat utiliza solo la primera aparición e ignora las demás.
- mod_perl/Apache convierte el valor en una matriz de valores

Ejemplo 1: según el servidor de aplicaciones y la lógica de la propia aplicación, la siguiente solicitud podría provocar confusión en el sistema de autenticación y permitir que un atacante suplante a otro usuario.
http://www.server.com/login.aspx?name=alice&name=hacker

Ejemplo 2: el siguiente código utiliza la entrada de una solicitud HTTP para representar dos hipervínculos.

...
String lang = Request.Form["lang"];
WebClient client = new WebClient();
client.BaseAddress = url;
NameValueCollection myQueryStringCollection = new NameValueCollection();
myQueryStringCollection.Add("q", lang);
client.QueryString = myQueryStringCollection;
Stream data = client.OpenRead(url);
...


URL: http://www.host.com/election.aspx?poll_id=4567
Link1: <a href="http://www.host.com/vote.aspx?poll_id=4567&lang=en">inglés<a>
Link2: <a href="http://www.host.com/vote.aspx?poll_id=4567&lang=es">español<a>

El programador no ha tenido en cuenta la posibilidad de que un atacante proporcione un lang como en&poll_id=1 y después pueda modificar el poll_id a su antojo.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - Common Weakness Enumeration CWE ID 235
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.http_parameter_pollution
Abstract
La concatenación de entradas sin validar en una dirección URL puede permitir a un usuario malintencionado anular el valor de un parámetro de solicitud. El usuario malintencionado puede anular los valores de los parámetros existentes, inyectar un nuevo parámetro o atacar las variables fuera de un alcance directo.
Explanation
Los ataques HPP (HTTP Parameter Pollution) consisten en inyectar delimitadores de cadenas de consulta codificados en otros parámetros existentes. Si una aplicación web no corrige adecuadamente la entrada del usuario, un usuario malintencionado puede poner en peligro la lógica de la aplicación para llevar a cabo ataques del lado de cliente o del servidor. Mediante el envío de parámetros adicionales a una aplicación web y si estos parámetros tienen el mismo nombre que un parámetro existente, la aplicación web puede reaccionar de una de las siguientes maneras:

Solo puede obtener los datos del primer parámetro
Puede obtener los datos del último parámetro
Puede obtener los datos de todos los parámetros y concatenarlos juntos


Por ejemplo:
- ASP.NET/IIS utiliza todas las apariciones de los parámetros
- Apache Tomcat utiliza solo la primera aparición e ignora las demás.
- mod_perl/Apache convierte el valor en una matriz de valores

Ejemplo 1: según el servidor de aplicaciones y la lógica de la propia aplicación, la siguiente solicitud podría provocar confusión en el sistema de autenticación y permitir que un atacante suplante a otro usuario.
http://www.example.com/login.php?name=alice&name=hacker

Ejemplo 2: el siguiente código utiliza la entrada de una solicitud HTTP para representar dos hipervínculos.

...
String lang = request.getParameter("lang");
GetMethod get = new GetMethod("http://www.example.com");
get.setQueryString("lang=" + lang + "&poll_id=" + poll_id);
get.execute();
...


URL: http://www.example.com?poll_id=4567
Link1: <a href="001">English<a>
Link2: <a href="002">Español<a>

El programador no ha tenido en cuenta la posibilidad de que un atacante proporcione un lang como en&poll_id=1 y después modifique poll_id a su antojo.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - Common Weakness Enumeration CWE ID 235
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.http_parameter_pollution
Abstract
La concatenación de entradas sin validar en una dirección URL puede permitir a un usuario malintencionado anular el valor de un parámetro de solicitud. El usuario malintencionado puede anular los valores de los parámetros existentes, inyectar un nuevo parámetro o atacar las variables fuera de un alcance directo.
Explanation
Los ataques HPP (HTTP Parameter Pollution) consisten en inyectar delimitadores de cadenas de consulta codificados en otros parámetros existentes. Si una aplicación web no corrige adecuadamente la entrada del usuario, un usuario malintencionado puede poner en peligro la lógica de la aplicación para llevar a cabo ataques del lado de cliente o del servidor. Mediante el envío de parámetros adicionales a una aplicación web y si estos parámetros tienen el mismo nombre que un parámetro existente, la aplicación web puede reaccionar de una de las siguientes maneras:

Solo puede obtener los datos del primer parámetro
Puede obtener los datos del último parámetro
Puede obtener los datos de todos los parámetros y concatenarlos juntos


Por ejemplo:
- ASP.NET/IIS utiliza todas las apariciones de los parámetros
- Apache Tomcat utiliza solo la primera aparición e ignora las demás.
- mod_perl/Apache convierte el valor en una matriz de valores

Ejemplo 1: según el servidor de aplicaciones y la lógica de la propia aplicación, la siguiente solicitud podría provocar confusión en el sistema de autenticación y permitir que un atacante suplante a otro usuario.
http://www.server.com/login.php?name=alice&name=hacker

Ejemplo 2: el siguiente código utiliza la entrada de una solicitud HTTP para representar dos hipervínculos.


<%
...
$id = $_GET["id"];
header("Location: http://www.host.com/election.php?poll_id=" . $id);
...
%>


URL: http://www.host.com/election.php?poll_id=4567
Link1: <a href="vote.php?poll_id=4567&candidate=white">Vote al Sr. Pérez<a>
Link2: <a href="vote.php?poll_id=4567&candidate=green">Vote a la Sra. González<a>

El programador no ha pensado en la posibilidad de que un usuario malintencionado proporcione un identificador de voto (poll_id) como "4567&candidato=gonzález" y, entonces, la página resultante contenga los siguientes vínculos insertados y, por tanto, la Sra. González reciba los votos en un servidor de aplicaciones que recopile el primer parámetro.
<a href="vote.php?poll_id=4567&candidate=green&candidate=white">Vote al Sr. Pérez<a>
<a href="vote.php?poll_id=4567&candidate=green&candidate=green">Vote a la Sra. González<a>
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - Common Weakness Enumeration CWE ID 235
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.php.http_parameter_pollution
Abstract
La concatenación de entradas sin validar en una dirección URL puede permitir a un usuario malintencionado anular el valor de un parámetro de solicitud. El usuario malintencionado puede anular los valores de los parámetros existentes, inyectar un nuevo parámetro o atacar las variables fuera de un alcance directo.
Explanation
Los ataques HPP (HTTP Parameter Pollution) consisten en inyectar delimitadores de cadenas de consulta codificados en otros parámetros existentes. Si una aplicación web no corrige adecuadamente la entrada del usuario, un usuario malintencionado puede poner en peligro la lógica de la aplicación para llevar a cabo ataques del lado de cliente o del servidor. Mediante el envío de parámetros adicionales a una aplicación web y si estos parámetros tienen el mismo nombre que un parámetro existente, la aplicación web puede reaccionar de una de las siguientes maneras:

Solo puede obtener los datos del primer parámetro
Puede obtener los datos del último parámetro
Puede obtener los datos de todos los parámetros y concatenarlos juntos


Por ejemplo:
- ASP.NET/IIS utiliza todas las apariciones de los parámetros
- Apache Tomcat utiliza solo la primera aparición e ignora las demás.
- mod_perl/Apache convierte el valor en una matriz de valores

Ejemplo 1: según el servidor de aplicaciones y la lógica de la propia aplicación, la siguiente solicitud podría provocar confusión en el sistema de autenticación y permitir que un usuario malintencionado suplante a otro usuario.
http://www.server.com/login.php?name=alice&name=hacker

Como se muestra aquí, el usuario malintencionado ya ha especificado name=alice, pero ha agregado un name=alice& adicional, y si se utiliza en un servidor que tome la primera repetición, podría suplantar a alice para obtener más información sobre su cuenta.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - Common Weakness Enumeration CWE ID 235
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.1 Input Validation Requirements (L1 L2 L3), 8.1.3 General Data Protection (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[22] Standards Mapping - OWASP Mobile 2023 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.ruby.http_parameter_pollution
Abstract
La aplicación permite la instalación de extensiones de teclado de terceros.
Explanation
Se permite que las extensiones de teclado lean cada tecla que pulsa el usuario. Por lo general, los teclados de terceros se usan para facilitar la introducción de texto o para agregar emojis adicionales y pueden registrar lo que el usuario pulsa o incluso enviarlo a un servidor remoto para su procesamiento. Los teclados malintencionados también pueden distribuirse para actuar como un registrador de pulsaciones de teclas y leer todas las teclas pulsadas por el usuario para robar datos confidenciales como credenciales o números de tarjetas de crédito.
References
[1] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[2] UIApplicationDelegate Apple
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 522, CWE ID 829
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 5.3.9 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 12.3.6 File Execution Requirements (L2 L3), 14.2.4 Dependency (L2 L3)
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-3
desc.structural.objc.input_interception_keyboard_extensions_allowed
Abstract
La aplicación permite la instalación de extensiones de teclado de terceros.
Explanation
Se permite que las extensiones de teclado lean cada tecla que pulsa el usuario. Por lo general, los teclados de terceros se usan para facilitar la introducción de texto o para agregar emojis adicionales y pueden registrar lo que el usuario pulsa o incluso enviarlo a un servidor remoto para su procesamiento. Los teclados malintencionados también pueden distribuirse para actuar como un registrador de pulsaciones de teclas y leer todas las teclas pulsadas por el usuario para robar datos confidenciales como credenciales o números de tarjetas de crédito.
References
[1] UIApplicationDelegate Apple
[2] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 522, CWE ID 829
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 5.3.9 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 12.3.6 File Execution Requirements (L2 L3), 14.2.4 Dependency (L2 L3)
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-3
desc.structural.swift.input_interception_keyboard_extensions_allowed
Abstract
El programa utiliza el servicio de copia de seguridad de Android para guardar datos de aplicaciones persistentes en un almacenamiento en la nube remoto.
Explanation
El servicio de copia de seguridad de Android permite que la aplicación guarde los datos persistentes en un almacenamiento en la nube remoto para proporcionar un punto de restauración para los datos de la aplicación en el futuro.

Para configurar las aplicaciones para Android con este servicio de copia de seguridad, establezca el atributo allowBackup en true (el valor predeterminado) y defina el atributo backupAgent en la etiqueta <application>.

Sin embargo, Android no garantiza la seguridad de sus datos mientras utiliza la copia de seguridad, ya que el almacenamiento y el transporte en la nube varían de un dispositivo a otro.
References
[1] JavaDoc for Android Android
[2] Android Developers API Guide: Data Backup Android
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 312, CWE ID 359, CWE ID 921
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002475
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 10.2.1 Malicious Code Search (L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[23] Standards Mapping - OWASP Mobile 2023 M8 Security Misconfiguration
[24] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002340 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.config.java.insecure_storage_android_backup_storage
Abstract
El programa escribe datos en el almacenamiento externo del dispositivo Android.
Explanation
Los datos guardados en el almacenamiento externo permiten un acceso de lectura general y solo los puede modificar el usuario cuando se habilite el almacenamiento masivo USB para transferir archivos en un equipo. Además, los archivos de la tarjeta de almacenamiento masivo permanecerán en esa ubicación, aunque se desinstale la aplicación que escribió estos. Estas limitaciones pueden poner en peligro la información confidencial escrita en el almacenamiento y permitir a los usuarios malintencionados introducir datos en el programa modificando un archivo externo que utilice.

Ejemplo 1: en el código siguiente, Environment.getExternalStorageDirectory() devuelve una referencia al almacenamiento externo del dispositivo Android.

 private void WriteToFile(String what_to_write) {
try{
File root = Environment.getExternalStorageDirectory();
if(root.canWrite()) {
File dir = new File(root + "write_to_the_SDcard");
File datafile = new File(dir, number + ".extension");
FileWriter datawriter = new FileWriter(datafile);
BufferedWriter out = new BufferedWriter(datawriter);
out.write(what_to_write);
out.close();
}
}
}
References
[1] Data Storage
[2] Paul McNamara Latest 'lost' laptop holds treasure-trove of unencrypted ATT payroll data Network World
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark partial
[8] Standards Mapping - Common Weakness Enumeration CWE ID 276, CWE ID 313, CWE ID 359, CWE ID 921
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [19] CWE ID 276, [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [20] CWE ID 276
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [25] CWE ID 276
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002475
[15] Standards Mapping - FIPS200 MP
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 10.2.1 Malicious Code Search (L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[24] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[25] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002340 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002340 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002340 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002340 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002340 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002340 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002340 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002340 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002340 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002340 CAT II
[49] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.java.insecure_storage_android_external_storage
Abstract
La aplicación facilita el acceso a los datos a todas las aplicaciones del dispositivo Android.
Explanation
Los datos guardados en el almacenamiento interno de Android mediante MODE_WORLD_READBLE o MODE_WORLD_WRITEABLE están accesibles para todas las aplicaciones en el dispositivo. Esto no solo impide la protección frente al daño de datos, pero en el caso de información confidencial, infringe la privacidad del usuario y plantea riesgos de seguridad.
References
[1] Designing for Security Android
[2] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgartner, B. Friesleben Why Eve and Mallory Love Android:An Analysis of Android SSL (In)Security
[3] OWASP Mobile Security Testing Guide OWASP
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 276, CWE ID 313, CWE ID 359, CWE ID 921
[10] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2021 [19] CWE ID 276, [20] CWE ID 200
[13] Standards Mapping - Common Weakness Enumeration Top 25 2022 [20] CWE ID 276
[14] Standards Mapping - Common Weakness Enumeration Top 25 2023 [25] CWE ID 276
[15] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002475
[16] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 10.2.1 Malicious Code Search (L2 L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002340 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002340 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.java.insecure_storage_android_world_readable_or_writeable
Abstract
El método identificado almacena los datos en las llaves con un nivel de accesibilidad que permite que se haga una copia de seguridad del elemento en iCloud y copias de seguridad de iTunes sin cifrar.
Explanation
Cuando se almacenan los datos en las llaves, es necesario configurar un nivel de accesibilidad que defina cuándo será posible acceder al elemento. Los niveles de accesibilidad posibles incluyen los siguientes:

-kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly:
No es posible acceder a los datos del elemento de las llaves después de un reinicio a menos que el usuario haya desbloqueado una vez el dispositivo.
Tras el primer desbloqueo, los datos permanecen accesibles hasta el próximo reinicio. Esta opción se recomienda para los elementos a los que deben tener acceso las aplicaciones en segundo plano. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleAlways:
Siempre se puede acceder a los datos del elemento de las llaves, independientemente de si el dispositivo está bloqueado.
No se recomienda usar esta opción con aplicaciones. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly:
Solo se puede acceder a los datos de las llaves cuando el dispositivo está desbloqueado. Solo está disponible si se configura un código de acceso en el dispositivo.
Esta opción se recomienda para los elementos a los que solo es necesario tener acceso mientras la aplicación está en primer plano. Los elementos con este atributo nunca migran a un dispositivo nuevo. Tras restaurar una copia de seguridad en un dispositivo nuevo, no se encuentran estos elementos. Ningún elemento puede almacenarse en esta clase en los dispositivos sin un código de acceso. Si se deshabilita el código de acceso del dispositivo, se eliminan todos los elementos de esta clase.
Disponible en iOS 8.0 y posteriores.

-kSecAttrAccessibleAlwaysThisDeviceOnly:
Siempre se puede acceder a los datos del elemento de las llaves, independientemente de si el dispositivo está bloqueado.
No se recomienda usar esta opción con aplicaciones. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenUnlocked:
Solo se puede acceder a los datos del elemento de las llaves mientras el dispositivo está desbloqueado por el usuario.
Esta opción se recomienda para los elementos a los que solo es necesario acceder mientras la aplicación está en primer plano. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Este es el valor predeterminado para los elementos de las llaves que se agregan sin configurar de forma explícita una constante de accesibilidad.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenUnlockedThisDeviceOnly:
Solo se puede acceder a los datos del elemento de las llaves mientras el dispositivo está desbloqueado por el usuario.
Esta opción se recomienda para los elementos a los que solo es necesario acceder mientras la aplicación está en primer plano. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

A los niveles de accesibilidad que no contienen ThisDeviceOnly se les hará una copia de seguridad en iCloud y en iTunes incluso si se usan copias de seguridad sin cifrar que pueden restaurarse en cualquier dispositivo. Según el nivel de confidencialidad y privacidad de los datos almacenados, esto puede suponer un problema de privacidad.

Ejemplo 1: en el siguiente ejemplo, el elemento de las llaves está protegido en todo momento, excepto cuando el dispositivo está encendido y desbloqueado, pero se hará una copia de seguridad del elemento de las llaves en iCloud y en copias de seguridad de iTunes sin cifrar:


...
NSMutableDictionary *dict = [NSMutableDictionary dictionary];
NSData *token = [@"secret" dataUsingEncoding:NSUTF8StringEncoding];

// Configure KeyChain Item
[dict setObject:(__bridge id)kSecClassGenericPassword forKey:(__bridge id) kSecClass];
[dict setObject:token forKey:(__bridge id)kSecValueData];
...
[dict setObject:(__bridge id)kSecAttrAccessibleWhenUnlocked forKey:(__bridge id) kSecAttrAccessible];

OSStatus error = SecItemAdd((__bridge CFDictionaryRef)dict, NULL);
...
References
[1] Keychain Services Apple
[2] Keychain Item Accessibility Constants Apple
[3] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[8] Standards Mapping - Common Weakness Enumeration CWE ID 312, CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002475
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 10.2.1 Malicious Code Search (L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[23] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[24] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002340 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.objc.insecure_storage_externally_available_keychain
Abstract
El método identificado almacena los datos en las llaves con un nivel de accesibilidad que permite que se haga una copia de seguridad del elemento en iCloud y copias de seguridad de iTunes sin cifrar.
Explanation
Cuando se almacenan los datos en las llaves, es necesario configurar un nivel de accesibilidad que defina cuándo será posible acceder al elemento. Los niveles de accesibilidad posibles incluyen los siguientes:

-kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly:
No es posible acceder a los datos del elemento de las llaves después de un reinicio a menos que el usuario haya desbloqueado una vez el dispositivo.
Tras el primer desbloqueo, los datos permanecen accesibles hasta el próximo reinicio. Esta opción se recomienda para los elementos a los que deben tener acceso las aplicaciones en segundo plano. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleAlways:
Siempre se puede acceder a los datos del elemento de las llaves, independientemente de si el dispositivo está bloqueado.
No se recomienda usar esta opción con aplicaciones. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly:
Solo se puede acceder a los datos de las llaves cuando el dispositivo está desbloqueado. Solo está disponible si se configura un código de acceso en el dispositivo.
Esta opción se recomienda para los elementos a los que solo es necesario tener acceso mientras la aplicación está en primer plano. Los elementos con este atributo nunca migran a un dispositivo nuevo. Tras restaurar una copia de seguridad en un dispositivo nuevo, no se encuentran estos elementos. Ningún elemento puede almacenarse en esta clase en los dispositivos sin un código de acceso. Si se deshabilita el código de acceso del dispositivo, se eliminan todos los elementos de esta clase.
Disponible en iOS 8.0 y posteriores.

-kSecAttrAccessibleAlwaysThisDeviceOnly:
Siempre se puede acceder a los datos del elemento de las llaves, independientemente de si el dispositivo está bloqueado.
No se recomienda usar esta opción con aplicaciones. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenUnlocked:
Solo se puede acceder a los datos del elemento de las llaves mientras el dispositivo está desbloqueado por el usuario.
Esta opción se recomienda para los elementos a los que solo es necesario acceder mientras la aplicación está en primer plano. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Este es el valor predeterminado para los elementos de las llaves que se agregan sin configurar de forma explícita una constante de accesibilidad.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenUnlockedThisDeviceOnly:
Solo se puede acceder a los datos del elemento de las llaves mientras el dispositivo está desbloqueado por el usuario.
Esta opción se recomienda para los elementos a los que solo es necesario acceder mientras la aplicación está en primer plano. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

A los niveles de accesibilidad que no contienen ThisDeviceOnly se les hará una copia de seguridad en iCloud y en iTunes incluso si se usan copias de seguridad sin cifrar que pueden restaurarse en cualquier dispositivo. Según el nivel de confidencialidad y privacidad de los datos almacenados, esto puede suponer un problema de privacidad.

Ejemplo 1: en el siguiente ejemplo, el elemento de las llaves está protegido en todo momento, excepto cuando el dispositivo está encendido y desbloqueado, pero se hará una copia de seguridad del elemento de las llaves en iCloud y en copias de seguridad de iTunes sin cifrar:


...
// Configure KeyChain Item
let token = "secret"
var query = [String : AnyObject]()
query[kSecClass as String] = kSecClassGenericPassword
query[kSecValueData as String] = token as AnyObject?
...
query[kSecAttrAccessible as String] = kSecAttrAccessibleWhenUnlocked

SecItemAdd(query as CFDictionary, nil)
...
References
[1] Keychain Services Apple
[2] Keychain Item Accessibility Constants Apple
[3] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[8] Standards Mapping - Common Weakness Enumeration CWE ID 312, CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002475
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[18] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 10.2.1 Malicious Code Search (L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[23] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[24] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 6.2.4, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002340 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.swift.insecure_storage_externally_available_keychain
Abstract
El método identificado configura la caché de respuestas HTTP(S) en una ubicación de almacenamiento compartido no seguro.
Explanation
Las respuestas de HTTP(S) pueden contener datos confidenciales, como cookies de sesión y tokens de API. El sistema de carga de URL guardará en la caché todas las respuestas de HTTP(S) por razones de rendimiento, y las almacenará sin cifrar en una ubicación de almacenamiento compartido no seguro.

Ejemplo 1: El código siguiente instala la caché de respuestas HTTP(S) en una ubicación de almacenamiento compartido no seguro:


protected void onCreate(Bundle savedInstanceState) {
...

try {
File httpCacheDir = new File(context.getExternalCacheDir(), "http");
long httpCacheSize = 10 * 1024 * 1024; // 10 MiB
HttpResponseCache.install(httpCacheDir, httpCacheSize);
} catch (IOException e) {
Log.i(TAG, "HTTP response cache installation failed:" + e);
}
}

protected void onStop() {
...

HttpResponseCache cache = HttpResponseCache.getInstalled();
if (cache != null) {
cache.flush();
}
}
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[2] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[3] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[4] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[5] Standards Mapping - Common Weakness Enumeration CWE ID 311, CWE ID 312, CWE ID 313, CWE ID 522
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[12] Standards Mapping - FIPS200 MP
[13] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[24] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[25] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[35] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[36] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.dataflow.java.insecure_storage_http_response_cache_leak
Abstract
El método identificado realiza una solicitud de URL sin configurar el sistema de carga de URL para evitar el almacenamiento en caché de las respuestas de HTTP(S).
Explanation
Las respuestas de HTTP(S) pueden contener datos confidenciales, como cookies de sesión y tokens de API. El sistema de carga de URL guardará en la caché todas las respuestas de HTTP(S) por razones de rendimiento, y las almacenará sin cifrar en los archivos {app ID}/Library/Caches/com.mycompany.myapp/Cache.db*.
References
[1] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[2] URLCache Apple
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 311, CWE ID 312, CWE ID 313, CWE ID 522
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[14] Standards Mapping - FIPS200 MP
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.dataflow.objc.insecure_storage_http_response_cache_leak
Abstract
El método identificado realiza una solicitud de URL sin configurar el sistema de carga de URL para evitar el almacenamiento en caché de las respuestas de HTTP(S).
Explanation
Las respuestas de HTTP(S) pueden contener datos confidenciales, como cookies de sesión y tokens de API. El sistema de carga de URL guardará en la caché todas las respuestas de HTTP(S) por razones de rendimiento, y las almacenará sin cifrar en los archivos {app ID}/Library/Caches/com.mycompany.myapp/Cache.db*.
References
[1] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[2] URLCache Apple
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 311, CWE ID 312, CWE ID 313, CWE ID 522
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[14] Standards Mapping - FIPS200 MP
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.dataflow.swift.insecure_storage_http_response_cache_leak
Abstract
La aplicación intenta deshabilitar la caché de HTTP(S) configurando la capacidad de la caché del disco o la memoria en 0. Sin embargo, no hay ninguna garantía de que esta configuración se aplique.
Explanation
Las respuestas de HTTP(S) pueden contener datos confidenciales, como cookies de sesión y tokens de API. El sistema de carga de URL guardará en la caché todas las respuestas de HTTP(S) por razones de rendimiento, y las almacenará sin cifrar en los archivos {app ID}/Library/Caches/com.mycompany.myapp/Cache.db*.
Los desarrolladores pueden pensar que, al configurar las propiedades diskCapacity o memoryCapacity de la clase URLCache en 0, deshabilitan realmente el sistema de caché de respuesta de HTTP(S). Sin embargo, la documentación de NSURLCache indica que tanto la caché del disco como la de la memoria se truncarán en los tamaños configurados únicamente si al dispositivo le queda poca memoria o poco espacio en disco. Ambas configuraciones están diseñadas para que el sistema libere recursos del sistema y mejore el rendimiento, no como un control de seguridad.
References
[1] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[2] URLCache Apple
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 311, CWE ID 312, CWE ID 313, CWE ID 522
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[14] Standards Mapping - FIPS200 MP
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.objc.insecure_storage_insufficient_cache_leak_protection
Abstract
La aplicación intenta deshabilitar la caché de HTTP(S) configurando la capacidad de la caché del disco o la memoria en 0. Sin embargo, no hay ninguna garantía de que esta configuración se aplique.
Explanation
Las respuestas de HTTP(S) pueden contener datos confidenciales, como cookies de sesión y tokens de API. El sistema de carga de URL guardará en la caché todas las respuestas de HTTP(S) por razones de rendimiento, y las almacenará sin cifrar en los archivos {app ID}/Library/Caches/com.mycompany.myapp/Cache.db*.
Los desarrolladores pueden pensar que, al configurar las propiedades diskCapacity o memoryCapacity de la clase URLCache en 0, deshabilitan realmente el sistema de caché de respuesta de HTTP(S). Sin embargo, la documentación de NSURLCache indica que tanto la caché del disco como la de la memoria se truncarán en los tamaños configurados únicamente si al dispositivo le queda poca memoria o poco espacio en disco. Ambas configuraciones están diseñadas para que el sistema libere recursos del sistema y mejore el rendimiento, no como un control de seguridad.
References
[1] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[2] URLCache Apple
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1.0
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 311, CWE ID 312, CWE ID 313, CWE ID 522
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[14] Standards Mapping - FIPS200 MP
[15] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[25] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[26] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[27] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.semantic.swift.insecure_storage_insufficient_cache_leak_protection
Abstract
El método identificado escribe datos en un archivo con una configuración de cifrado que probablemente no es suficiente.
Explanation
La API de protección de datos está diseñada para permitir que las aplicaciones declaren cuándo deben ser accesibles los elementos de llaves y los archivos almacenados en el sistema de archivos. Está disponible para la mayoría de API de archivo y base de datos, como NSFileManager, CoreData, NSData y SQLite. Al especificar una de las cuatro clases de protección para un determinado recurso, un desarrollador puede indicar al sistema de archivos subyacente que la cifre mediante una clave derivada del UID del dispositivo y del código de acceso del usuario, o mediante una clave basada exclusivamente en el UID del dispositivo. También debe indicar cuándo debe descifrarla automáticamente.

Las clases de protección de datos se definen para NSFileManager como constantes que deben asignarse como el valor de la clave NSFileProtectionKey en un NSDictionary asociado a la instancia de NSFileManager, y se pueden crear archivos o modificar su clase de protección de datos mediante el uso de funciones NSFileManager como setAttributes:ofItemAtPath:error:, attributesOfItemAtPath:error: y createFileAtPath:contents:attributes:. Además, las constantes de protección de datos correspondientes se definen para objetos NSData como NSDataWritingOptions que pueden pasarse como el argumento options a las funciones NSDatawriteToURL:options:error: y writeToFile:options:error:. Las definiciones de las diversas constantes de clases de protección de datos para NSFileManager y NSData son las siguientes:

-NSFileProtectionComplete, NSDataWritingFileProtectionComplete:
El recurso se almacena en un formato cifrado en el disco y no puede leerse ni escribirse mientras el dispositivo está bloqueado o arrancando.
Disponible en iOS 4.0 y posteriores.
-NSFileProtectionCompleteUnlessOpen, NSDataWritingFileProtectionCompleteUnlessOpen:
El recurso se almacena en un formato cifrado en el disco. Pueden crearse recursos mientras el dispositivo está bloqueado pero, cuando se cierra, ya no puede abrirse de nuevo hasta que el dispositivo esté desbloqueado. Si se abre el recurso mientras está desbloqueado, puede seguir teniendo acceso al recurso con normalidad incluso si el usuario bloquea el dispositivo.
Disponible en iOS 5.0 y posteriores.
-NSFileProtectionCompleteUntilFirstUserAuthentication, NSDataWritingFileProtectionCompleteUntilFirstUserAuthentication:
El recurso se almacena en un formato cifrado en el disco y no se puede tener acceso a él hasta que el dispositivo haya arrancado. La primera vez que el usuario desbloquea el dispositivo, la aplicación puede acceder al recurso y seguir teniendo acceso a él incluso si el usuario bloquea el dispositivo posteriormente.
Disponible en iOS 5.0 y posteriores.
-NSFileProtectionNone, NSDataWritingFileProtectionNone:
El recurso no tiene asociada ninguna protección especial. Se puede leer y escribir en él en cualquier momento.
Disponible en iOS 4.0 y posteriores.

De ese modo, si bien al marcar un archivo con NSFileProtectionCompleteUnlessOpen o NSFileProtectionCompleteUntilFirstUserAuthentication, se podrá cifrar con una clave derivada del código de acceso del usuario y del UID del dispositivo, los datos seguirán siendo accesibles en determinadas circunstancias. Por lo tanto, deben revisarse con atención los usos de NSFileProtectionCompleteUnlessOpen o NSFileProtectionCompleteUntilFirstUserAuthentication para determinar si se necesita mayor protección con NSFileProtectionComplete.

Ejemplo 1: en el siguiente ejemplo, el archivo solo está protegido hasta que el usuario enciende el dispositivo y proporciona el código de acceso por primera vez (hasta que vuelva a reiniciarse):


...
filepath = [self.GetDocumentDirectory stringByAppendingPathComponent:self.setFilename];
...
NSDictionary *protection = [NSDictionary dictionaryWithObject:NSFileProtectionCompleteUntilFirstUserAuthentication forKey:NSFileProtectionKey];
...
[[NSFileManager defaultManager] setAttributes:protection ofItemAtPath:filepath error:nil];
...
BOOL ok = [testToWrite writeToFile:filepath atomically:YES encoding:NSUnicodeStringEncoding error:&err];
...
Ejemplo 2: en el siguiente ejemplo, los datos solo están protegidos hasta que el usuario enciende el dispositivo y proporciona el código de acceso por primera vez (hasta que vuelva a reiniciarse):


...
filepath = [self.GetDocumentDirectory stringByAppendingPathComponent:self.setFilename];
...
NSData *textData = [textToWrite dataUsingEncoding:NSUnicodeStingEncoding];
...
BOOL ok = [textData writeToFile:filepath options:NSDataWritingFileProtectionCompleteUntilFirstUserAuthentication error:&err];
...
References
[1] iOS Security Guide Apple
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 4
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[10] Standards Mapping - FIPS200 MP
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[15] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[16] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[18] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[21] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[22] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[23] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[33] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[34] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.dataflow.objc.insecure_storage_insufficient_data_protection
Abstract
El método identificado escribe datos en un archivo con una configuración de cifrado que probablemente no es suficiente.
Explanation
La API de protección de datos está diseñada para permitir que las aplicaciones declaren cuándo deben ser accesibles los elementos de llaves y los archivos almacenados en el sistema de archivos. Está disponible para la mayoría de API de archivo y base de datos, como NSFileManager, CoreData, NSData y SQLite. Al especificar una de las cuatro clases de protección para un determinado recurso, un desarrollador puede indicar al sistema de archivos subyacente que la cifre mediante una clave derivada del UID del dispositivo y del código de acceso del usuario, o mediante una clave basada exclusivamente en el UID del dispositivo. También debe indicar cuándo debe descifrarla automáticamente.

Las clases de protección de datos se definen en NSFileManager como constantes que deben asignarse como el valor de la clave NSFileProtectionKey en un Dictionary asociado a la instancia de NSFileManager, y se pueden crear archivos o modificar su clase de protección de datos mediante el uso de funciones NSFileManager como setAttributes(_:ofItemAtPath:), attributesOfItemAtPath(_:) y createFileAtPath(_:contents:attributes:). Además, se definen las constantes de protección de datos correspondientes para objetos NSData en la enumeración NSDataWritingOptions que pueden pasarse como el argumento options a funciones NSData
writeToFile(_:options:)
. Las definiciones de las diversas constantes de clases de protección de datos para NSFileManager y NSData son las siguientes:

-NSFileProtectionComplete, NSDataWritingOptions.DataWritingFileProtectionComplete:
El recurso se almacena en un formato cifrado en el disco y no puede leerse ni escribirse mientras el dispositivo está bloqueado o arrancando.
Disponible en iOS 4.0 y posteriores.
-NSFileProtectionCompleteUnlessOpen, NSDataWritingOptions.DataWritingFileProtectionCompleteUnlessOpen:
El recurso se almacena en un formato cifrado en el disco. Pueden crearse recursos mientras el dispositivo está bloqueado pero, cuando se cierra, ya no puede abrirse de nuevo hasta que el dispositivo esté desbloqueado. Si se abre el recurso mientras está desbloqueado, puede seguir teniendo acceso al recurso con normalidad incluso si el usuario bloquea el dispositivo.
Disponible en iOS 5.0 y posteriores.
-NSFileProtectionCompleteUntilFirstUserAuthentication, NSDataWritingOptions.DataWritingFileProtectionCompleteUntilFirstUserAuthentication:
El recurso se almacena en un formato cifrado en el disco y no se puede tener acceso a él hasta que el dispositivo haya arrancado. La primera vez que el usuario desbloquea el dispositivo, la aplicación puede acceder al recurso y seguir teniendo acceso a él incluso si el usuario bloquea el dispositivo posteriormente.
Disponible en iOS 5.0 y posteriores.
-NSFileProtectionNone, NSDataWritingOptions.DataWritingFileProtectionNone:
El recurso no tiene asociada ninguna protección especial. Se puede leer y escribir en él en cualquier momento.
Disponible en iOS 4.0 y posteriores.

De ese modo, si bien al marcar un archivo con NSFileProtectionCompleteUnlessOpen o NSFileProtectionCompleteUntilFirstUserAuthentication, se podrá cifrar con una clave derivada del código de acceso del usuario y del UID del dispositivo, los datos seguirán siendo accesibles en determinadas circunstancias. Por lo tanto, deben revisarse con atención los usos de NSFileProtectionCompleteUnlessOpen o NSFileProtectionCompleteUntilFirstUserAuthentication para determinar si se necesita mayor protección con NSFileProtectionComplete.

Ejemplo 1: en el siguiente ejemplo, el archivo determinado solo está protegido hasta que el usuario enciende el dispositivo y proporciona el código de acceso por primera vez (hasta el siguiente reinicio).


...
let documentsPath = NSURL(fileURLWithPath: NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMask, true)[0])
let filename = "\(documentsPath)/tmp_activeTrans.txt"
let protection = [NSFileProtectionKey: NSFileProtectionCompleteUntilFirstUserAuthentication]
do {
try NSFileManager.defaultManager().setAttributes(protection, ofItemAtPath: filename)
} catch let error as NSError {
NSLog("Unable to change attributes: \(error.debugDescription)")
}
...
BOOL ok = textToWrite.writeToFile(filename, atomically:true)
...
Ejemplo 2: en el siguiente ejemplo, los datos determinados solo están protegidos hasta que el usuario enciende el dispositivo y proporciona el código de acceso por primera vez (hasta el siguiente reinicio).


...
let documentsPath = NSURL(fileURLWithPath: NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMask, true)[0])
let filename = "\(documentsPath)/tmp_activeTrans.txt"
...
BOOL ok = textData.writeToFile(filepath, options: .DataWritingFileProtectionCompleteUntilFirstUserAuthentication);
...
References
[1] iOS Security Guide Apple
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 4
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[10] Standards Mapping - FIPS200 MP
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[15] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[16] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[18] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[21] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[22] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[23] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[33] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[34] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.swift.insecure_storage_insufficient_data_protection
Abstract
El método identificado almacena los datos en las llaves con valores de configuración de cifrado potencialmente insuficientes.
Explanation
Las constantes de accesibilidad de las llaves están diseñadas para permitir que las aplicaciones indiquen cuándo se puede acceder a los elementos de las llaves. Al especificar una de las constantes de accesibilidad para un determinado elemento de las llaves, un desarrollador puede indicar al sistema de archivos subyacente que la cifre mediante una clave derivada del UID del dispositivo y del código de acceso del usuario, o mediante una clave basada exclusivamente en el UID del dispositivo. También debe indicar cuándo debe descifrarla automáticamente.

Las constantes de accesibilidad de las claves están diseñadas para asignarse como el valor para la clave kSecAttrAccessible en el diccionario de atributos de las claves. Las definiciones de las diversas constantes de accesibilidad de las claves son las siguientes:

-kSecAttrAccessibleAfterFirstUnlock:
No es posible acceder a los datos del elemento de las llaves después de un reinicio a menos que el usuario haya desbloqueado una vez el dispositivo.
Tras el primer desbloqueo, los datos permanecen accesibles hasta el próximo reinicio. Esta opción se recomienda para los elementos a los que deben tener acceso las aplicaciones en segundo plano. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly:
No es posible acceder a los datos del elemento de las llaves después de un reinicio a menos que el usuario haya desbloqueado una vez el dispositivo.
Tras el primer desbloqueo, los datos permanecen accesibles hasta el próximo reinicio. Esta opción se recomienda para los elementos a los que deben tener acceso las aplicaciones en segundo plano. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleAlways:
Siempre se puede acceder a los datos del elemento de las llaves, independientemente de si el dispositivo está bloqueado.
No se recomienda usar esta opción con aplicaciones. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly:
Solo se puede acceder a los datos de las llaves cuando el dispositivo está desbloqueado. Solo está disponible si se configura un código de acceso en el dispositivo.
Esta opción se recomienda para los elementos a los que solo es necesario tener acceso mientras la aplicación está en primer plano. Los elementos con este atributo nunca migran a un dispositivo nuevo. Tras restaurar una copia de seguridad en un dispositivo nuevo, no se encuentran estos elementos. Ningún elemento puede almacenarse en esta clase en los dispositivos sin un código de acceso. Si se deshabilita el código de acceso del dispositivo, se eliminan todos los elementos de esta clase.
Disponible en iOS 8.0 y posteriores.

-kSecAttrAccessibleAlwaysThisDeviceOnly:
Siempre se puede acceder a los datos del elemento de las llaves, independientemente de si el dispositivo está bloqueado.
No se recomienda usar esta opción con aplicaciones. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenUnlocked:
Solo se puede acceder a los datos del elemento de las llaves mientras el dispositivo está desbloqueado por el usuario.
Esta opción se recomienda para los elementos a los que solo es necesario acceder mientras la aplicación está en primer plano. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Este es el valor predeterminado para los elementos de las llaves que se agregan sin configurar de forma explícita una constante de accesibilidad.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenUnlockedThisDeviceOnly:
Solo se puede acceder a los datos del elemento de las llaves mientras el dispositivo está desbloqueado por el usuario.
Esta opción se recomienda para los elementos a los que solo es necesario acceder mientras la aplicación está en primer plano. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

De ese modo, si bien al marcar un elemento de las llaves con kSecAttrAccessibleAfterFirstUnlock se podrá cifrar con una clave derivada del código de acceso del usuario y del UID del dispositivo, los datos seguirán siendo accesibles en determinadas circunstancias. Por lo tanto, deben revisarse con atención los usos de kSecAttrAccessibleAfterFirstUnlock para determinar si se necesita mayor protección.

Ejemplo 1: en el siguiente ejemplo, el elemento de las llaves determinado solo está protegido hasta que el usuario enciende el dispositivo y proporciona el código de acceso por primera vez (hasta el siguiente reinicio).


...
NSMutableDictionary *dict = [NSMutableDictionary dictionary];
NSData *token = [@"secret" dataUsingEncoding:NSUTF8StringEncoding];

// Configure KeyChain Item
[dict setObject:(__bridge id)kSecClassGenericPassword forKey:(__bridge id) kSecClass];
[dict setObject:token forKey:(__bridge id)kSecValueData];
...
[dict setObject:(__bridge id)kSecAttrAccessibleAfterFirstUnlock forKey:(__bridge id) kSecAttrAccessible];

OSStatus error = SecItemAdd((__bridge CFDictionaryRef)dict, NULL);
...
References
[1] iOS Security Guide Apple: October 2014
[2] Keychain Services Apple
[3] Keychain Item Accessibility Constants Apple
[4] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[5] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[7] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[8] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 4
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[10] Standards Mapping - CIS Kubernetes Benchmark complete
[11] Standards Mapping - Common Weakness Enumeration CWE ID 311, CWE ID 312, CWE ID 313, CWE ID 522
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[15] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[16] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[18] Standards Mapping - FIPS200 MP
[19] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[20] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[21] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[22] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[23] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[24] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[25] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[26] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[27] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[28] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[29] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[30] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[31] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[32] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[41] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[42] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.dataflow.objc.insecure_storage_insufficient_keychain_protection
Abstract
El método identificado almacena los datos en las llaves con valores de configuración de cifrado potencialmente insuficientes.
Explanation
Las constantes de accesibilidad de las llaves están diseñadas para permitir que las aplicaciones indiquen cuándo se puede acceder a los elementos de las llaves. Al especificar una de las constantes de accesibilidad para un determinado elemento de las llaves, un desarrollador puede indicar al sistema de archivos subyacente que la cifre mediante una clave derivada del UID del dispositivo y del código de acceso del usuario, o mediante una clave basada exclusivamente en el UID del dispositivo. También debe indicar cuándo debe descifrarla automáticamente.

Las constantes de accesibilidad de las claves están diseñadas para asignarse como el valor para la clave kSecAttrAccessible en el diccionario de atributos de las claves. Las definiciones de las diversas constantes de accesibilidad de las claves son las siguientes:

-kSecAttrAccessibleAfterFirstUnlock:
No es posible acceder a los datos del elemento de las llaves después de un reinicio a menos que el usuario haya desbloqueado una vez el dispositivo.
Tras el primer desbloqueo, los datos permanecen accesibles hasta el próximo reinicio. Esta opción se recomienda para los elementos a los que deben tener acceso las aplicaciones en segundo plano. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly:
No es posible acceder a los datos del elemento de las llaves después de un reinicio a menos que el usuario haya desbloqueado una vez el dispositivo.
Tras el primer desbloqueo, los datos permanecen accesibles hasta el próximo reinicio. Esta opción se recomienda para los elementos a los que deben tener acceso las aplicaciones en segundo plano. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleAlways:
Siempre se puede acceder a los datos del elemento de las llaves, independientemente de si el dispositivo está bloqueado.
No se recomienda usar esta opción con aplicaciones. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly:
Solo se puede acceder a los datos de las llaves cuando el dispositivo está desbloqueado. Solo está disponible si se configura un código de acceso en el dispositivo.
Esta opción se recomienda para los elementos a los que solo es necesario tener acceso mientras la aplicación está en primer plano. Los elementos con este atributo nunca migran a un dispositivo nuevo. Tras restaurar una copia de seguridad en un dispositivo nuevo, no se encuentran estos elementos. Ningún elemento puede almacenarse en esta clase en los dispositivos sin un código de acceso. Si se deshabilita el código de acceso del dispositivo, se eliminan todos los elementos de esta clase.
Disponible en iOS 8.0 y posteriores.

-kSecAttrAccessibleAlwaysThisDeviceOnly:
Siempre se puede acceder a los datos del elemento de las llaves, independientemente de si el dispositivo está bloqueado.
No se recomienda usar esta opción con aplicaciones. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenUnlocked:
Solo se puede acceder a los datos del elemento de las llaves mientras el dispositivo está desbloqueado por el usuario.
Esta opción se recomienda para los elementos a los que solo es necesario acceder mientras la aplicación está en primer plano. Los elementos con este atributo migran a un dispositivo nuevo cuando se usan copias de seguridad cifradas.
Este es el valor predeterminado para los elementos de las llaves que se agregan sin configurar de forma explícita una constante de accesibilidad.
Disponible en iOS 4.0 y posteriores.

-kSecAttrAccessibleWhenUnlockedThisDeviceOnly:
Solo se puede acceder a los datos del elemento de las llaves mientras el dispositivo está desbloqueado por el usuario.
Esta opción se recomienda para los elementos a los que solo es necesario acceder mientras la aplicación está en primer plano. Los elementos con este atributo no migran a un dispositivo nuevo. Por lo tanto, al realizar una restauración con una copia de seguridad de otro dispositivo, estos elementos no estarán presentes.
Disponible en iOS 4.0 y posteriores.

De ese modo, si bien al marcar un elemento de las llaves con kSecAttrAccessibleAfterFirstUnlock se podrá cifrar con una clave derivada del código de acceso del usuario y del UID del dispositivo, los datos seguirán siendo accesibles en determinadas circunstancias. Por lo tanto, deben revisarse con atención los usos de kSecAttrAccessibleAfterFirstUnlock para determinar si se necesita mayor protección.

Ejemplo 1: en el siguiente ejemplo, el elemento de las llaves determinado solo está protegido hasta que el usuario enciende el dispositivo y proporciona el código de acceso por primera vez (hasta el siguiente reinicio).


...
// Configure KeyChain Item
let token = "secret"
var query = [String : AnyObject]()
query[kSecClass as String] = kSecClassGenericPassword
query[kSecValueData as String] = token as AnyObject?
...
query[kSecAttrAccessible as String] = kSecAttrAccessibleAfterFirstUnlock

SecItemAdd(query as CFDictionary, nil)
...
References
[1] iOS Security Guide Apple: October 2014
[2] Keychain Services Apple
[3] Keychain Item Accessibility Constants Apple
[4] David Thiel iOS Application Security: The Definitive Guide for Hackers and Developers No Starch Press
[5] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2.0
[6] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[7] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[8] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 4
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[10] Standards Mapping - CIS Kubernetes Benchmark complete
[11] Standards Mapping - Common Weakness Enumeration CWE ID 311, CWE ID 312, CWE ID 313, CWE ID 522
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[15] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[16] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[18] Standards Mapping - FIPS200 MP
[19] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[20] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[21] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[22] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[23] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[24] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[25] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[26] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[27] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[28] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.1.1 Data Classification (L2 L3), 6.1.2 Data Classification (L2 L3), 6.1.3 Data Classification (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[29] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[30] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[31] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[32] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[41] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[42] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.dataflow.swift.insecure_storage_insufficient_keychain_protection
Abstract
El método identificado escribe datos en un archivo al que le faltan valores de configuración suficientes de cifrado.
Explanation
La API de protección de datos está diseñada para permitir que las aplicaciones declaren cuándo deben ser accesibles los elementos de llaves y los archivos almacenados en el sistema de archivos. Está disponible para la mayoría de API de archivo y base de datos, como NSFileManager, CoreData, NSData y SQLite. Al especificar una de las cuatro clases de protección para un determinado recurso, un desarrollador puede indicar al sistema de archivos subyacente que la cifre mediante una clave derivada del UID del dispositivo y del código de acceso del usuario, o mediante una clave basada exclusivamente en el UID del dispositivo. También debe indicar cuándo debe descifrarla automáticamente.

Las clases de protección de datos se definen para NSFileManager como constantes que deben asignarse como el valor de la clave NSFileProtectionKey en un NSDictionary asociado a la instancia de NSFileManager, y se pueden crear archivos o modificar su clase de protección de datos mediante el uso de funciones NSFileManager como setAttributes:ofItemAtPath:error:, attributesOfItemAtPath:error: y createFileAtPath:contents:attributes:. Además, las constantes de protección de datos correspondientes se definen para objetos NSData como NSDataWritingOptions que pueden pasarse como el argumento options a las funciones NSDatawriteToURL:options:error: y writeToFile:options:error:. Las definiciones de las diversas constantes de clases de protección de datos para NSFileManager y NSData son las siguientes:

-NSFileProtectionComplete, NSDataWritingFileProtectionComplete:
El recurso se almacena en un formato cifrado en el disco y no puede leerse ni escribirse mientras el dispositivo está bloqueado o arrancando.
Disponible en iOS 4.0 y posteriores.
-NSFileProtectionCompleteUnlessOpen, NSDataWritingFileProtectionCompleteUnlessOpen:
El recurso se almacena en un formato cifrado en el disco. Pueden crearse recursos mientras el dispositivo está bloqueado pero, cuando se cierra, ya no puede abrirse de nuevo hasta que el dispositivo esté desbloqueado. Si se abre el recurso mientras está desbloqueado, puede seguir teniendo acceso al recurso con normalidad incluso si el usuario bloquea el dispositivo.
Disponible en iOS 5.0 y posteriores.
-NSFileProtectionCompleteUntilFirstUserAuthentication, NSDataWritingFileProtectionCompleteUntilFirstUserAuthentication:
El recurso se almacena en un formato cifrado en el disco y no se puede tener acceso a él hasta que el dispositivo haya arrancado. La primera vez que el usuario desbloquea el dispositivo, la aplicación puede acceder al recurso y seguir teniendo acceso a él incluso si el usuario bloquea el dispositivo posteriormente.
Disponible en iOS 5.0 y posteriores.
-NSFileProtectionNone, NSDataWritingFileProtectionNone:
El recurso no tiene asociada ninguna protección especial. Se puede leer y escribir en él en cualquier momento.
Disponible en iOS 4.0 y posteriores.

Aunque todos los archivos de un dispositivo con iOS, incluidos los que no tienen explícitamente asignada una clase de protección de datos, se almacenan en un formato cifrado, especificar NSFileProtectionNone provoca un cifrado con una clave derivada exclusivamente del UID del dispositivo. Esto permite que se pueda acceder a dichos archivos siempre que el dispositivo está encendido, incluso cuando está bloqueado con un código de acceso o durante el arranque. Por lo tanto, deben revisarse con atención los usos de NSFileProtectionNone para determinar si se necesita mayor protección con una clase de protección de datos más estricta.

Ejemplo 1: en el siguiente ejemplo, el archivo no está protegido (es accesible en todo momento cuando el dispositivo está encendido):


...
filepath = [self.GetDocumentDirectory stringByAppendingPathComponent:self.setFilename];
...
NSDictionary *protection = [NSDictionary dictionaryWithObject:NSFileProtectionNone forKey:NSFileProtectionKey];
...
[[NSFileManager defaultManager] setAttributes:protection ofItemAtPath:filepath error:nil];
...
BOOL ok = [testToWrite writeToFile:filepath atomically:YES encoding:NSUnicodeStringEncoding error:&err];
...
Ejemplo 2: en el siguiente ejemplo, los datos no están protegidos (son accesibles en todo momento cuando el dispositivo está encendido):


...
filepath = [self.GetDocumentDirectory stringByAppendingPathComponent:self.setFilename];
...
NSData *textData = [textToWrite dataUsingEncoding:NSUnicodeStingEncoding];
...
BOOL ok = [textData writeToFile:filepath options:NSDataWritingFileProtectionNone error:&err];
...
References
[1] iOS Security Guide Apple
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 4
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[10] Standards Mapping - FIPS200 MP
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[15] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[16] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[18] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[21] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[22] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[23] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[33] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[34] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.dataflow.objc.insecure_storage_lacking_data_protection
Abstract
El método identificado escribe datos en un archivo al que le faltan valores de configuración suficientes de cifrado.
Explanation
La API de protección de datos está diseñada para permitir que las aplicaciones declaren cuándo deben ser accesibles los elementos de llaves y los archivos almacenados en el sistema de archivos. Está disponible para la mayoría de API de archivo y base de datos, como NSFileManager, CoreData, NSData y SQLite. Al especificar una de las cuatro clases de protección para un determinado recurso, un desarrollador puede indicar al sistema de archivos subyacente que la cifre mediante una clave derivada del UID del dispositivo y del código de acceso del usuario, o mediante una clave basada exclusivamente en el UID del dispositivo. También debe indicar cuándo debe descifrarla automáticamente.

Las clases de protección de datos se definen en NSFileManager como constantes que deben asignarse como el valor de la clave NSFileProtectionKey en un Dictionary asociado a la instancia de NSFileManager. Se pueden crear archivos o modificar su clase de protección de datos mediante el uso de funciones NSFileManager como setAttributes(_:ofItemAtPath:), attributesOfItemAtPath(_:) y createFileAtPath(_:contents:attributes:). Además, se definen constantes de protección de datos correspondientes para objetos NSData en la enumeración NSDataWritingOptions que pueden pasarse como el argumento options a funciones NSData como
writeToFile(_:options:)
. Las definiciones de las diversas constantes de clases de protección de datos para NSFileManager y NSData son las siguientes:

-NSFileProtectionComplete, NSDataWritingOptions.DataWritingFileProtectionComplete:
El recurso se almacena en un formato cifrado en el disco y no puede leerse ni escribirse mientras el dispositivo está bloqueado o arrancando.
Disponible en iOS 4.0 y posteriores.
-NSFileProtectionCompleteUnlessOpen, NSDataWritingOptions.DataWritingFileProtectionCompleteUnlessOpen:
El recurso se almacena en un formato cifrado en el disco. Pueden crearse recursos mientras el dispositivo está bloqueado pero, cuando se cierra, ya no puede abrirse de nuevo hasta que el dispositivo esté desbloqueado. Si se abre el recurso mientras está desbloqueado, puede seguir teniendo acceso al recurso con normalidad incluso si el usuario bloquea el dispositivo.
Disponible en iOS 5.0 y posteriores.
-NSFileProtectionCompleteUntilFirstUserAuthentication, NSDataWritingOptions.DataWritingFileProtectionCompleteUntilFirstUserAuthentication:
El recurso se almacena en un formato cifrado en el disco y no se puede tener acceso a él hasta que el dispositivo haya arrancado. La primera vez que el usuario desbloquea el dispositivo, la aplicación puede acceder al recurso y seguir teniendo acceso a él incluso si el usuario bloquea el dispositivo posteriormente.
Disponible en iOS 5.0 y posteriores.
-NSFileProtectionNone, NSDataWritingOptions.DataWritingFileProtectionNone:
El recurso no tiene asociada ninguna protección especial. Se puede leer y escribir en él en cualquier momento.
Disponible en iOS 4.0 y posteriores.

Aunque todos los archivos de un dispositivo con iOS, incluidos los que no tienen explícitamente asignada una clase de protección de datos, se almacenan en un formato cifrado, especificar NSFileProtectionNone provoca un cifrado con una clave derivada exclusivamente del UID del dispositivo. Esto permite que se pueda acceder a dichos archivos siempre que el dispositivo está encendido, incluso cuando está bloqueado con un código de acceso o durante el arranque. Por lo tanto, deben revisarse con atención los usos de NSFileProtectionNone para determinar si se necesita mayor protección con una clase de protección de datos más estricta.

Ejemplo 1: en el siguiente ejemplo, el archivo determinado no está protegido (es decir, es accesible en todo momento cuando el dispositivo está encendido).


...
let documentsPath = NSURL(fileURLWithPath: NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMask, true)[0])
let filename = "\(documentsPath)/tmp_activeTrans.txt"
let protection = [NSFileProtectionKey: NSFileProtectionNone]
do {
try NSFileManager.defaultManager().setAttributes(protection, ofItemAtPath: filename)
} catch let error as NSError {
NSLog("Unable to change attributes: \(error.debugDescription)")
}
...
BOOL ok = textToWrite.writeToFile(filename, atomically:true)
...
Ejemplo 2: en el siguiente ejemplo, los datos determinados no están protegidos (es decir, son accesibles en todo momento cuando el dispositivo está encendido).


...
let documentsPath = NSURL(fileURLWithPath: NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMask, true)[0])
let filename = "\(documentsPath)/tmp_activeTrans.txt"
...
BOOL ok = textData.writeToFile(filepath, options: .DataWritingFileProtectionNone);
...
References
[1] iOS Security Guide Apple
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4.0
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5.0
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 4
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 311
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001350, CCI-002475
[10] Standards Mapping - FIPS200 MP
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[15] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[16] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[17] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[18] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[19] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.1.6 General Data Protection (L3)
[21] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[22] Standards Mapping - OWASP Mobile 2023 M9 Insecure Data Storage
[23] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.3
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.3
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.3
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.3
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7.1 - Use of Cryptography
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7.1 - Use of Cryptography, Control Objective B.2.3 - Terminal Software Design
[33] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[34] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001350 CAT II, APSC-DV-002340 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
desc.structural.swift.insecure_storage_lacking_data_protection