界: Input Validation and Representation

入力の検証や表現の問題は、メタキャラクター、代替エンコーディング、数値表現などによって引き起こされます。セキュリティの問題は、入力を信頼することに起因します。この問題に含まれるのは、「Buffer Overflow」、「Cross-Site Scripting」攻撃、「SQL Injection」などです。

175 見つかった項目
脆弱性
Abstract
プログラムでは、%f または %F の浮動小数点指定子を含む不正な境界が設定されている Format String が使用されています。予期されないほど大きな浮動小数点の値があると、プログラムにより割り当てられたメモリの境界外にデータが書き込まれる場合があり、データが破損したりプログラムがクラッシュしたりする可能性があり、悪意あるコードの実行が引き起こされることもあります。
Explanation
Buffer Overflow は、ソフトウェアセキュリティの脆弱性の中で最も有名な形態でしょう。Buffer Overflow の脆弱性については大半のソフトウェア開発者に知られているにも関わらず、依然として Buffer Overflow は新旧を問わずアプリケーションに対して最も多く見られる攻撃です。これは、Buffer Overflow には多種多様の発生形態があることや、この攻撃を阻止するために使用される手法が誤りやすいものであることによるものです。

古典的な Buffer Overflow の悪用では、攻撃者がプログラムに送信したデータが、それよりも小さいサイズのスタックバッファに格納されます。その結果、コールスタックにある情報、特に関数の戻りポインタが上書きされます。このデータがセットした戻りポインタの値に関数が戻ると、攻撃者のデータに含まれる悪意あるコードに制御が移ります。

このタイプのスタック Buffer Overflow は一部のプラットフォームや開発コミュニティでは今でも一般的ですが、ほかにもヒープ Buffer Overflow や「一つ違い」エラーなどのさまざまな Buffer Overflow があります。Buffer Overflow 攻撃の仕組みを解説した書籍には、Building Secure Software [1]、Writing Secure Code [2]、The Shellcoder's Handbook [3] など優れた本が数多くあります。

コードのレベルでは、Buffer Overflow 脆弱性には通常、プログラマの想定外のことが含まれます。C および C++ のメモリ操作関数の多くは境界チェックを行わないため、動作しているバッファに対して割り当てられた境界を簡単に超過する場合があります。strncpy() など境界が定められた関数の場合も、不正に使用されると脆弱性の原因になります。メモリの操作と、データのサイズや構成に関する誤った想定が同時に発生することが、大部分の Buffer Overflow の根本的な原因です。

この場合、不適切に構築されている Format String が原因で、プログラムは割り当てられたメモリの境界外にデータを書き込みます。

例: 次のコードでは buf がオーバーフローしますが、これは f のサイズに応じて、Format String 指定子 "%d %.1f ... " が割り当てられているメモリ量を超えるからです。


void formatString(int x, float f) {
char buf[40];
sprintf(buf, "%d %.1f ... ", x, f);
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 3
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[8] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[10] Standards Mapping - CIS Kubernetes Benchmark complete
[11] Standards Mapping - Common Weakness Enumeration CWE ID 787
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [12] CWE ID 787
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [2] CWE ID 787
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787
[15] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787
[16] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[18] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[23] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[24] Standards Mapping - OWASP Top 10 2013 A1 Injection
[25] Standards Mapping - OWASP Top 10 2017 A1 Injection
[26] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[27] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[41] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 134
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3560 CAT I, APP3590.1 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_format_string_%f_%F
Abstract
プログラムが割り当てられたメモリの境界の直前にデータを書き込むと、データが破損したりプログラムがクラッシュしたりする可能性があり、悪意あるコードの実行を引き起こすこともあります。
Explanation
Buffer Overflow は、ソフトウェアセキュリティの脆弱性の中で最も有名な形態でしょう。Buffer Overflow の脆弱性については大半のソフトウェア開発者に知られているにも関わらず、依然として Buffer Overflow は新旧を問わずアプリケーションに対して最も多く見られる攻撃です。これは、Buffer Overflow には多種多様の発生形態があることや、この攻撃を阻止するために使用される手法が誤りやすいものであることによるものです。

古典的な Buffer Overflow の悪用では、攻撃者がプログラムに送信したデータが、それよりも小さいサイズのスタックバッファに格納されます。その結果、コールスタックにある情報、特に関数の戻りポインタが上書きされます。このデータがセットした戻りポインタの値に関数が戻ると、攻撃者のデータに含まれる悪意あるコードに制御が移ります。

このタイプの「一つ違い」エラーは一部のプラットフォームや開発コミュニティでは今でも一般的ですが、ほかにもスタックおよびヒープ Buffer Overflow などのさまざまな Buffer Overflow があります。Buffer Overflow 攻撃の仕組みを解説した書籍には、Building Secure Software [1]、Writing Secure Code [2]、The Shellcoder's Handbook [3] など優れた本が数多くあります。

コードのレベルでは、Buffer Overflow 脆弱性には通常、プログラマの想定外のことが含まれます。C および C++ のメモリ操作関数の多くは境界チェックを行わないため、動作しているバッファに対して割り当てられた境界を簡単に超過する場合があります。strncpy() など境界が定められた関数の場合も、不正に使用されると脆弱性の原因になります。メモリの操作と、データのサイズや構成に関する誤った想定が同時に発生することが、大部分の Buffer Overflow の根本的な原因です。

例: 次のコードには、「一つ違い」による Buffer Overflow の問題が含まれています。これは、recv によって、読み取られた最大許容数の sizeof(buf) バイトが返された場合に発生します。この場合、その後に続く buf[nbytes] の間接参照によって、割り当てられたメモリの境界外に null バイトが書き込まれます。


void receive(int socket) {
char buf[MAX];
int nbytes = recv(socket, buf, sizeof(buf), 0);
buf[nbytes] = '\0';
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[8] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[10] Standards Mapping - CIS Kubernetes Benchmark complete
[11] Standards Mapping - Common Weakness Enumeration CWE ID 129, CWE ID 131, CWE ID 193, CWE ID 787, CWE ID 805
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [3] CWE ID 020, [12] CWE ID 787
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [3] CWE ID 020, [2] CWE ID 787
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [1] CWE ID 787, [4] CWE ID 020, [17] CWE ID 119
[15] Standards Mapping - Common Weakness Enumeration Top 25 2022 [1] CWE ID 787, [4] CWE ID 020, [19] CWE ID 119
[16] Standards Mapping - Common Weakness Enumeration Top 25 2023 [1] CWE ID 787, [6] CWE ID 020, [17] CWE ID 119
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[18] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 18-0-5
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[23] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[24] Standards Mapping - OWASP Top 10 2013 A1 Injection
[25] Standards Mapping - OWASP Top 10 2017 A1 Injection
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[28] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 119
[42] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 805, Risky Resource Management - CWE ID 129, Risky Resource Management - CWE ID 131
[43] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 131
[44] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3590.1 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3590.1 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3590.1 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3590.1 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3590.1 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_off_by_one
Abstract
プログラムは符号付き比較を使用して、後で符号なしとして扱われる値をチェックします。これにより、プログラムにより割り当てられたメモリの境界外にデータが書き込まれる場合があり、データが破損したりプログラムがクラッシュしたりする可能性があり、悪意あるコードの実行が引き起こされることもあります。
Explanation
Buffer Overflow は、ソフトウェアセキュリティの脆弱性の中で最も有名な形態でしょう。Buffer Overflow の脆弱性については大半のソフトウェア開発者に知られているにも関わらず、依然として Buffer Overflow は新旧を問わずアプリケーションに対して最も多く見られる攻撃です。これは、Buffer Overflow には多種多様の発生形態があることや、この攻撃を阻止するために使用される手法が誤りやすいものであることによるものです。

古典的な Buffer Overflow の悪用では、攻撃者がプログラムに送信したデータが、それよりも小さいサイズのスタックバッファに格納されます。その結果、コールスタックにある情報、特に関数の戻りポインタが上書きされます。このデータがセットした戻りポインタの値に関数が戻ると、攻撃者のデータに含まれる悪意あるコードに制御が移ります。

このタイプのスタック Buffer Overflow は一部のプラットフォームや開発コミュニティでは今でも一般的ですが、ほかにもヒープ Buffer Overflow や「一つ違い」エラーなどのさまざまな Buffer Overflow があります。Buffer Overflow 攻撃の仕組みを解説した書籍には、Building Secure Software [1]、Writing Secure Code [2]、The Shellcoder's Handbook [3] など優れた本が数多くあります。

コードのレベルでは、Buffer Overflow 脆弱性には通常、プログラマの想定外のことが含まれます。C および C++ のメモリ操作関数の多くは境界チェックを行わないため、動作しているバッファに対して割り当てられた境界を簡単に超過する場合があります。strncpy() など境界が定められた関数の場合も、不正に使用されると脆弱性の原因になります。メモリの操作と、データのサイズや構成に関する誤った想定が同時に発生することが、大部分の Buffer Overflow の根本的な原因です。

例: 次のコードは、「一つ違い」による Buffer Overflow の発生を防止するために、getInputLength() から読み取られた信頼できない値が、コピー先バッファである output のサイズより小さいかどうかをチェックしています。しかし、lenMAX の比較は符号付きであるため、len の値が負であった場合にその値が memcpy() の符号なし引数に変換されると、非常に大きな正の数値となります。


void TypeConvert() {
char input[MAX];
char output[MAX];

fillBuffer(input);
int len = getInputLength();

if (len <= MAX) {
memcpy(output, input, len);
}
...
}
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] J. Koziol et al. The Shellcoder's Handbook: Discovering and Exploiting Security Holes John Wiley & Sons
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 2
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 2
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 3
[8] Standards Mapping - CIS Google Cloud Computing Platform Benchmark complete
[9] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[10] Standards Mapping - CIS Kubernetes Benchmark complete
[11] Standards Mapping - Common Weakness Enumeration CWE ID 195, CWE ID 805
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [17] CWE ID 119
[15] Standards Mapping - Common Weakness Enumeration Top 25 2022 [19] CWE ID 119
[16] Standards Mapping - Common Weakness Enumeration Top 25 2023 [17] CWE ID 119
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002824
[18] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-16 Memory Protection (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-16 Memory Protection
[23] Standards Mapping - OWASP Top 10 2004 A5 Buffer Overflow
[24] Standards Mapping - OWASP Top 10 2013 A1 Injection
[25] Standards Mapping - OWASP Top 10 2017 A1 Injection
[26] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[27] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[28] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.5
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 805
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3550 CAT I, APP3590.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3550 CAT I, APP3590.1 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3550 CAT I, APP3590.1 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3550 CAT I, APP3590.1 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3550 CAT I, APP3590.1 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3550 CAT I, APP3590.1 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3550 CAT I, APP3590.1 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002590 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002590 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Buffer Overflow (WASC-07)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Buffer Overflow
desc.internal.cpp.buffer_overflow_signed_comparison
Abstract
ユーザー制御データは、テンプレート エンジンのテンプレートとして使用され、これにより攻撃者は、テンプレート コンテキストにアクセスし、場合によっては悪意のあるコードを挿入してブラウザーで実行することも可能になります。
Explanation
テンプレート エンジンは動的なデータを使用してコンテンツをレンダリングするために使用されます。このコンテキスト データは通常、ユーザーによって制御され、テンプレートによって書式設定されて、Web ページ、電子メールなどが生成されます。テンプレート エンジンでは、コンテキスト データを条件文、ループなどのコード構造で処理することで、動的コンテンツをレンダリングするための強力な言語表現をテンプレートで使用できます。攻撃者がテンプレートを制御してレンダリングできる場合、式を挿入してコンテキスト データを開示したり、悪意のあるコードをブラウザーで実行できます。

例 1: 次の例では、テンプレートを URL から取得し、これを使用して AngularJS による情報のレンダリングを行う方法を示しています。

function MyController(function($stateParams, $interpolate){
var ctx = { foo : 'bar' };
var interpolated = $interpolate($stateParams.expression);
this.rendered = interpolated(ctx);
...
}


この場合、$stateParams.expressionはユーザーが制御している可能性のあるデータを取得し、これを指定されたコンテキストで使用するテンプレートとして評価します。これにより、悪意のあるユーザーはブラウザ内で目的のコードを実行できるようになり、コードが実行されているコンテキストについての情報の取得、アプリケーションの作成方法に関する追加情報の検索、または本格的な XSS 攻撃への変換を行えるようになる可能性があります。
References
[1] AngularJS Security Guide Google
desc.dataflow.javascript.client_side_template_injection
Abstract
ユーザー入力が検証されないまま、ページに追加されるファイルのパスが指定されると、攻撃者は悪意のあるコードを挿入したり、サーバーの重要なファイルを参照する可能性があります。
Explanation
次の場合に、Unauthorized Include の脆弱性が発生します。

1. 信頼されていないソース (多くの場合、Web リクエスト) からデータが Web アプリケーションに入り込んだ場合。

2. このデータは、<cfinclude> タグの template 属性を指定する文字列の一部です。
例: 次のコードでは、Web フォームからの入力を使用して、ユーザーのホームページの書式設定に使用する特殊なファイルへのパスを構築しています。プログラマは、攻撃者が「../../users/wileyh/malicious」などの悪意あるファイル名を入力することによって、攻撃者のホームディレクトリにあるファイルの内容が追加され実行される可能性があることを考慮していません。


<cfinclude template =
"C:\\custom\\templates\\#Form.username#.cfm">


攻撃者が <cfinclude> タグによってファイルを含めるように指定できる場合、アプリケーションによりサーバーのファイル システムにあるほとんどすべてのファイルの内容を現在のページに追加させるように仕向ける可能性があります。この能力は少なくとも次の 2 つの重要な方法で利用される可能性があります。攻撃者が、ユーザーのホーム ディレクトリやよく使用されるアップロード用のディレクトリなどサーバーのファイル システムの場所に書き込むことができる場合には、アプリケーションによって悪意をもって作成されたファイルがページに追加される可能性があり、このファイルはサーバーにより実行されてしまうことになります。サーバーのファイル システムへの書き込み権限がない場合でも、サーバーにあるファイルのパスを指定することで機密情報や個人情報にアクセスできる場合があります。
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[2] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[6] Standards Mapping - Common Weakness Enumeration CWE ID 94
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [18] CWE ID 094
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [17] CWE ID 094
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001167
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-18 Mobile Code (P2)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-18 Mobile Code
[14] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2007 A3 Malicious File Execution
[16] Standards Mapping - OWASP Top 10 2010 A1 Injection
[17] Standards Mapping - OWASP Top 10 2013 A1 Injection
[18] Standards Mapping - OWASP Top 10 2017 A1 Injection
[19] Standards Mapping - OWASP Top 10 2021 A03 Injection
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[22] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 6.5.3
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 094
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-003300 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-003300 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-003300 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-003300 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-003300 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-003300 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-003300 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-003300 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-003300 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-003300 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-003300 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-003300 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-003300 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-003300 CAT II
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cfml.unauthorized_include
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システムユーティリティの次のコードでは、レジストリキー APPHOME を使用してインストール先ディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


...
CALL FUNCTION 'REGISTRY_GET'
EXPORTING
KEY = 'APPHOME'
IMPORTING
VALUE = home.

CONCATENATE home INITCMD INTO cmd.
CALL 'SYSTEM' ID 'COMMAND' FIELD cmd ID 'TAB' FIELD TABL[].
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにレジストリエントリ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを高い権限で実行できます。このプログラムはレジストリから読み取った値の検証を行わないので、レジストリキー APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイルラッパーを使用して Oracle データベースのバックアップを開始し、その後 cleanup.bat スクリプトを実行して一部のテンポラリ ファイルを削除できるインターフェイスを持つ Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


...
btype = request->get_form_field( 'backuptype' )
CONCATENATE `/K 'c:\\util\\rmanDB.bat ` btype `&&c:\\util\\cleanup.bat'` INTO cmd.

CALL FUNCTION 'SXPG_COMMAND_EXECUTE_LONG'
EXPORTING
commandname = cmd_exe
long_params = cmd_string
EXCEPTIONS
no_permission = 1
command_not_found = 2
parameters_too_long = 3
security_risk = 4
OTHERS = 5.
...


ここでの問題はプログラムがユーザーから読み取る backuptypeパラメーターを検証しないことです。通常、関数モジュール SXPG_COMMAND_EXECUTE_LONG は複数のコマンドを実行しませんが、この例のプログラムは最初に cmd.exe シェルを実行して、CALL 'SYSTEM' を 1 回コールするだけで複数のコマンドを実行しています。呼び出されたシェルは、2 つのアンパサンドで区切られた複数のコマンドを実行できます。攻撃者が "&& del c:\\dbms\\*.*" という形式の文字列を渡すと、アプリケーションは、プログラムにより指定された他のコマンドとともにこのコマンドを実行します。アプリケーションはその性質上、データベースとのやり取りに必要な権限で実行されています。このため、攻撃者が挿入したコマンドも、その権限で実行されます。

例 3: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。特定のネットワーク環境でパスワードを更新する処理には、/var/yp ディレクトリでの make コマンドの実行が含まれます。


...
MOVE 'make' to cmd.
CALL 'SYSTEM' ID 'COMMAND' FIELD cmd ID 'TAB' FIELD TABL[].
...


ここでの問題は、プログラムが make のための絶対パスを指定しておらず、CALL 'SYSTEM' のコールを実行する前に環境をクリーンにできていないことです。攻撃者が $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の make もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。
References
[1] SAP OSS notes 677435, 686765, 866732, 854060, 1336776, 1520462, 1530983 and related notes.
desc.dataflow.abap.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: 次のコードでは、設定ファイルの入力を使用してインストール先のディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


...
var fs:FileStream = new FileStream();
fs.open(new File(String(configStream.readObject())+".txt"), FileMode.READ);
home = String(fs.readObject(home));
var cmd:String = home + INITCMD;
fscommand("exec", cmd);
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するように設定ファイル configStream の内容を変更することにより、攻撃者はアプリケーションの任意のコマンドを高い権限で実行できます。このプログラムではファイルから読み取った値の検証が実行されないため、攻撃者がこの値を制御できる場合、アプリケーションを操って悪意のあるコードを実行し、システムを制御できます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイルラッパーを使用して Oracle データベースのバックアップを開始し、その後 cleanup.bat スクリプトを実行して一部のテンポラリ ファイルを削除できるインターフェイスを持つ Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


...
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var btype:String = String(params["backuptype"]);
var cmd:String = "cmd.exe /K \"c:\\util\\rmanDB.bat " + btype + "&&c:\\util\\cleanup.bat\"";
fscommand("exec", cmd);
...


ここでの問題はプログラムがユーザーから読み取る backuptypeパラメーターを検証しないことです。通常、関数 fscommand() は複数のコマンドを実行しませんが、この例のプログラムは最初に cmd.exe シェルを実行して、fscommnd() を 1 回コールするだけで複数のコマンドを実行しています。呼び出されたシェルは、2 つのアンパサンドで区切られた複数のコマンドを実行できます。攻撃者が "&& del c:\\dbms\\*.*" という形式の文字列を渡すと、アプリケーションは、プログラムにより指定された他のコマンドとともにこのコマンドを実行します。アプリケーションはその性質上、データベースとのやり取りに必要な権限で実行されています。このため、攻撃者が挿入したコマンドも、その権限で実行されます。

例 3: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。特定のネットワーク環境でパスワードを更新する処理には、/var/yp ディレクトリでの make コマンドの実行が含まれます。


...
fscommand("exec", "make");
...


ここでの問題は、プログラムが make のための絶対パスを指定しておらず、fscommand() のコールを実行する前に環境をクリーンにできていないことです。攻撃者が $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の make もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。
desc.dataflow.actionscript.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システムユーティリティの次のコードでは、システムプロパティ APPHOME を使用してインストール先ディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


...
string val = Environment.GetEnvironmentVariable("APPHOME");
string cmd = val + INITCMD;
ProcessStartInfo startInfo = new ProcessStartInfo(cmd);
Process.Start(startInfo);
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにシステムプロパティ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを昇格した権限で実行できます。このプログラムは環境から読み取った値の検証を行わないので、システムプロパティ APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイルラッパーを使用して Oracle データベースのバックアップを開始し、その後 cleanup.bat スクリプトを実行して一部のテンポラリ ファイルを削除できるインターフェイスを持つ Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


...
string btype = BackupTypeField.Text;
string cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat"
+ btype + "&&c:\\util\\cleanup.bat\""));
Process.Start(cmd);
...


ここでの問題は、このプログラムが BackupTypeFieldをいっさい検証しないことです。通常、Process.Start() 関数は複数のコマンドを実行しませんが、この例のプログラムは最初に cmd.exe シェルを実行して、Process.Start() を 1 回コールするだけで複数のコマンドを実行しています。呼び出されたシェルは、2 つのアンパサンドで区切られた複数のコマンドを実行できます。攻撃者が "&& del c:\\dbms\\*.*" という形式の文字列を渡すと、アプリケーションは、プログラムにより指定された他のコマンドとともにこのコマンドを実行します。アプリケーションはその性質上、データベースとのやり取りに必要な権限で実行されています。このため、攻撃者が挿入したコマンドも、その権限で実行されます。

例 3: 次のコードは、ユーザーがアクセスしてシステムのパスワードを更新できるインターフェイスを持つ Web アプリケーションのものです。このネットワーク環境でパスワードを更新する処理には、次に示すように update.exe コマンドの実行が含まれます。


...
Process.Start("update.exe");
...


ここでの問題は、プログラムが絶対パスを指定しておらず、Process.start() のコールを実行する前に環境をクリーンにできていないことです。攻撃者が $PATH 変数を変更して、update.exe という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の update.exe もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。
desc.dataflow.dotnet.command_injection
Abstract
未検証のユーザー入力を含むコマンドを実行すると、アプリケーションが攻撃者に利用される原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この例では、1 つ目のシナリオが最も懸念されます。この場合、攻撃者は実行されるコマンドを直接的に制御します。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。


2. データが、アプリケーションがコマンドとして実行する文字列の一部の場合。


3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: 次の単純なプログラムはファイル名をコマンド ライン引数として受け取り、ユーザーに対してファイルの内容を表示します。このプログラムは setuid root にインストールされている、システム管理者用の学習ツールです。権限が設定されているシステム ファイルを変更したりシステムに損傷を与えたりすることができない状態で、それらのファイルをチェックすることができます。


int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);
}


このプログラムは root 権限で実行されるため、system() のコールも root 権限で実行されます。ユーザーが標準的なファイル名を指定した場合、コールは想定どおりに動作します。しかし、攻撃者が ";rm -rf /" という形の文字列を渡すと、system() へのコールでは引数がないため cat を実行できず、root パーティションの内容を回帰的に削除してしまいます。

例 2: 権限が設定されているプログラムの次のコードは、環境変数 $APPHOME を使用してアプリケーションのインストール先ディレクトリを判断し、そのディレクトリの初期化スクリプトを実行します。


...
char* home=getenv("APPHOME");
char* cmd=(char*)malloc(strlen(home)+strlen(INITCMD));
if (cmd) {
strcpy(cmd,home);
strcat(cmd,INITCMD);
execl(cmd, NULL);
}
...
Example 1 に例示するコードを利用すれば、攻撃者はアプリケーションの権限を高めて任意のコマンドを実行できます。この例では、攻撃者は環境変数 $APPHOME を変更して、INITCMD の悪意ある改変版が置かれた別のパスを指定することができます。プログラムでは環境から読み取った値を検証しないため、攻撃者は環境変数を制御することでアプリケーションを操って悪意あるコードを実行させることができます。

攻撃者は環境変数を使用して、プログラムが呼び出すコマンドを制御します。この例には環境の影響が明らかに示されています。次に、コマンドの解釈を攻撃者が変更できる場合にどうなるか見てみましょう。

例 3: 次のコードは、ユーザーが自分のパスワードを変更するための Web ベースの CGI ユーティリティのものです。NIS によるパスワード更新処理には、/var/yp ディレクトリでの make の実行も含まれます。プログラムはパスワードレコードも更新するので setuid root にインストールされている、ということに注意してください。

プログラムは次のようにして make を呼び出します。


system("cd /var/yp && make &> /dev/null");


前述した例とは異なり、この例ではコマンドはハードコーディングされているため、攻撃者は system() に渡される引数を制御できません。ただし、プログラムでは make の絶対パスが指定されておらず、コマンドを呼び出す前にすべての環境変数がチェックされません。このため、攻撃者は $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、シェル プロンプトから CGI スクリプトを実行させることができます。また、プログラムが setuid root にインストールされているため、攻撃者の makeroot 権限で実行されます。

Windows では、この他のリスクも存在します。

例 4:CreateProcess() を直接または _spawn() ファミリの関数のいずれかへのコールを介して呼び出す場合、実行可能ファイルまたはパスにスペースがあるときは注意が必要です。


...
LPTSTR cmdLine = _tcsdup(TEXT("C:\\Program Files\\MyApplication -L -S"));
CreateProcess(NULL, cmdLine, ...);
...
CreateProcess() がスペースを解析する方法では、オペレーティングシステムが最初に実行を試みる実行可能ファイルは、MyApplication.exe ではなく Program.exe です。このため、攻撃者がシステムに Program.exe という名前の悪意あるアプリケーションをインストールできる場合、Program Files ディレクトリを使用して CreateProcess() を不正にコールするプログラムは、目的のアプリケーションの代わりにこのアプリケーションを実行します。

環境は、プログラム内のシステムコマンドの実行に大きな役割を果たします。system()exec()、および CreateProcess() といった関数は、自身をコールするプログラムの環境を使用するため、攻撃者はそれらのコールの動作を変更できる可能性があります。
desc.dataflow.cpp.command_injection
Abstract
絶対パスを指定せずにコマンドを実行すると、プログラムの実行環境の $PATH やその他の要素を変えることで、攻撃者がプログラムを利用して悪意のあるバイナリを実行することが可能になる場合があります。
Explanation
Command Injection 脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドを明示的に制御します。

- プログラムに対するパラメーターを攻撃者が変更可能である。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を暗黙的に制御します。

この場合は第 2 のシナリオが最も懸念されます。環境変数を変更したり、悪意のある実行可能ファイルを検索パスの最初の方に置くことにより、攻撃者はコマンドの意味を変更することができます。このタイプの Command Injection 脆弱性が発生するのは、次の場合です。

1.攻撃者がアプリケーションの環境を変更する。

2.絶対パスを指定せずに、または実行するバイナリを検証せずに、アプリケーションがコマンドを実行する。



3.アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: この例は、コマンドを解釈する方法を攻撃者が変えられる場合に何が起きるかを示しています。コードは、ユーザーが自分のパスワードを変更するための Web ベースの CGI ユーティリティのものです。NIS によるパスワード更新処理には、/var/yp ディレクトリでの make の実行も含まれます。プログラムはパスワード レコードを更新するため、setuid root にインストールされていることに注意してください。

プログラムは、make を次のように呼び出します。


MOVE "cd /var/yp && make &> /dev/null" to command-line
CALL "CBL_EXEC_RUN_UNIT" USING command-line
length of command-line
run-unit-id
stack-size
flags


この例のコマンドはハードコードされているため、攻撃者は CBL_EXEC_RUN_UNIT に渡す引数を制御できません。しかしプログラムは make の絶対パスを指定せず、コマンド呼出しの前に環境変数をスクラブしないため、攻撃者は $PATH 変数が make という名前の悪意のあるバイナリをポイントするように変更して、シェル プロンプトから CGI スクリプトを実行できます。さらに、プログラムは setuid root にインストールされているため、攻撃者バージョンの makeroot 権限で実行されるようになります。

例 2: 以下のコードは環境変数を使用して、pdfprint コマンドを使用して印刷するファイルを含む一時ディレクトリを決定します。


DISPLAY "TEMP" UPON ENVIRONMENT-NAME
ACCEPT ws-temp-dir FROM ENVIRONMENT-VARIABLE
STRING "pdfprint " DELIMITED SIZE
ws-temp-dir DELIMITED SPACE
"/" DELIMITED SIZE
ws-pdf-filename DELIMITED SPACE
x"00" DELIMITED SIZE
INTO cmd-buffer
CALL "SYSTEM" USING cmd-buffer


前の例と同様に、コマンドはハードコードされています。しかし、プログラムは pdfprint の絶対パスを指定しないため、攻撃者は $PATH 変数が悪意のあるバイナリをポイントするように変更できます。さらに、DELIMITED SPACE フレーズが ws-temp-dir および ws-pdf-filename における埋め込みスペースを防止する一方で、シェル メタ文字 (&& など) が埋め込まれている可能性もあります。
desc.semantic.cobol.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: 次のコードがあると、攻撃者は、cmd リクエストパラメーターを介して任意のコマンドを指定できてしまいます。


...
<cfset var="#url.cmd#">
<cfexecute name = "C:\windows\System32\cmd.exe"
arguments = "/c #var#"
timeout = "1"
variable="mycmd">
</cfexecute>
...
desc.dataflow.cfml.command_injection
Abstract
信頼されていないソースから、または信頼されていない環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection 脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドを明示的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を暗黙的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection 脆弱性が発生するのは、次の場合です。

1.信頼できないソースからアプリケーションにデータが入力された場合。

2.アプリケーションによって実行されるコマンドを表す文字列として、またはその一部であるデータが使用された場合。

3.アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システム ユーティリティの次のコードは、システム プロパティ APPHOME を使用してインストール先ディレクトリを特定し、指定されたディレクトリからの相対パスに基づいて初期化スクリプトを実行します。


...
final cmd = String.fromEnvironment('APPHOME');
await Process.run(cmd);
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにシステムプロパティ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを昇格した権限で実行できます。このプログラムは環境から読み取った値の検証を行わないので、システムプロパティ APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。
desc.dataflow.dart.command_injection
Abstract
信頼されていないソースから、または信頼されていない環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection 脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドを明示的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を暗黙的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection 脆弱性が発生するのは、次の場合です。

1.信頼できないソースからアプリケーションにデータが入力された場合。


2.アプリケーションで実行されるコマンドを表す文字列 (またはその一部) としてデータが使用された場合。

3.アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例: 次のコードでは、ユーザー制御のコマンドを実行します。


cmdName := request.FormValue("Command")
c := exec.Command(cmdName)
c.Run()
desc.dataflow.golang.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システムユーティリティの次のコードでは、システムプロパティ APPHOME を使用してインストール先ディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


...
String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにシステムプロパティ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを昇格した権限で実行できます。このプログラムは環境から読み取った値の検証を行わないので、システムプロパティ APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイルラッパーを使用して Oracle データベースのバックアップを開始し、その後 cleanup.bat スクリプトを実行して一部のテンポラリ ファイルを削除できるインターフェイスを持つ Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


...
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K
\"c:\\util\\rmanDB.bat "+btype+"&&c:\\util\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);
...


ここでの問題はプログラムがユーザーから読み取る backuptypeパラメーターを検証しないことです。通常、関数 Runtime.exec() は複数のコマンドを実行しませんが、この例のプログラムは最初に cmd.exe シェルを実行して、Runtime.exec() を 1 回コールするだけで複数のコマンドを実行しています。呼び出されたシェルは、2 つのアンパサンドで区切られた複数のコマンドを実行できます。攻撃者が "&& del c:\\dbms\\*.*" という形式の文字列を渡すと、アプリケーションは、プログラムにより指定された他のコマンドとともにこのコマンドを実行します。アプリケーションはその性質上、データベースとのやり取りに必要な権限で実行されています。このため、攻撃者が挿入したコマンドも、その権限で実行されます。

例 3: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。特定のネットワーク環境でパスワードを更新する処理には、/var/yp ディレクトリでの make コマンドの実行が含まれます。


...
System.Runtime.getRuntime().exec("make");
...


ここでの問題は、プログラムが make のための絶対パスを指定しておらず、Runtime.exec() のコールを実行する前に環境をクリーンにできていないことです。攻撃者が $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の make もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。

一部には、モバイルの世界では Command Injection のような古典的な脆弱性は意味がなく、自分に降りかかる攻撃をするはずがない、という見方があります。しかし忘れてはならないモバイルプラットフォームの基本は、さまざまなソースからアプリケーションをダウンロードして同じデバイス上で一緒に実行することです。このため、たとえばバンキングアプリケーションのすぐ隣でマルウェアの一部を実行する可能性が高くなり、モバイルアプリケーションの攻撃面を拡張し、プロセス間通信なども含める必要があります。

例 4: 次のコードは、Android のインテントから実行されるコマンドを読み取ります。


...
String[] cmds = this.getIntent().getStringArrayExtra("commands");
Process p = Runtime.getRuntime().exec("su");
DataOutputStream os = new DataOutputStream(p.getOutputStream());
for (String cmd : cmds) {
os.writeBytes(cmd+"\n");
}
os.writeBytes("exit\n");
os.flush();
...


ルート化されたデバイス上では、悪意のあるアプリケーションが標的となるアプリケーションにスーパー ユーザーの権限で任意のコマンドを強制的に実行させることができます。
References
[1] IDS07-J. Sanitize untrusted data passed to the Runtime.exec() method CERT
desc.dataflow.java.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。


2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システム ユーティリティの次のコードでは、環境変数 APPHOME を使用してインストール先ディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


var cp = require('child_process');
...
var home = process.env('APPHOME');
var cmd = home + INITCMD;
child = cp.exec(cmd, function(error, stdout, stderr){
...
});
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにシステムプロパティ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを昇格した権限で実行できます。このプログラムは環境から読み取った値の検証を行わないので、システム プロパティ APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイル ラッパーを使用して Oracle データベースのバックアップを開始できるようにする管理用 Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


var cp = require('child_process');
var http = require('http');
var url = require('url');

function listener(request, response){
var btype = url.parse(request.url, true)['query']['backuptype'];
if (btype !== undefined){
cmd = "c:\\util\\rmanDB.bat" + btype;
cp.exec(cmd, function(error, stdout, stderr){
...
});
}
...
}
...
http.createServer(listener).listen(8080);


ここでの問題は、プログラムがユーザーから読み取る backuptypeパラメーターを、その存在を除いて検証しないことです。シェルが呼び出されると、複数のコマンドの実行が許可され、アプリケーションの特性により、データベースとの対話に必要な権限を使用して実行されるので、攻撃者が挿入する任意のコマンドもそれらの権限を使用して実行されることになります。

例 3: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。特定のネットワーク環境でパスワードを更新する処理には、/var/yp ディレクトリでの make コマンドの実行が含まれます。


...
require('child_process').exec("make", function(error, stdout, stderr){
...
});
...


ここでの問題は、プログラムが make の絶対パスを指定しておらず、child_process.exec() の呼び出しを実行する前に環境をクリーニングできないことです。攻撃者が $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の make もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。
desc.dataflow.javascript.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システムユーティリティの次のコードでは、システムプロパティ APPHOME を使用してインストール先ディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


...
$home = $_ENV['APPHOME'];
$cmd = $home . $INITCMD;
system(cmd);
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにシステムプロパティ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを昇格した権限で実行できます。このプログラムは環境から読み取った値の検証を行わないので、システムプロパティ APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイルラッパーを使用して Oracle データベースのバックアップを開始し、その後 cleanup.bat スクリプトを実行して一部のテンポラリ ファイルを削除できるインターフェイスを持つ Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


...
$btype = $_GET['backuptype'];
$cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat " . $btype . "&&c:\\util\\cleanup.bat\"";
system(cmd);
...


ここでの問題はプログラムがユーザーから読み取る backuptypeパラメーターを検証しないことです。通常、関数 Runtime.exec() は複数のコマンドを実行しませんが、この例のプログラムは最初に cmd.exe シェルを実行して、Runtime.exec() を 1 回コールするだけで複数のコマンドを実行しています。呼び出されたシェルは、2 つのアンパサンドで区切られた複数のコマンドを実行できます。攻撃者が "&& del c:\\dbms\\*.*" という形式の文字列を渡すと、アプリケーションは、プログラムにより指定された他のコマンドとともにこのコマンドを実行します。アプリケーションはその性質上、データベースとのやり取りに必要な権限で実行されています。このため、攻撃者が挿入したコマンドも、その権限で実行されます。

例 3: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。特定のネットワーク環境でパスワードを更新する処理には、/var/yp ディレクトリでの make コマンドの実行が含まれます。


...
$result = shell_exec("make");
...


ここでの問題は、プログラムが make のための絶対パスを指定しておらず、Runtime.exec() のコールを実行する前に環境をクリーンにできていないことです。攻撃者が $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の make もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。
desc.dataflow.php.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例: 次のコードは、信頼できないデータでコールされた場合、攻撃者によって制御されたシステム コマンドを実行する T-SQL ストアド プロシージャを定義します。


...
CREATE PROCEDURE dbo.listFiles (@path NVARCHAR(200))
AS

DECLARE @cmd NVARCHAR(500)
SET @cmd = 'dir ' + @path

exec xp_cmdshell @cmd

GO
...
References
[1] xp_cmdshell
desc.dataflow.sql.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システムユーティリティの次のコードでは、システムプロパティ APPHOME を使用してインストール先ディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


...
home = os.getenv('APPHOME')
cmd = home.join(INITCMD)
os.system(cmd);
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにシステムプロパティ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを昇格した権限で実行できます。このプログラムは環境から読み取った値の検証を行わないので、システムプロパティ APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイルラッパーを使用して Oracle データベースのバックアップを開始し、その後 cleanup.bat スクリプトを実行して一部のテンポラリ ファイルを削除できるインターフェイスを持つ Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


...
btype = req.field('backuptype')
cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat " + btype + "&&c:\\util\\cleanup.bat\""
os.system(cmd);
...


ここでの問題はプログラムがユーザーから読み取る backuptypeパラメーターを検証しないことです。通常、関数 Runtime.exec() は複数のコマンドを実行しませんが、この例のプログラムは最初に cmd.exe シェルを実行して、Runtime.exec() を 1 回コールするだけで複数のコマンドを実行しています。呼び出されたシェルは、2 つのアンパサンドで区切られた複数のコマンドを実行できます。攻撃者が "&& del c:\\dbms\\*.*" という形式の文字列を渡すと、アプリケーションは、プログラムにより指定された他のコマンドとともにこのコマンドを実行します。アプリケーションはその性質上、データベースとのやり取りに必要な権限で実行されています。このため、攻撃者が挿入したコマンドも、その権限で実行されます。

例 3: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。特定のネットワーク環境でパスワードを更新する処理には、/var/yp ディレクトリでの make コマンドの実行が含まれます。


...
result = os.system("make");
...


ここでの問題は、プログラムが make のための絶対パスを指定しておらず、os.system() のコールを実行する前に環境をクリーンにできていないことです。攻撃者が $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の make もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。
desc.dataflow.python.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。


2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システムユーティリティの次のコードでは、システムプロパティ APPHOME を使用してインストール先ディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


...
home = ENV['APPHOME']
cmd = home + INITCMD
Process.spawn(cmd)
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにシステムプロパティ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを昇格した権限で実行できます。このプログラムは環境から読み取った値の検証を行わないので、システムプロパティ APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイルラッパーを使用して Oracle データベースのバックアップを開始し、その後 cleanup.bat スクリプトを実行して一部のテンポラリ ファイルを削除できるインターフェイスを持つ Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


...
btype = req['backuptype']
cmd = "C:\\util\\rmanDB.bat #{btype} &&C:\\util\\cleanup.bat"
spawn(cmd)
...


ここでの問題はプログラムがユーザーから読み取る backuptypeパラメーターを検証しないことです。Kernel.spawn 経由で呼び出されたシェルは、2 つのアンパサンドで区切られた複数のコマンドの実行を許可します。攻撃者が "&& del c:\\dbms\\*.*" という形式の文字列を渡すと、アプリケーションは、プログラムにより指定された他のコマンドとともにこのコマンドを実行します。アプリケーションはその性質上、データベースとのやり取りに必要な権限で実行されています。このため、攻撃者が挿入したコマンドも、その権限で実行されます。

例 3: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。特定のネットワーク環境でパスワードを更新する処理には、/var/yp ディレクトリでの make コマンドの実行が含まれます。


...
system("make")
...


ここでの問題は、プログラムが make のための絶対パスを指定しておらず、Kernel.system() のコールを実行する前に環境をクリーンにできていないことです。攻撃者が $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の make もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。
desc.dataflow.ruby.command_injection
Abstract
未検証のユーザー入力を含むコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は主に第 2 のシナリオが懸念されます。攻撃者は環境変数を変更したり、悪意のある実行可能ファイルを検索パスの最初の方に置くことにより、コマンドの意味を変更できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1.攻撃者がアプリケーションの環境を変更する場合。

2.アプリケーションが、絶対パスを指定しないか、実行されるバイナリを検証しないでコマンドを実行する場合。

3.アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。


def changePassword(username: String, password: String) = Action { request =>
...
s'echo "${password}" | passwd ${username} --stdin'.!
...
}
References
[1] IDS07-J. Sanitize untrusted data passed to the Runtime.exec() method CERT
desc.dataflow.scala.command_injection
Abstract
信頼されていないソースから、またはそのような環境下でコマンドを実行すると、アプリケーションが攻撃者に利用されて悪意のあるコマンドを実行する原因になることがあります。
Explanation
Command Injection の脆弱性には、次の 2 つの形態があります。

- プログラムが実行するコマンドを攻撃者が変更可能である。この場合、攻撃者はコマンドの内容を直接的に制御します。

- コマンドが実行される環境を攻撃者が変更可能である。この場合、攻撃者はコマンドの動作を間接的に制御します。

この場合は 1 つ目の状況が最も懸念されます。攻撃者は実行されるコマンドを制御できる可能性があります。このタイプの Command Injection の脆弱性が発生するのは、次の場合です。

1. 信頼できないソースからアプリケーションにデータが入り込んだ場合。

2. データが、アプリケーションが実行するコマンドを表す文字列 (またはその一部) として使用された場合。

3. アプリケーションがコマンドを実行することにより、本来付与されないはずの権限や機能が攻撃者に与えられた場合。

例 1: システムユーティリティの次のコードでは、システムプロパティ APPHOME を使用してインストール先ディレクトリが決定され、指定されたディレクトリからの相対パスに基づいて初期化スクリプトが実行されます。


...
Dim cmd
Dim home

home = Environ$("AppHome")
cmd = home & initCmd
Shell cmd, vbNormalFocus
...
Example 1 のコードでは、悪意ある INITCMD を含んだ別のパスを参照するようにシステムプロパティ APPHOME を変更することにより、攻撃者はアプリケーションの任意のコマンドを昇格した権限で実行できます。このプログラムは環境から読み取った値の検証を行わないので、システムプロパティ APPHOME の値を制御できれば、攻撃者はアプリケーションを操作して悪意のあるコードを実行させ、システムを支配下に置くことができます。

例 2: 次のコードは、ユーザーが rman ユーティリティに対するバッチファイルラッパーを使用して Oracle データベースのバックアップを開始し、その後 cleanup.bat スクリプトを実行して一部のテンポラリ ファイルを削除できるインターフェイスを持つ Web アプリケーションのものです。スクリプト rmanDB.bat は、実行するバックアップのタイプを指定するコマンドライン パラメーターを 1 つ受け取ります。データベースへのアクセスが制限されているため、アプリケーションは権限を持つユーザーとしてバックアップを実行します。


...
btype = Request.Form("backuptype")
cmd = "cmd.exe /K " & Chr(34) & "c:\util\rmanDB.bat " & btype & "&&c:\util\cleanup.bat" & Chr(34) & ";
Shell cmd, vbNormalFocus
...


ここでの問題はプログラムがユーザーから読み取る backuptypeパラメーターを検証しないことです。呼び出されたシェルは、2 つのアンパサンドで区切られた複数のコマンドを実行できます。攻撃者が "&& del c:\\dbms\\*.*" という形式の文字列を渡すと、アプリケーションは、プログラムにより指定された他のコマンドとともにこのコマンドを実行します。アプリケーションはその性質上、データベースとのやり取りに必要な権限で実行されています。このため、攻撃者が挿入したコマンドも、その権限で実行されます。

例 3: 次のコードは、ユーザーがシステムのパスワードを更新できるインターフェイスを提供する Web アプリケーションのものです。特定のネットワーク環境でパスワードを更新する処理には、/var/yp ディレクトリでの make コマンドの実行が含まれます。


...
$result = shell_exec("make");
...


ここでの問題は、プログラムが make のための絶対パスを指定しておらず、Runtime.exec() のコールを実行する前に環境をクリーンにできていないことです。攻撃者が $PATH 変数を変更して、make という名前の悪意あるバイナリを参照させ、攻撃者の環境でプログラムが実行されるようにすると、本来のバイナリでなく悪意あるバイナリがロードされます。アプリケーションの性質上、このバイナリはシステム操作の実行に必要な権限で実行されます。つまり、攻撃者の make もその権限で実行されるため、攻撃者がシステムを完全に制御してしまう可能性があります。
desc.dataflow.vb.command_injection
Abstract
GitHub Action 実行スクリプトで特定の GitHub Action 式を直接参照すると、システムがコマンド インジェクションに対して脆弱なままになります。
Explanation
実行スクリプト内の GitHub Action 式への直接参照は、動的に生成されます。これにより、入力を制御できる人は誰でも、コマンド インジェクションを使用してシステムを危険にさらすことが可能になります。

例 1: GitHub Action からの次のコードは、実行スクリプト内の式を直接参照しており、システムがコマンド インジェクションを受けやすいままになります。


...
steps:
- run: echo "${{ github.event.pull_request.title }}"
...


アクションが実行されると、github.event.pull_request.title 値が表す任意のコードを含めて、シェル スクリプトが動的に実行されます。github.event.pull_request.title に悪意のある実行可能コードが含まれている場合、アクションによって悪意のあるコードが実行され、コマンド インジェクションが発生します。

References
[1] Security Hardening for GitHub Actions - Good Practices for Mitigating Script Injection Attacks
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 4
[3] Standards Mapping - CIS Microsoft Azure Foundations Benchmark complete
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 2
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[7] Standards Mapping - CIS Kubernetes Benchmark complete
[8] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[26] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[27] Standards Mapping - OWASP Mobile 2024 M2 Inadequate Supply Chain Security
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.structural.yaml.command_injection_github_actions