Reino: Input Validation and Representation

Los problemas de validación y representación de entradas están causados por metacaracteres, codificaciones alternativas y representaciones numéricas. Los problemas de seguridad surgen de entradas en las que se confía. Estos problemas incluyen: «desbordamientos de búfer», ataques de «scripts de sitios», "SQL injection" y muchas otras acciones.

175 elementos encontrados
Debilidades
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.abap.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca Header Manipulation de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies u Open Redirect.
Explanation
Se producen vulnerabilidades de manipulación de cookies cuando ocurre lo siguiente:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.



2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.



Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como Cross-Site Request Forgery, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Al tratarse de un encabezado de respuesta HTTP, los ataques de manipulación de cookies también pueden provocar otros tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de Header Manipulation es la división de respuesta HTTP. Para realizar un ataque de división de respuesta HTTP con éxito, la aplicación debe permitir entradas que contengan caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación pretende enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernos impiden la inyección de caracteres malintencionados en los encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.

Ejemplo 1: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
Cookie cookie = new Cookie('author', author, '/', -1, false);
ApexPages.currentPage().setCookies(new Cookie[] {cookie});
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, como el valor de la cookie se compone de la entrada de usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para author no contiene ningún carácter CR ni LF. Si un atacante envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", la respuesta HTTP se dividiría en dos respuestas con el siguiente formato:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el atacante controla la segunda respuesta, y esta se puede crear con cualquier contenido de cuerpo y encabezado deseado. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y de la Web, Cross-Site Scripting y el secuestro de páginas.

Desfiguración de usuarios de sitios: Un atacante puede realizar una única solicitud en un servidor vulnerable que haga que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparte la misma conexión TCP con el servidor. Esto se puede lograr si se convence al usuario de que envíe la solicitud malintencionada por sí mismo o de forma remota en situaciones donde el atacante y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque y hacer que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un atacante puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación, pero que redirija información privada, como los números de cuenta y las contraseñas, al atacante.

Envenenamiento de caché: El impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilizan varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas (la respuesta prevista del servidor y la respuesta generada por el atacante), un atacante puede hacer que un nodo intermedio, como un servidor proxy compartido, desvíe al atacante una respuesta generada por el servidor destinada al usuario. Como la solicitud realizada por el atacante genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del atacante, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del atacante ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El atacante envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar toda la información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Open Redirect: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede ayudar a los ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.apex.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dotnet.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] Amit Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Diabolic Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cfml.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca Header Manipulation de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies u Open Redirect.
Explanation
Se producen vulnerabilidades de manipulación de cookies cuando ocurre lo siguiente:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Cookie Manipulation: Cuando se combina con ataques como la falsificación de solicitudes entre sitios, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Al tratarse de un encabezado de respuesta HTTP, los ataques de manipulación de cookies también pueden provocar otros tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de Header Manipulation es la división de respuesta HTTP. Para realizar un ataque de división de respuesta HTTP con éxito, la aplicación debe permitir entradas que contengan caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación pretende enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernos de hoy impiden la inyección de caracteres malintencionados en los encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, como el valor de la cookie se compone de la entrada de usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un atacante envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", la respuesta HTTP se dividiría en dos respuestas con el siguiente formato:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el atacante controla la segunda respuesta, y esta se puede crear con cualquier contenido de cuerpo y encabezado deseado. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios: Un atacante puede realizar una única solicitud en un servidor vulnerable que haga que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparte la misma conexión TCP con el servidor. Esto se puede lograr si se convence al usuario de que envíe la solicitud malintencionada por sí mismo o de forma remota en situaciones donde el atacante y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque y hacer que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un atacante puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación, pero que redirija información privada, como los números de cuenta y las contraseñas, al atacante.

Envenenamiento de caché: El impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilizan varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes adquieren el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, un atacante puede aprovechar la misma vulnerabilidad de raíz para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas (la respuesta prevista del servidor y la respuesta generada por el atacante), un atacante puede hacer que un nodo intermedio, como un servidor proxy compartido, desvíe al atacante una respuesta generada por el servidor destinada al usuario. Como la solicitud realizada por el atacante genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del atacante, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del atacante ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El atacante envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar toda la información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Open Redirect: Si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede contribuir a los ataques de suplantación de identidad.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - CIS Kubernetes Benchmark partial
[7] Standards Mapping - Common Weakness Enumeration CWE ID 113
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.golang.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo 1: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Algunos piensan que en el mundo de las plataformas móviles, las vulnerabilidades de las aplicaciones web clásicas como la manipulación de encabezados y cookies no tienen ningún sentido: ¿por qué se atacaría un usuario a sí mismo? Sin embargo, tenga en cuenta que la esencia de las plataformas móviles consiste en aplicaciones que se descargan desde varias fuentes y se ejecutan junto con otras en el mismo dispositivo. La probabilidad de ejecutar un malware junto a una aplicación de banca es bastante alta, de modo que se necesita expandir la superficie expuesta a ataques de las aplicaciones móviles para que incluyan las comunicaciones entre procesos.

Ejemplo 2: el siguiente código adapta el Example 1 a la plataforma Android.


...
CookieManager webCookieManager = CookieManager.getInstance();
String author = this.getIntent().getExtras().getString(AUTHOR_PARAM);
String setCookie = "author=" + author + "; max-age=" + cookieExpiration;
webCookieManager.setCookie(url, setCookie);

...
Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.java.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Cross-User Defacement: Un atacante puede realizar una única solicitud en un servidor vulnerable que haga que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparte la misma conexión TCP con el servidor. Esto se puede lograr si se convence al usuario de que envíe la solicitud malintencionada por sí mismo o de forma remota en situaciones donde el atacante y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque y hacer que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un atacante puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación, pero que redirija información privada, como los números de cuenta y las contraseñas, al atacante.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.javascript.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: El segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


<?php
$author = $_GET['AUTHOR_PARAM'];
...
header("author: $author");
?>


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.php.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en un encabezado de respuesta HTTP puede habilitar el envenenamiento de caché, la desfiguración de usuarios de sitio (cross-user defacement), el secuestro de páginas, la manipulación de cookies o redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de encabezado se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en un encabezado de respuesta HTTP que se envía a un usuario web sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado de respuesta HTTP.

Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el siguiente segmento de código lee la ubicación desde una solicitud HTTP y establece en un encabezado el campo de ubicación de una respuesta HTTP.


location = req.field('some_location')
...
response.addHeader("location",location)


Si una cadena compuesta por caracteres alfanuméricos, como “index.html”, se envía en la solicitud, la respuesta HTTP que incluye esta cookie podría mostrarse de la siguiente forma:


HTTP/1.1 200 OK
...
location: index.html
...


Sin embargo, dado que el valor de la ubicación se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para some_location no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "index.html\r\nHTTP/1.1 200 OK\r\n...", la respuesta HTTP debería dividirse en dos respuestas de la siguiente forma:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.python.header_manipulation
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar Cache-Poisoning, Cross-Site Scripting, Cross-User Defacement, Page Hijacking, Cookie Manipulation u Open Redirect.
Explanation
Las vulnerabilidades de Cookie Manipulation se producen cuando:

1. Los datos entran en una aplicación web a través de un origen no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, Cookie Manipulation es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Cookie Manipulation: Cuando se combina con ataques como Cross-Site Request Forgery, los usuarios malintencionados pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de Cookie Manipulation también pueden provocar otro tipos de ataques como:

HTTP Response Splitting:
Uno de los ataques más comunes de Header Manipulation es HTTP Response Splitting. Para realizar un ataque de HTTP Response Splitting con éxito, la aplicación debe permitir entradas que contengan los caracteres CR (retorno de carro, también expresado como %0d o \r) y LF (avance, también expresado como %0a o \n) en el encabezado. Estos caracteres no solo proporcionan a los atacantes el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permiten crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a HTTP Response Splitting. Sin embargo, si solo se filtran los caracteres de nueva línea, la aplicación puede quedar expuesta a ataques de Cookie Manipulation u Open Redirect, por lo que hay que tener cuidado al establecer encabezados HTTP con entrada del usuario.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.scala.header_manipulation_cookies
Abstract
La inclusión de datos sin validar en las cookies puede hacer que se produzca la manipulación de encabezados de respuesta HTTP y habilitar el envenenamiento de caché, Cross-Site Scripting, la desfiguración de usuarios de sitios, el secuestro de páginas, la manipulación de cookies o el redireccionamiento abierto.
Explanation
Las vulnerabilidades de manipulación de cookies se producen cuando:

1. Los datos entran en una aplicación web a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP.

2. Los datos se incluyen en una cookie HTTP que se envía a un usuario web sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de cookies es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en una cookie HTTP.

Manipulación de cookies: Cuando se combina con ataques como el de falsificación de solicitud de Cross-Site Scripting, los atacantes pueden cambiar, agregar o incluso sobrescribir las cookies de un usuario legítimo.

Como encabezado de respuesta HTTP, los ataques de manipulación de cookies pueden también provocar otro tipos de ataques como:

División de respuesta HTTP:
Uno de los ataques más comunes de manipulación de encabezado es la división de la respuesta HTTP. Para realizar un ataque de división de la respuesta HTTP con éxito, la aplicación debe permitir la entrada que contiene los caracteres CR (retorno de carro, también dado por %0d o \r) y LF (avance, también dado por %0a o \n) en el encabezado de línea. Estos caracteres no solo proporcionan a los usuarios malintencionados el control de los encabezados restantes y del cuerpo de la respuesta que la aplicación tiene intención de enviar, sino que también les permite crear respuestas adicionales completamente bajo su control.

Muchos de los servidores de aplicaciones modernas de hoy en día impedirán la inyección de caracteres malintencionados en encabezados HTTP. Por ejemplo, las versiones recientes de Apache Tomcat arrojarán una IllegalArgumentException si intenta establecer un encabezado con caracteres prohibidos. Si el servidor de aplicaciones impide que los encabezados se configuren con caracteres de nueva línea, la aplicación no será vulnerable a la división de respuesta HTTP. Sin embargo, únicamente el filtrado de caracteres de nueva línea puede hacer que una aplicación sea vulnerable a la manipulación de cookies o los redireccionamientos abiertos, por lo que todavía debe tenerse cuidado al establecer encabezados HTTP con la entrada del usuario.

Ejemplo: el segmento de código siguiente lee el nombre del autor de una entrada de blog, author, de una solicitud HTTP y lo establece en un encabezado de cookies de una respuesta HTTP.


...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...


Suponiendo que se envía una cadena formada por caracteres alfanuméricos estándar tales como “Julia Díaz” en la solicitud, la respuesta HTTP con esta cookie incluida podría tener el formato siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


Sin embargo, dado que el valor de la cookie se compone de la entrada del usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para AUTHOR_PARAM no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, por ejemplo, "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", a continuación, se dividiría la respuesta HTTP en dos respuestas de la forma siguiente:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Claramente, el usuario malintencionado controla la segunda respuesta y se puede crear con cualquier contenido del cuerpo y encabezado deseados. La capacidad del usuario malintencionado para crear respuestas HTTP arbitrarias permite utilizar una serie de ataques resultantes, entre los que se incluyen: la desfiguración de usuarios de sitios, el envenenamiento de caché del explorador y la Web, los scripts de sitios (Cross-Site Scripting) y el secuestro de páginas.

Desfiguración de usuarios de sitios (cross-user defacement): Un atacante podrá realizar una única solicitud en un servidor vulnerable que hará que el servidor cree dos respuestas, la segunda de las cuales se puede interpretar erróneamente como respuesta a una solicitud diferente, posiblemente una realizada por otro usuario que comparta la misma conexión TCP con el servidor. Esto puede conseguirse si se convence al usuario para que envíe él mismo la solicitud malintencionada, o bien, de forma remota, en situaciones donde el usuario malintencionado y el usuario comparten una conexión TCP común al servidor, como un servidor proxy compartido. En el mejor de los casos, un atacante puede aprovechar esta capacidad para convencer a los usuarios de que la aplicación ha sufrido un ataque, haciendo que los usuarios pierdan confianza en la seguridad de la aplicación. En el peor de los casos, un usuario malintencionado puede proporcionar contenido especialmente diseñado para imitar el comportamiento de la aplicación pero que redirija la información privada, como los números de cuenta y las contraseñas, al usuario malintencionado.

Envenenamiento de caché: el impacto de una respuesta diseñada de forma malintencionada se puede ampliar si se almacena en caché mediante una caché web que utilicen varios usuarios o incluso la caché del explorador de un único usuario. Si una respuesta se almacena en una caché web compartida, como las que se encuentran comúnmente en los servidores proxy, todos los usuarios de esa caché seguirán recibiendo el contenido malintencionado hasta que se elimine la entrada de caché. De forma similar, si la respuesta se almacena en la caché del explorador de un usuario individual, ese usuario seguirá recibiendo el contenido malintencionado hasta que se elimine la entrada de caché, aunque solo el usuario de la instancia del explorador local se verá afectado.

Cross-Site Scripting: Una vez que los atacantes obtienen el control de las respuestas que envía una aplicación, pueden proporcionar a los usuarios una amplia variedad de contenido malintencionado. Cross-Site Scripting es una forma común de ataque donde se ejecuta el código JavaScript malintencionado u otro código incluido en una respuesta del explorador del usuario. La variedad de los ataques basados en XSS es casi ilimitada, pero suelen incluir la transmisión al atacante de datos privados, como cookies u otra información de sesión, el redireccionamiento de la víctima a contenido web que el atacante controla u otras operaciones malintencionadas en el equipo del usuario bajo el disfraz de un sitio vulnerable. El tipo de ataque más común y peligroso contra los usuarios de una aplicación vulnerable utiliza JavaScript para transmitir la información de sesión y autenticación al atacante que, posteriormente, puede tomar el control completo de la cuenta de la víctima.

Secuestro de páginas: Además de utilizar una aplicación vulnerable para enviar contenido malintencionado a un usuario, la misma vulnerabilidad de raíz también se puede aprovechar para redirigir al atacante el contenido confidencial generado por el servidor y destinado al usuario. Al enviar una solicitud que da como resultado dos respuestas, la respuesta deseada desde el servidor y la respuesta que genera el atacante, este puede hacer que un nodo intermedio, como un servidor proxy compartido, suministre al atacante una respuesta generada por el servidor para el usuario. Dado que la solicitud realizada por el usuario malintencionado genera dos respuestas, la primera se interpreta como una respuesta a la solicitud del usuario malintencionado, mientras que la segunda permanece en el limbo. Cuando el usuario realiza una solicitud legítima a través de la misma conexión TCP, la solicitud del usuario malintencionado ya está en espera y se interpreta como una respuesta a la solicitud de la víctima. El usuario malintencionado envía entonces una segunda solicitud al servidor, a la que el servidor proxy responde con la solicitud que el servidor genera destinada a la víctima, lo que puede afectar a cualquier información confidencial de los encabezados o del cuerpo de la respuesta destinada a la víctima.

Redireccionamiento abierto: si se permite la entrada sin validar para controlar la dirección URL utilizada en un redireccionamiento, se puede facilitar la realización de ataques de suplantación de identidad.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 113
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[17] Standards Mapping - OWASP Top 10 2010 A1 Injection
[18] Standards Mapping - OWASP Top 10 2013 A1 Injection
[19] Standards Mapping - OWASP Top 10 2017 A1 Injection
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.vb.header_manipulation_cookies
Abstract
Incluir datos no validados en un encabezado SMTP puede permitir que los atacantes agreguen encabezados arbitrarios, como CC o BCC, que pueden usar para filtrar el contenido del correo hacia ellos mismos o para utilizar el servidor de correo como un bot de spam.
Explanation
Se producen vulnerabilidades de SMTP Header Manipulation cuando:

1. Los datos entran en una aplicación a través de un origen no confiable, más frecuentemente en una solicitud HTTP en una aplicación web.

2. Los datos se incluyen en un encabezado SMTP enviado a un servidor de correo sin haber sido validados.

Al igual que con muchas vulnerabilidades de seguridad de software, SMTP Header Manipulation es un medio para lograr un fin, no un fin en sí mismo. En esencia, la vulnerabilidad es sencilla: un atacante pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado SMTP.

Uno de los ataques más comunes de SMTP Header Manipulation se utiliza para distribuir mensajes de correo electrónico no deseado. Si una aplicación contiene un formulario de contacto vulnerable que permite definir el asunto y el cuerpo del mensaje de correo electrónico, un usuario malintencionado puede definir cualquier contenido arbitrario e inyectar un encabezado CC con una lista de direcciones a las que enviar correo no deseado de forma anónima, ya que el correo electrónico se enviará desde el servidor de la víctima.

Ejemplo: El siguiente segmento de código lee el asunto y el cuerpo de un formulario de contacto:


func handler(w http.ResponseWriter, r *http.Request) {
subject := r.FormValue("subject")
body := r.FormValue("body")
auth := smtp.PlainAuth("identity", "user@example.com", "password", "mail.example.com")
to := []string{"recipient@example.net"}
msg := []byte("To: " + recipient1 + "\r\n" + subject + "\r\n" + body + "\r\n")
err := smtp.SendMail("mail.example.com:25", auth, "sender@example.org", to, msg)
if err != nil {
log.Fatal(err)
}
}


Si una cadena compuesta por caracteres alfanuméricos estándar, como “La página no funciona”, se envía en la solicitud, los encabezados SMTP podrían mostrarse de la siguiente forma:


...
subject: [Contact us query] Page not working
...


Sin embargo, como el valor del encabezado se construye a partir de la entrada de usuario sin validar, la respuesta solo mantendrá esta forma si el valor introducido para subject no contiene ningún carácter CR ni LF. Si un atacante envía una cadena maliciosa, como "¡¡Felicitaciones!! ¡¡Ha ganado la lotería!!!\r\ncc:victim1@mail.com,victim2@mail.com ...", los encabezados SMTP tendrían el siguiente formato:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


Esto permite que un atacante genere mensajes de spam o envíe correos electrónicos anónimos, entre otros ataques.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.1
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Cloud Computing Platform Benchmark partial
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 93
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[15] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.golang.header_manipulation_smtp
Abstract
La inclusión de datos sin validar en un encabezado SMTP puede permitir a los usuarios malintencionados agregar encabezados arbitrarios, como CC o BCC, que pueden utilizar para acceder al contenido del correo o utilizar el servidor de correo como un bot de correo no deseado.
Explanation
Las vulnerabilidades de manipulación de encabezado SMTP se producen cuando:

1. Los datos entran en una aplicación a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP en una aplicación web.

2. Los datos se incluyen en un encabezado HTTP que se envía a un servidor de correo sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado SMTP es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado SMTP.

Uno de los ataques más comunes de manipulación de encabezado SMTP se utiliza para distribuir mensajes de correo electrónico no deseado. Si una aplicación contiene un formulario de contacto vulnerable que permite definir el asunto y el cuerpo del mensaje de correo electrónico, un usuario malintencionado podrá definir cualquier contenido arbitrario e inyectar un encabezado CC con una lista de direcciones a las que enviar correo no deseado de forma anónima, ya que el correo electrónico se enviará desde el servidor de la víctima.

Ejemplo: el siguiente fragmento de código lee el asunto y el cuerpo de un formulario de contacto:


String subject = request.getParameter("subject");
String body = request.getParameter("body");
MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress("webform@acme.com"));
message.setRecipients(Message.RecipientType.TO, InternetAddress.parse("support@acme.com"));
message.setSubject("[Contact us query] " + subject);
message.setText(body);
Transport.send(message);


Si una cadena compuesta por caracteres alfanuméricos estándar, como “La página no funciona”, se envía en la solicitud, los encabezados SMTP podrían mostrarse de la siguiente forma:


...
subject: [Contact us query] Page not working
...


Sin embargo, dado que el valor del encabezado se crea a partir de la entrada de un usuario no validado, la respuesta solo mantendrá esta forma si el valor introducido para subject no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "¡Felicidades! ¡¡Ha ganado la lotería!!\r\ncc:victim1@mail.com,victim2@mail.com ...", entonces los encabezados SMTP tendrían la siguiente forma:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


En la práctica, esto permitirá a un usuario malintencionado elaborar mensajes de correo no deseado o enviar mensajes anónimos entre otros ataques.
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.1
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Cloud Computing Platform Benchmark partial
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark complete
[10] Standards Mapping - Common Weakness Enumeration CWE ID 93
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.java.header_manipulation_smtp
Abstract
La inclusión de datos sin validar en un encabezado SMTP puede permitir a los usuarios malintencionados agregar encabezados arbitrarios, como CC o BCC, que pueden utilizar para acceder al contenido del correo o utilizar el servidor de correo como un bot de correo no deseado.
Explanation
Las vulnerabilidades de manipulación de encabezado SMTP se producen cuando:

1. Los datos entran en una aplicación a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP en una aplicación web.

2. Los datos se incluyen en un encabezado HTTP que se envía a un servidor de correo sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado SMTP es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado SMTP.

Uno de los ataques más comunes de manipulación de encabezado SMTP se utiliza para distribuir mensajes de correo electrónico no deseado. Si una aplicación contiene un formario de contacto vulnerable que permite definir el asunto y el cuerpo del mensaje de correo electrónico, un usuario malintencionado podrá definir cualquier contenido arbitrario e inyectar un encabezado CC con una lista de direcciones a las que enviar correo no deseado de forma anónima, ya que el correo electrónico se enviará desde el servidor de la víctima.

Ejemplo: el siguiente fragmento de código lee el asunto y el cuerpo de un formulario de contacto:


$subject = $_GET['subject'];
$body = $_GET['body'];
mail("support@acme.com", "[Contact us query] " . $subject, $body);


Si una cadena compuesta por caracteres alfanuméricos estándar, como “La página no funciona”, se envía en la solicitud, los encabezados SMTP podrían mostrarse de la siguiente forma:


...
subject: [Contact us query] Page not working
...


Sin embargo, dado que el valor del encabezado se crea a partir de la entrada de un usuario no validado, la respuesta solo mantendrá esta forma si el valor introducido para subject no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "¡Felicidades! ¡¡Ha ganado la lotería!!\r\ncc:victim1@mail.com,victim2@mail.com ...", entonces los encabezados SMTP tendrían la siguiente forma:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


En la práctica, esto permitirá a un usuario malintencionado elaborar mensajes de correo no deseado o enviar mensajes anónimos entre otros ataques.
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.1
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Cloud Computing Platform Benchmark partial
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark complete
[10] Standards Mapping - Common Weakness Enumeration CWE ID 93
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.php.header_manipulation_smtp
Abstract
La inclusión de datos sin validar en un encabezado SMTP puede permitir a los usuarios malintencionados agregar encabezados arbitrarios, como CC o BCC, que pueden utilizar para acceder al contenido del correo o utilizar el servidor de correo como un bot de correo no deseado.
Explanation
Las vulnerabilidades de manipulación de encabezado SMTP se producen cuando:

1. Los datos entran en una aplicación a través de una fuente no confiable, de forma más frecuente en una solicitud HTTP en una aplicación web.

2. Los datos se incluyen en un encabezado HTTP que se envía a un servidor de correo sin haber sido validado.

Al igual que con muchas vulnerabilidades de seguridad de software, la manipulación de encabezado SMTP es un medio para lograr un fin, no un fin en sí mismo. En su raíz, la vulnerabilidad es sencilla: un usuario malintencionado pasa datos malintencionados a una aplicación vulnerable y la aplicación incluye los datos en un encabezado SMTP.

Uno de los ataques más comunes de manipulación de encabezado SMTP se utiliza para distribuir mensajes de correo electrónico no deseado. Si una aplicación contiene un formario de contacto vulnerable que permite definir el asunto y el cuerpo del mensaje de correo electrónico, un usuario malintencionado podrá definir cualquier contenido arbitrario e inyectar un encabezado CC con una lista de direcciones a las que enviar correo no deseado de forma anónima, ya que el correo electrónico se enviará desde el servidor de la víctima.

Ejemplo: el siguiente fragmento de código lee el asunto y el cuerpo de un formulario de contacto:


body = request.GET['body']
subject = request.GET['subject']
session = smtplib.SMTP(smtp_server, smtp_tls_port)
session.ehlo()
session.starttls()
session.login(username, password)
headers = "\r\n".join(["from: webform@acme.com",
"subject: [Contact us query] " + subject,
"to: support@acme.com",
"mime-version: 1.0",
"content-type: text/html"])
content = headers + "\r\n\r\n" + body
session.sendmail("webform@acme.com", "support@acme.com", content)


Si una cadena compuesta por caracteres alfanuméricos estándar, como “La página no funciona”, se envía en la solicitud, los encabezados SMTP podrían mostrarse de la siguiente forma:


...
subject: [Contact us query] Page not working
...


Sin embargo, dado que el valor del encabezado se crea a partir de la entrada de un usuario no validado, la respuesta solo mantendrá esta forma si el valor introducido para subject no contiene ningún carácter CR ni LF. Si un usuario malintencionado envía una cadena malintencionada, como "¡Felicidades! ¡¡Ha ganado la lotería!!\r\ncc:victim1@mail.com,victim2@mail.com ...", entonces los encabezados SMTP tendrían la siguiente forma:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


En la práctica, esto permitirá a un usuario malintencionado elaborar mensajes de correo no deseado o enviar mensajes anónimos entre otros ataques.
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4.1
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Cloud Computing Platform Benchmark partial
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - CIS Kubernetes Benchmark complete
[10] Standards Mapping - Common Weakness Enumeration CWE ID 93
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2010 A1 Injection
[19] Standards Mapping - OWASP Top 10 2013 A1 Injection
[20] Standards Mapping - OWASP Top 10 2017 A1 Injection
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.python.header_manipulation_smtp
Abstract
El encabezado X-XSS-Protection se encuentra deshabilitado de forma explícita, lo que puede aumentar el riesgo de ataques Cross-Site Scripting.
Explanation
El encabezado X-XSS-Protection normalmente está habilitado de forma predeterminada en los navegadores modernos. Cuando el valor del encabezado se establece en false (0), se deshabilita la protección frente a ataques Cross-Site Scripting.

El encabezado se puede establecer en varios lugares y se debe comprobar que no presente errores de configuración ni manipulaciones malintencionadas.
References
[1] IE8 Security Part IV: The XSS Filter
[2] OWASP OWASP Secure Headers Project
[3] HttpResponse.AppendHeader Method
[4] How to prevent cross-site scripting security issues
[5] HOW TO: Disable the Documentation Protocol for ASP.NET Web Services
[6] Configuring Services Using Configuration Files
[7] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.5
[8] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[9] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[10] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[11] Standards Mapping - CIS Kubernetes Benchmark complete
[12] Standards Mapping - Common Weakness Enumeration CWE ID 554, CWE ID 1173
[13] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[14] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[15] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[16] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[17] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[18] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[19] Standards Mapping - FIPS200 CM
[20] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[23] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[24] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[25] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[26] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[27] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[28] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 14.1.3 Build (L2 L3)
[29] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[30] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.configuration.dotnet.html5_xss_protection
Abstract
El encabezado X-XSS-Protection se encuentra deshabilitado de forma explícita, lo que puede aumentar el riesgo de ataques Cross-Site Scripting.
Explanation
El encabezado X-XSS-Protection normalmente está habilitado de forma predeterminada en los navegadores modernos. Cuando el valor del encabezado se establece en false (0), se deshabilita la protección frente a ataques Cross-Site Scripting.

El encabezado se puede establecer en varios lugares y se debe comprobar que no presente errores de configuración ni manipulaciones malintencionadas.

Ejemplo: El siguiente código configura una aplicación protegida con Spring Security para deshabilitar la protección XSS:

<http auto-config="true">
...
<headers>
...
<xss-protection xss-protection-enabled="false" />
</headers>
</http>
References
[1] IE8 Security Part IV: The XSS Filter
[2] OWASP OWASP Secure Headers Project
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.5
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 554, CWE ID 1173
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[12] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[13] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[15] Standards Mapping - FIPS200 CM
[16] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[19] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[20] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[21] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[22] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[23] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[24] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 14.1.3 Build (L2 L3)
[25] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[26] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.config.java.html5_cross_site_scripting_protection
Abstract
El encabezado X-XSS-Protection está explícitamente deshabilitado, lo que puede aumentar el riesgo de ataques de scripts entre sitios.
Explanation
El encabezado X-XSS-Protection normalmente está habilitado de forma predeterminada en los navegadores modernos. Cuando el valor del encabezado se establece en false (0), se deshabilita la protección frente a ataques Cross-Site Scripting.
El encabezado se puede establecer en varios lugares y se debe comprobar que no presente errores de configuración y manipulaciones malintencionadas.
References
[1] IE8 Security Part IV: The XSS Filter
[2] OWASP OWASP Secure Headers Project
[3] Node.js Security Checklist
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.5
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[8] Standards Mapping - CIS Kubernetes Benchmark complete
[9] Standards Mapping - Common Weakness Enumeration CWE ID 554, CWE ID 1173
[10] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[11] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[12] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[13] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[14] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[15] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[16] Standards Mapping - FIPS200 CM
[17] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[20] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[21] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[22] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[23] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[24] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 14.1.3 Build (L2 L3)
[26] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[27] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.dataflow.javascript.html5_cross_site_scripting_protection
Abstract
El encabezado X-XSS-Protection está explícitamente deshabilitado, lo que puede aumentar el riesgo de ataques de scripts entre sitios.
Explanation
El encabezado X-XSS-Protection normalmente está habilitado de forma predeterminada en los navegadores modernos. Cuando el valor del encabezado se establece en false (0), se deshabilita la protección frente a ataques Cross-Site Scripting.

El encabezado se puede establecer en varios lugares y se debe comprobar que no presente errores de configuración y manipulaciones malintencionadas.
References
[1] IE8 Security Part IV: The XSS Filter
[2] OWASP OWASP Secure Headers Project
[3] django-secure
[4] SECURE_BROWSER_XSS_FILTER
[5] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3.5
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark confidentiality
[9] Standards Mapping - CIS Kubernetes Benchmark complete
[10] Standards Mapping - Common Weakness Enumeration CWE ID 554, CWE ID 1173
[11] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[12] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[13] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[14] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[15] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[16] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[17] Standards Mapping - FIPS200 CM
[18] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[22] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[23] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[24] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[25] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 14.1.3 Build (L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[28] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.structural.python.html5_cross_site_scripting_protection
Abstract
La validación HTML5 de los campos de formulario de entrada está desactivada.
Explanation
HTML5 proporciona una nueva función para realizar validaciones sencillas de los campos de formulario de entrada. Se puede especificar si un campo de formulario de entrada es obligatorio mediante el atributo required. Al especificar el tipo de campo, nos aseguramos de que la entrada se comprueba según su tipo. Se puede incluso suministrar un atributo pattern personalizable que compruebe la entrada con una expresión regular. Sin embargo, esta validación se desactiva cuando se añade un atributo novalidate en una etiqueta de formulario y un atributo formnovalidate en una etiqueta de entrada de envío.

Ejemplo 1: En el siguiente ejemplo, se desactiva la validación de formularios mediante el atributo novalidate.


<form action="demo_form.asp" novalidate="novalidate">
E-mail: <input type="email" name="user_email" />
<input type="submit" />
</form>
Ejemplo 2: En el siguiente ejemplo, se desactiva la validación de formularios mediante el atributo formnovalidate.


<form action="demo_form.asp" >
E-mail: <input type="email" name="user_email" />
<input type="submit" formnovalidate="formnovalidate"/>
</form>


Los formularios HTML sin validación activada resultan más difíciles de utilizar y pueden exponer al servidor a muchos tipos de ataque. Las entradas no comprobadas son la causa principal de vulnerabilidades en secuencias entre sitios, control de procesos e inserción de SQL.
References
[1] HTML5 form novalidate Attribute W3Schools
[2] HTML5 input formnovalidate Attribute W3Schools
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[4] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[5] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3
[6] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[7] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[8] Standards Mapping - CIS Kubernetes Benchmark partial
[9] Standards Mapping - Common Weakness Enumeration CWE ID 1173
[10] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[11] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[12] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[13] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[14] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[15] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[16] Standards Mapping - FIPS200 SI
[17] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[20] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[21] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[22] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[23] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[24] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[26] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[27] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Application Misconfiguration (WASC-15)
desc.content.html.html5_form_validation_turned_off
Abstract
La concatenación de entradas sin validar en una dirección URL puede permitir a un usuario malintencionado anular el valor de un parámetro de solicitud. El usuario malintencionado puede anular los valores de los parámetros existentes, inyectar un nuevo parámetro o atacar las variables fuera de un alcance directo.
Explanation
Los ataques HPP (HTTP Parameter Pollution) consisten en inyectar delimitadores de cadenas de consulta codificados en otros parámetros existentes. Si una aplicación web no corrige adecuadamente la entrada del usuario, un usuario malintencionado puede poner en peligro la lógica de la aplicación para llevar a cabo ataques del lado de cliente o del servidor. Mediante el envío de parámetros adicionales a una aplicación web y si estos parámetros tienen el mismo nombre que un parámetro existente, la aplicación web puede reaccionar de una de las siguientes maneras:

Solo puede obtener los datos del primer parámetro
Puede obtener los datos del último parámetro
Puede obtener los datos de todos los parámetros y concatenarlos juntos


Por ejemplo:
- ASP.NET/IIS utiliza todas las apariciones de los parámetros
- Apache Tomcat utiliza solo la primera aparición e ignora las demás.
- mod_perl/Apache convierte el valor en una matriz de valores

Ejemplo 1: según el servidor de aplicaciones y la lógica de la propia aplicación, la siguiente solicitud podría provocar confusión en el sistema de autenticación y permitir que un atacante suplante a otro usuario.
http://www.server.com/login.aspx?name=alice&name=hacker

Ejemplo 2: el siguiente código utiliza la entrada de una solicitud HTTP para representar dos hipervínculos.

...
String lang = Request.Form["lang"];
WebClient client = new WebClient();
client.BaseAddress = url;
NameValueCollection myQueryStringCollection = new NameValueCollection();
myQueryStringCollection.Add("q", lang);
client.QueryString = myQueryStringCollection;
Stream data = client.OpenRead(url);
...


URL: http://www.host.com/election.aspx?poll_id=4567
Link1: <a href="http://www.host.com/vote.aspx?poll_id=4567&lang=en">inglés<a>
Link2: <a href="http://www.host.com/vote.aspx?poll_id=4567&lang=es">español<a>

El programador no ha tenido en cuenta la posibilidad de que un atacante proporcione un lang como en&poll_id=1 y después pueda modificar el poll_id a su antojo.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
desc.dataflow.dotnet.http_parameter_pollution
Abstract
La concatenación de entradas sin validar en una dirección URL puede permitir a un usuario malintencionado anular el valor de un parámetro de solicitud. El usuario malintencionado puede anular los valores de los parámetros existentes, inyectar un nuevo parámetro o atacar las variables fuera de un alcance directo.
Explanation
Los ataques HPP (HTTP Parameter Pollution) consisten en inyectar delimitadores de cadenas de consulta codificados en otros parámetros existentes. Si una aplicación web no corrige adecuadamente la entrada del usuario, un usuario malintencionado puede poner en peligro la lógica de la aplicación para llevar a cabo ataques del lado de cliente o del servidor. Mediante el envío de parámetros adicionales a una aplicación web y si estos parámetros tienen el mismo nombre que un parámetro existente, la aplicación web puede reaccionar de una de las siguientes maneras:

Solo puede obtener los datos del primer parámetro
Puede obtener los datos del último parámetro
Puede obtener los datos de todos los parámetros y concatenarlos juntos


Por ejemplo:
- ASP.NET/IIS utiliza todas las apariciones de los parámetros
- Apache Tomcat utiliza solo la primera aparición e ignora las demás.
- mod_perl/Apache convierte el valor en una matriz de valores

Ejemplo 1: según el servidor de aplicaciones y la lógica de la propia aplicación, la siguiente solicitud podría provocar confusión en el sistema de autenticación y permitir que un atacante suplante a otro usuario.
http://www.server.com/login.php?name=alice&name=hacker

Ejemplo 2: el siguiente código utiliza la entrada de una solicitud HTTP para representar dos hipervínculos.

...
String lang = request.getParameter("lang");
GetMethod get = new GetMethod("http://www.host.com");
get.setQueryString("lang=" + lang + "&poll_id=" + poll_id);
get.execute();
...


URL: http://www.host.com?poll_id=4567
Link1: <a href="http://www.host.com/vote.php?lang=en&poll_id=4567">inglés<a>
Link2: <a href="http://www.host.com/vote.php?lang=es&poll_id=4567">español<a>

El programador no ha tenido en cuenta la posibilidad de que un atacante proporcione un lang como en&poll_id=1 y después modifique poll_id a su antojo.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
desc.dataflow.java.http_parameter_pollution
Abstract
La concatenación de entradas sin validar en una dirección URL puede permitir a un usuario malintencionado anular el valor de un parámetro de solicitud. El usuario malintencionado puede anular los valores de los parámetros existentes, inyectar un nuevo parámetro o atacar las variables fuera de un alcance directo.
Explanation
Los ataques HPP (HTTP Parameter Pollution) consisten en inyectar delimitadores de cadenas de consulta codificados en otros parámetros existentes. Si una aplicación web no corrige adecuadamente la entrada del usuario, un usuario malintencionado puede poner en peligro la lógica de la aplicación para llevar a cabo ataques del lado de cliente o del servidor. Mediante el envío de parámetros adicionales a una aplicación web y si estos parámetros tienen el mismo nombre que un parámetro existente, la aplicación web puede reaccionar de una de las siguientes maneras:

Solo puede obtener los datos del primer parámetro
Puede obtener los datos del último parámetro
Puede obtener los datos de todos los parámetros y concatenarlos juntos


Por ejemplo:
- ASP.NET/IIS utiliza todas las apariciones de los parámetros
- Apache Tomcat utiliza solo la primera aparición e ignora las demás.
- mod_perl/Apache convierte el valor en una matriz de valores

Ejemplo 1: según el servidor de aplicaciones y la lógica de la propia aplicación, la siguiente solicitud podría provocar confusión en el sistema de autenticación y permitir que un atacante suplante a otro usuario.
http://www.server.com/login.php?name=alice&name=hacker

Ejemplo 2: el siguiente código utiliza la entrada de una solicitud HTTP para representar dos hipervínculos.


<%
...
$id = $_GET["id"];
header("Location: http://www.host.com/election.php?poll_id=" . $id);
...
%>


URL: http://www.host.com/election.php?poll_id=4567
Link1: <a href="vote.php?poll_id=4567&candidate=white">Vote al Sr. Pérez<a>
Link2: <a href="vote.php?poll_id=4567&candidate=green">Vote a la Sra. González<a>

El programador no ha pensado en la posibilidad de que un usuario malintencionado proporcione un identificador de voto (poll_id) como "4567&candidato=gonzález" y, entonces, la página resultante contenga los siguientes vínculos insertados y, por tanto, la Sra. González reciba los votos en un servidor de aplicaciones que recopile el primer parámetro.
<a href="vote.php?poll_id=4567&candidate=green&candidate=white">Vote al Sr. Pérez<a>
<a href="vote.php?poll_id=4567&candidate=green&candidate=green">Vote a la Sra. González<a>
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
desc.dataflow.php.http_parameter_pollution
Abstract
La concatenación de entradas sin validar en una dirección URL puede permitir a un usuario malintencionado anular el valor de un parámetro de solicitud. El usuario malintencionado puede anular los valores de los parámetros existentes, inyectar un nuevo parámetro o atacar las variables fuera de un alcance directo.
Explanation
Los ataques HPP (HTTP Parameter Pollution) consisten en inyectar delimitadores de cadenas de consulta codificados en otros parámetros existentes. Si una aplicación web no corrige adecuadamente la entrada del usuario, un usuario malintencionado puede poner en peligro la lógica de la aplicación para llevar a cabo ataques del lado de cliente o del servidor. Mediante el envío de parámetros adicionales a una aplicación web y si estos parámetros tienen el mismo nombre que un parámetro existente, la aplicación web puede reaccionar de una de las siguientes maneras:

Solo puede obtener los datos del primer parámetro
Puede obtener los datos del último parámetro
Puede obtener los datos de todos los parámetros y concatenarlos juntos


Por ejemplo:
- ASP.NET/IIS utiliza todas las apariciones de los parámetros
- Apache Tomcat utiliza solo la primera aparición e ignora las demás.
- mod_perl/Apache convierte el valor en una matriz de valores

Ejemplo 1: según el servidor de aplicaciones y la lógica de la propia aplicación, la siguiente solicitud podría provocar confusión en el sistema de autenticación y permitir que un usuario malintencionado suplante a otro usuario.
http://www.server.com/login.php?name=alice&name=hacker

Como se muestra aquí, el usuario malintencionado ya ha especificado name=alice, pero ha agregado un name=alice& adicional, y si se utiliza en un servidor que tome la primera repetición, podría suplantar a alice para obtener más información sobre su cuenta.
References
[1] HTTP Parameter Pollution Luca Carettoni, Independent Researcher & Stefano Di Paola, MindedSecurity
[2] HTTP Parameter Pollution Vulnerabilities in Web Applications Marco `embyte’ Balduzzi
desc.dataflow.ruby.http_parameter_pollution
Abstract
Algunas funciones pueden devolver un puntero a la memoria fuera de los límites del búfer que se va a buscar. Las operaciones posteriores en el puntero podrían tener consecuencias no deseadas.
Explanation
Las funciones que buscan caracteres dentro de un búfer pueden devolver un puntero fuera de los límites del búfer proporcionado en cualquiera de las siguientes circunstancias:

- Un usuario controla el contenido del búfer que se va a buscar.

- Un usuario controla el valor que se va a buscar.

Ejemplo 1: El siguiente programa breve utiliza un argumento de línea de comandos que no es de confianza como búfer de búsqueda en una llamada a rawmemchr().


int main(int argc, char** argv) {
char* ret = rawmemchr(argv[0], 'x');
printf("%s\n", ret);
}


El programa está diseñado para imprimir una subcadena de argv[0], aunque es posible que acabe imprimiendo una parte de la memoria anterior a argv[0].

Este problema es similar a un error de finalización de cadena, en el que el programador utiliza una matriz de caracteres para incluir un terminador null.
References
[1] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
desc.semantic.cpp.illegal_pointer_value.master
Abstract
El uso de datos controlados por el usuario o que no son de confianza para definir la directiva de corrección de HTML podría permitir a un atacante evitar los requisitos de corrección y ejecutar ataques de Cross-Site Scripting (XSS).
Explanation
El término general "administración de entrada" describe funciones como la validación, la corrección, el filtrado y la codificación/decodificación de datos de entrada: Los ataques de scripts de sitios, la inyección de código SQL y las vulnerabilidades detectadas en el control de los procesos tienen todos su origen en la administración incorrecta o inexistente de entradas. La corrección de entradas, que implica la transformación de la entrada a una forma aceptable, normalmente se implementa además de la validación de entradas. La corrección de HTML hace referencia a la limpieza completa de la entrada del usuario para permitir únicamente etiquetas, atributos y elementos que se consideran seguros.
La implementación de una directiva de corrección de HTML completa es difícil, la clave de implementación correcta es comprender el contexto en el que se van a utilizar los datos. Cada contexto tiene sus propias vulnerabilidades y un tamaño no encaja con todos. Mientras que es útil utilizar un corrector de HTML (por ejemplo el corrector de HTML OWASP) para protegerse frente a vulnerabilidades de XSS en aplicaciones web, una implementación incorrecta puede conducir a una falsa sensación de seguridad.
Ejemplo 1: el siguiente código Java utiliza la variable de entrada controlada por el usuario elements en la creación de una directiva de corrección HTML:


...
String elements = prop.getProperty("AllowedElements");
...
public static final PolicyFactory POLICY_DEFINITION = new HtmlPolicyBuilder()
.allowElements(elements)
.toFactory();

....


Un usuario malintencionado puede provocar que la directiva de corrección HTML acepte elementos peligrosos como <script> proporcionándolos a elements.

References
[1] OWASP Cross-Site Scripting (XSS) Prevention Cheat Sheet
[2] Understanding Malicious Content Mitigation for Web Developers CERT
[3] HTML 4.01 Specification W3
desc.dataflow.java.insecure_sanitizer_policy