7 个项目已找到
弱点
Abstract
调试消息可帮助攻击者了解系统并计划攻击形式。
Explanation
Android 应用程序可以配置为生成调试二进制代码。这些二进制文件可提供详细的调试消息,不应在生产环境中使用。<application> 标签的 debuggable 属性定义编译后的二进制文件是否应包含调试信息。

使用调试二进制文件会导致应用程序向用户提供尽可能多的关于其自身的信息。调试二进制文件旨在用于开发或测试环境,如果部署到生产环境中可能会带来安全风险。攻击者可以利用其从调试输出中获得的附加信息,对应用程序所用的框架、数据库或其他资源发动攻击。
References
[1] JavaDoc for Android Android
[2] Standards Mapping - Common Weakness Enumeration CWE ID 11
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420, CCI-003272
[4] Standards Mapping - FIPS200 CM
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SA-15 Development Process and Standards and Tools (P2), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SA-15 Development Process and Standards and Tools, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[8] Standards Mapping - OWASP Application Security Verification Standard 4.0 14.1.3 Build (L2 L3)
[9] Standards Mapping - OWASP Mobile 2014 M10 Lack of Binary Protections
[10] Standards Mapping - OWASP Mobile 2024 M8 Security Misconfiguration
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-RESILIENCE-4
[12] Standards Mapping - OWASP Top 10 2004 A10 Insecure Configuration Management
[13] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[14] Standards Mapping - OWASP Top 10 2010 A6 Security Misconfiguration
[15] Standards Mapping - OWASP Top 10 2013 A5 Security Misconfiguration
[16] Standards Mapping - OWASP Top 10 2017 A6 Security Misconfiguration
[17] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.10
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3120 CAT II, APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3120 CAT II, APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3120 CAT II, APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3120 CAT II, APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3120 CAT II, APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3120 CAT II, APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3120 CAT II, APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.config.java.android_misconfiguration_debug_information
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下列代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 cookie 头文件中。


...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.abap.header_manipulation
Abstract
HTTP 响应标头中包含未经验证的数据会招致 Cache-Poisoning、Cross-Site Scripting、Cross-User Defacement、Page Hijacking、Cookie Manipulation 或 Open Redirect 攻击。
Explanation
Header Manipulation 漏洞会在以下情况下发生:

1.数据通过不可信数据源进入 Web 应用程序,最常见的是通过 HTTP 请求。


2.数据包含在未经验证就发送给 Web 用户的 HTTP 响应标头中。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP 响应标头中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功实施 HTTP Response Splitting 漏洞,该应用程序必须允许将包含 CR(回车符,也可以由 %0d 或 \r 指定)和 LF(换行符,也可以由 %0a 或 \n 指定)字符的输入包含在标头中。攻击者不仅可以利用这些字符控制应用程序要发送的响应的剩余标头和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 标头感染恶意字符。例如,如果尝试使用被禁用的字符设置标头,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的标头,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此在设置带有用户输入的 HTTP 标头时仍需小心谨慎。

示例 1:以下代码设置的 HTTP 标头的名称和值可能受到攻击者控制:


@HttpGet
global static void doGet() {
...
Map<String, String> params = ApexPages.currentPage().getParameters();

RestResponse res = RestContext.response;
res.addHeader(params.get('name'), params.get('value'));
...
}


假设某个名称/值对由 authorJane Smith 组成,则包含此标头的 HTTP 响应可能会采用以下形式:


HTTP/1.1 200 OK
...
author:Jane Smith
...


但是,由于标头值是由未经验证的用户输入组成的,因此攻击者可能会提交恶意的名称/值对,例如 HTTP/1.1 200 OK\r\n...foobar,然后 HTTP 响应将被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响将仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会产生两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应。因此,针对受害者的这一响应中会包含所有标头或正文中的敏感信息。

Cookie Manipulation:当与 Cross-Site Request Forgery 等类似攻击相结合时,攻击者可能会篡改、添加甚至覆盖合法用户的 Cookie。

Open Redirect:如果允许未验证的输入控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.apex.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器和框架可以防止 HTTP 头文件感染恶意字符。例如,Microsoft 的 .NET 框架的最新版本会在 CR、LF 和 NULL 字符被传送给 HttpResponse.AddHeader() 方法时将其转换为 %0d、%0a 和 %00。如果您正在使用的最新的 .NET 框架不允许使用新行字符设置头文件,则应用程序便不会容易受到 HTTP Response Splitting 攻击。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:以下代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 Cookie 头文件中。


protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 Author.Text 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dotnet.header_manipulation
Abstract
HTTP 响应头文件中包含未经验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement 或 page hijacking 等攻击。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未验证是否存在恶意字符就传送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下列代码片段会从 HTML 表单中读取网络日志项的作者名字 author,并在一个 HTTP 响应的 cookie 头文件中设置。


...
EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(AUTHOR)
...
END-EXEC.

EXEC CICS
WEB WRITE
HTTPHEADER(COOKIE)
VALUE(AUTHOR)
...
END-EXEC.
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如 "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n......",那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cobol.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据从一个不可信赖的数据源(最常见的是一个 Web 请求)进入 Web 应用程序。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下面的代码片段将从 Web 表单中读取某个网络日志项作者的名字,author,并且把它设置到一个 HTTP 响应的 cookie 头文件中。


<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如 "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n......",那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1/1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] Amit Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Diabolic Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cfml.header_manipulation
Abstract
HTTP 响应标头中包含未经验证的数据会招致 Cache-Poisoning、Cross-Site Scripting、Cross-User Defacement、Page Hijacking、Cookie Manipulation 或 Open Redirect 攻击。
Explanation
Header Manipulation 漏洞会在以下情况下发生:

1.数据通过不可信来源进入 Web 应用程序,最常见的是 HTTP 请求。

2.数据包含在未经验证就发送给 Web 用户的 HTTP 响应标头中。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP 响应标头中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功实施 HTTP Response Splitting 漏洞,该应用程序必须允许将包含 CR(回车符,也可以由 %0d 或 \r 指定)和 LF(换行符,也可以由 %0a 或 \n 指定)字符的输入包含在标头中。攻击者不仅可以利用这些字符控制应用程序要发送的响应的剩余标头和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 标头中注入恶意字符。例如,如果尝试使用被禁用的字符设置标头,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的标头,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此在设置带有用户输入的 HTTP 标头时仍需小心谨慎。

示例:以下代码段会从 HTTP 请求中读取 'content-type',并将其置于一个新的 HTTP 请求的标头中。


final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final contentType = headers.value('content-type');
final client = HttpClient();
final clientRequest = await client.getUrl(Uri.parse('https://example.com'));
clientRequest.headers.add('Content-Type', contentType as Object);
});


由于 'Content-Type' 标头的值由未经验证的用户输入构成,恶意操作者可能会操纵该标头来利用漏洞、执行代码注入攻击、暴露敏感数据、启用恶意文件执行或触发拒绝服务情况,从而使应用程序的安全性和稳定性面临重大风险。
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 113
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[8] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[9] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[10] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[11] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2010 A1 Injection
[13] Standards Mapping - OWASP Top 10 2013 A1 Injection
[14] Standards Mapping - OWASP Top 10 2017 A1 Injection
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dart.header_manipulation
Abstract
HTTP 响应标头中包含未经验证的数据会招致 Cache-Poisoning、Cross-Site Scripting、Cross-User Defacement、Page Hijacking、Cookie Manipulation 或 Open Redirect 攻击。
Explanation
Header Manipulation 漏洞会在以下情况下发生:

1.数据通过不可信来源进入 Web 应用程序,最常见的是 HTTP 请求。

2.数据包含在未经验证就发送给 Web 用户的 HTTP 响应标头中。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP 响应标头中。


示例:以下代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 Cookie 标头中。


...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...


攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会产生两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应。因此,针对受害者的这一响应中会包含所有标头或正文中的敏感信息。

Cookie Manipulation:当与类似 Cross-Site Request Forgery 的攻击相结合时,攻击者就可以篡改、添加甚至覆盖合法用户的 Cookie。

Open Redirect:如果允许未验证的输入控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Standards Mapping - Common Weakness Enumeration CWE ID 113
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[11] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[50] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.golang.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下列代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 cookie 头文件中。


String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.java.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下列代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 cookie 头文件中。


author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如 "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n......",那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。如果攻击者可以构造任意 HTTP 响应,则会导致多种形式的攻击,包括:Web 和浏览器 Cache-Poisoning、Cross-Site Scripting 和 Page Hijacking。


Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.javascript.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。


2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:以下代码段假设 namevalue 可能会被攻击者控制。这段代码设置了一个名称和值可能被攻击者控制的 HTTP 标头。


...
NSURLSessionConfiguration * config = [[NSURLSessionConfiguration alloc] init];
NSMutableDictionary *dict = @{};
[dict setObject:value forKey:name];
[config setHTTPAdditionalHeaders:dict];
...


假设一个名称/值对由 authorJane Smith 组成,则包含此标头的 HTTP 响应可能会以这样的形式出现:


HTTP/1.1 200 OK
...
author:Jane Smith
...


但是,由于该标头的值由未经验证的用户输入组成,因此攻击者可以提交恶意的名称/值对,例如 HTTP/1.1 200 OK\r\n...foobar,于是该 HTTP 响应将会拆分为如下形式的两个响应:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.objc.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,当新行传递到 header() 函数时,最新版本的 PHP 将生成一个警告并停止创建头文件。如果您的 PHP 版本能够阻止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例: 下段代码会从 HTTP 请求读取位置,并在 HTTP 响应的位置字段的头文件中对其进行设置。


<?php
$location = $_GET['some_location'];
...
header("location: $location");
?>


假设在请求中提交了一个由标准字母数字字符组成的字符串,如“index.html”,则包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
location: index.html
...


然而,因为该位置的值由未经验证的用户输入组成,所以仅当提交给 some_location 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“index.html\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.php.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:以下代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 Cookie 头文件中。


...
-- Assume QUERY_STRING looks like AUTHOR_PARAM=Name
author := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 14);
OWA_UTIL.mime_header('text/html', false);
OWA_COOKE.send('author', author);
OWA_UTIL.http_header_close;
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.sql.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下段代码会从 HTTP 请求读取位置,并将其设置到 HTTP 响应的位置字段的头文件中。


location = req.field('some_location')
...
response.addHeader("location",location)


假设在请求中提交了一个由标准字母数字字符组成的字符串,如“index.html”,则包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
location: index.html
...


然而,因为该位置的值由未经验证的用户输入组成,所以仅当提交给 some_location 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“index.html\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.python.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:以下代码段会从 HTTP 请求中读取网络日志项的作者 author 的名字,并在发往站点另一部分的 Get 请求中使用它。


author = req.params[AUTHOR_PARAM]
http = Net::HTTP.new(URI("http://www.mysite.com"))
http.post('/index.php', "author=#{author}")


假设在请求中提交了一个由标准字母数字字符组成的字符串,例如“Jane Smith”,HTTP 响应可能表现为以下形式:


POST /index.php HTTP/1.1
Host: www.mysite.com
author=Jane Smith
...


然而,因为 URL 值是由未经验证的用户输入形成的,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,例如“Wiley Hacker\r\nPOST /index.php HTTP/1.1\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


POST /index.php HTTP/1.1
Host: www.mysite.com
author=Wiley Hacker

POST /index.php HTTP/1.1
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应被缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 113
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[8] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[9] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[10] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[11] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2010 A1 Injection
[13] Standards Mapping - OWASP Top 10 2013 A1 Injection
[14] Standards Mapping - OWASP Top 10 2017 A1 Injection
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.ruby.header_manipulation
Abstract
HTTP 响应标头中包含未经验证的数据会招致 Cache-Poisoning、Cross-Site Scripting、Cross-User Defacement、Page Hijacking、Cookie Manipulation 或 Open Redirect 攻击。
Explanation
Header Manipulation 漏洞会在以下情况下发生:

1. 数据通过不可信来源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在未经验证就发送给 Web 用户的 HTTP 响应标头中。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。 从本质上看,这些漏洞是显而易见的:攻击者将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP 响应标头中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。 为了成功实施 HTTP Response Splitting 漏洞,该应用程序必须允许将包含 CR(回车符,也可以由 %0d 或 \r 指定)和 LF(换行符,也可以由 %0a 或 \n 指定)字符的输入包含在标头中。 攻击者不仅可以利用这些字符控制应用程序要发送的响应的剩余标头和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 标头感染恶意字符。 例如,如果尝试使用被禁用的字符设置标头,Play Framework 会抛出异常。 如果您的应用程序服务器能够防止设置带有换行符的标头,则其具备对 HTTP Response Splitting 的防御能力。 然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此在设置带有用户输入的 HTTP 标头时仍需小心谨慎。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.scala.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。


2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:以下代码段假设 namevalue 可能会被攻击者控制。这段代码设置了一个名称和值可能被攻击者控制的 HTTP 标头。


...
var headers = []
headers[name] = value
let config = NSURLSessionConfiguration.backgroundSessionConfigurationWithIdentifier("com.acme")
config.HTTPAdditionalHeaders = headers
...


假设一个名称/值对由 authorJane Smith 组成,则包含此标头的 HTTP 响应可能会以这样的形式出现:


HTTP/1.1 200 OK
...
author:Jane Smith
...


但是,由于该标头的值由未经验证的用户输入组成,因此攻击者可以提交恶意的名称/值对,例如 HTTP/1.1 200 OK\r\n...foobar,于是该 HTTP 响应将会拆分为如下形式的两个响应:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.swift.header_manipulation
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符,然而支持经典 ASP 的服务器通常不具备该保护机制。

示例:以下代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 Cookie 头文件中。


...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.vb.header_manipulation
Abstract
在 Cookies 中包含未验证的数据会引发 HTTP 响应头文件操作攻击,并可能导致 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Cookie Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP Cookie 中,该 Cookie 未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,且该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

作为 HTTP 响应头文件,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下列代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 cookie 头文件中。


...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.abap.header_manipulation_cookies
Abstract
在 Cookie 中包含未经验证的数据会引发 HTTP Response Header Manipulation 攻击,并可能导致 Cache-Poisoning、Cross-Site Scripting、Cross-User Defacement、Page Hijacking、Cookie Manipulation 或 Open Redirect。
Explanation
Cookie Manipulation 漏洞会在以下情况下发生:

1.数据通过不可信数据源进入 Web 应用程序,最常见的是通过 HTTP 请求。



2.数据包含在未经验证就发送给 Web 用户的 HTTP Cookie 中。



如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与 Cross-Site Request Forgery 等类似攻击相结合时,攻击者可能会篡改、添加甚至覆盖合法用户的 Cookie。

作为 HTTP 响应标头,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功实施 HTTP Response Splitting 漏洞,该应用程序必须允许将包含 CR(回车符,也可以由 %0d 或 \r 指定)和 LF(换行符,也可以由 %0a 或 \n 指定)字符的输入包含在标头中。攻击者不仅可以利用这些字符控制应用程序要发送的响应的剩余标头和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 标头中注入恶意字符。例如,如果尝试使用被禁用的字符设置标头,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的标头,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此在设置带有用户输入的 HTTP 标头时仍需小心谨慎。

示例 1:以下代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 Cookie 标头中。


...
Cookie cookie = new Cookie('author', author, '/', -1, false);
ApexPages.currentPage().setCookies(new Cookie[] {cookie});
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 Cookie 值来源于未经校验的用户输入,所以仅当提交给 author 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应将被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,该请求将导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响将仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会产生两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应。因此,针对受害者的这一响应中会包含所有标头或正文中的敏感信息。

Open Redirect:如果允许未验证的输入控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.apex.header_manipulation_cookies
Abstract
在 Cookies 中包含未验证的数据会引发 HTTP 响应头文件操作攻击,并可能导致 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Cookie Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP Cookie 中,该 Cookie 未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

作为 HTTP 响应头文件,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:以下代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 Cookie 头文件中。


protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dotnet.header_manipulation_cookies
Abstract
在 Cookies 中包含未验证的数据会引发 HTTP 响应头文件操作攻击,并可能导致 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Cookie Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP Cookie 中,该 Cookie 未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,且该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

作为 HTTP 响应头文件,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下列代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 cookie 头文件中。


<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如 "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n......",那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] Amit Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Diabolic Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cfml.header_manipulation_cookies
Abstract
在 Cookie 中包含未经验证的数据会引发 HTTP Response Header Manipulation 攻击,并可能导致 Cache-Poisoning、Cross-Site Scripting、Cross-User Defacement、Page Hijacking、Cookie Manipulation 或 Open Redirect。
Explanation
Cookie Manipulation 漏洞会在以下情况下发生:

1.数据通过不可信来源进入 Web 应用程序,最常见的是 HTTP 请求。

2.数据包含在未经验证就发送给 Web 用户的 HTTP Cookie 中。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与类似 Cross-Site Request Forgery 的攻击相结合时,攻击者就可以篡改、添加甚至覆盖合法用户的 Cookie。

作为 HTTP 响应标头,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功实施 HTTP Response Splitting 漏洞,该应用程序必须允许将包含 CR(回车符,也可以由 %0d 或 \r 指定)和 LF(换行符,也可以由 %0a 或 \n 指定)字符的输入包含在标头中。攻击者不仅可以利用这些字符控制应用程序要发送的响应的剩余标头和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 标头感染恶意字符。例如,如果尝试使用被禁用的字符设置标头,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的标头,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此在设置带有用户输入的 HTTP 标头时仍需小心谨慎。

示例:以下代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 Cookie 标头中。


...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 Cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如 "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...",那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:攻击者控制了应用程序传送的响应后,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,攻击者还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会产生两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应。因此,针对受害者的这一响应中会包含所有标头或正文中的敏感信息。

Open Redirect:如果允许未验证的输入控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 113
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[8] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[9] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[10] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[11] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2010 A1 Injection
[13] Standards Mapping - OWASP Top 10 2013 A1 Injection
[14] Standards Mapping - OWASP Top 10 2017 A1 Injection
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.golang.header_manipulation_cookies
Abstract
在 Cookies 中包含未验证的数据会引发 HTTP 响应头文件操作攻击,并可能导致 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Cookie Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP Cookie 中,该 Cookie 未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,且该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

作为 HTTP 响应头文件,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

例 1:下列代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 cookie 头文件中。


String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

有些人认为在移动世界中,典型的 Web 应用程序漏洞(如头文件和 Cookie Manipulation)是无意义的 -- 为什么用户要攻击自己?但是,谨记移动平台的本质是从各种来源下载并在相同设备上运行的应用程序。恶意软件在银行应用程序附近运行的可能性很高,它们会强制扩展移动应用程序的攻击面(包括跨进程通信)。

示例 2:以下代码会调整Example 1 以适应 Android 平台。


...
CookieManager webCookieManager = CookieManager.getInstance();
String author = this.getIntent().getExtras().getString(AUTHOR_PARAM);
String setCookie = "author=" + author + "; max-age=" + cookieExpiration;
webCookieManager.setCookie(url, setCookie);

...
Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

打开重定向:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.java.header_manipulation_cookies
Abstract
在 Cookies 中包含未验证的数据会引发 HTTP 响应头文件操作攻击,并可能导致 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Cookie Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP Cookie 中,该 Cookie 未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

作为 HTTP 响应头文件,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下列代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 cookie 头文件中。


author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如 "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n......",那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,该请求将导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.javascript.header_manipulation_cookies
Abstract
在 Cookies 中包含未验证的数据会引发 HTTP 响应头文件操作攻击,并可能导致 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Cookie Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP Cookie 中,该 Cookie 未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,且该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

作为 HTTP 响应头文件,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下列代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 cookie 头文件中。


<?php
$author = $_GET['AUTHOR_PARAM'];
...
header("author: $author");
?>


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如 "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n......",那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.php.header_manipulation_cookies
Abstract
HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP 响应头文件里,未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:一个攻击者将恶意数据传送到易受攻击的应用程序,且该应用程序将数据包含在 HTTP 响应头文件中。

其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:下段代码会从 HTTP 请求读取位置,并将其设置到 HTTP 响应的位置字段的头文件中。


location = req.field('some_location')
...
response.addHeader("location",location)


假设在请求中提交了一个由标准字母数字字符组成的字符串,如“index.html”,则包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
location: index.html
...


然而,因为该位置的值由未经验证的用户输入组成,所以仅当提交给 some_location 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“index.html\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

Cache Poisoning: 如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.python.header_manipulation
Abstract
在 Cookie 中包含未经验证的数据会引发 HTTP Response Header Manipulation 攻击,并可能导致 Cache-Poisoning、Cross-Site Scripting、Cross-User Defacement、Page Hijacking、Cookie Manipulation 或 Open Redirect。
Explanation
Cookie Manipulation 漏洞会在以下情况下发生:

1. 数据通过不可信来源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在未经验证就发送给 Web 用户的 HTTP Cookie 中。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。 从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation: 当与 Cross-Site Request Forgery 等攻击相结合时,攻击者就可以篡改、添加到、甚至覆盖合法用户的 Cookie。

作为 HTTP 响应标头,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。 为了成功实施 HTTP Response Splitting 漏洞,该应用程序必须允许将包含 CR(回车符,也可以由 %0d 或 \r 指定)和 LF(换行符,也可以由 %0a 或 \n 指定)字符的输入包含在标头中。 攻击者不仅可以利用这些字符控制应用程序要发送的响应的剩余标头和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 标头感染恶意字符。 例如,如果尝试使用被禁用的字符设置标头,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。 如果您的应用程序服务器能够防止设置带有换行符的标头,则其具备对 HTTP Response Splitting 的防御能力。 然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此在设置带有用户输入的 HTTP 标头时仍需小心谨慎。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.scala.header_manipulation_cookies
Abstract
在 Cookies 中包含未验证的数据会引发 HTTP 响应头文件操作攻击,并可能导致 cache-poisoning、cross-site scripting、cross-user defacement、page hijacking、cookie manipulation 或 open redirect。
Explanation
以下情况中会出现 Cookie Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入 Web 应用程序,最常见的是 HTTP 请求。

2. 数据包含在一个 HTTP Cookie 中,该 Cookie 未经验证就发送给了 Web 用户。

如同许多软件安全漏洞一样,Cookie Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 HTTP Cookie 中。

Cookie Manipulation:当与类似跨站请求伪造的攻击相结合时,攻击者就可以篡改、添加、甚至覆盖合法用户的 cookie。

作为 HTTP 响应头文件,Cookie Manipulation 攻击也可导致其他类型的攻击,例如:

HTTP Response Splitting:
其中最常见的一种 Header Manipulation 攻击是 HTTP Response Splitting。为了成功地实施 HTTP Response Splitting 盗取,应用程序必须允许将那些包含 CR(回车,由 %0d 或 \r 指定)和 LF(换行,由 %0a 或 \n 指定)的字符输入到头文件中。攻击者利用这些字符不仅可以控制应用程序要发送的响应剩余头文件和正文,还可以创建完全受其控制的其他响应。

如今的许多现代应用程序服务器可以防止 HTTP 头文件感染恶意字符。例如,如果尝试使用被禁用的字符设置头文件,最新版本的 Apache Tomcat 会抛出 IllegalArgumentException。如果您的应用程序服务器能够防止设置带有换行符的头文件,则其具备对 HTTP Response Splitting 的防御能力。然而,单纯地过滤换行符可能无法保证应用程序不受 Cookie Manipulation 或 Open Redirects 的攻击,因此必须在设置带有用户输入的 HTTP 头文件时采取措施。

示例:以下代码片段会从 HTTP 请求中读取网络日志项的作者名字 author,并将其置于一个 HTTP 响应的 Cookie 头文件中。


...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...


假设在请求中提交了一个字符串,该字符串由标准的字母数字字符组成,如“Jane Smith”,那么包含该 Cookie 的 HTTP 响应可能表现为以下形式:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


然而,因为 cookie 值来源于未经校验的用户输入,所以仅当提交给 AUTHOR_PARAM 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交的是一个恶意字符串,比如“Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...”,那么 HTTP 响应就会被分割成以下形式的两个响应:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


显然,第二个响应已完全由攻击者控制,攻击者可以用任何所需标头和正文内容构建该响应。攻击者可以构建任意 HTTP 响应,从而发起多种形式的攻击,包括:cross-user defacement、web and browser cache poisoning、cross-site scripting 和 page hijacking。

Cross-User Defacement:攻击者可以向一个易受攻击的服务器发出一个请求,导致服务器创建两个响应,其中第二个响应可能会被曲解为对其他请求的响应,而这一请求很可能是与服务器共享相同 TCP 连接的另一用户发出的。这种攻击可以通过以下方式实现:攻击者诱骗用户,让他们自己提交恶意请求;或在远程情况下,攻击者与用户共享同一个连接到服务器(如共享代理服务器)的 TCP 连接。最理想的情况是,攻击者通过这种方式使用户相信自己的应用程序已经遭受了黑客攻击,进而对应用程序的安全性失去信心。最糟糕的情况是,攻击者可能提供经特殊技术处理的内容,这些内容旨在模仿应用程序的执行方式,但会重定向用户的私人信息(如帐号和密码),将这些信息发送给攻击者。

缓存中毒:如果多用户 Web 缓存或者单用户浏览器缓存将恶意构建的响应缓存起来,该响应的破坏力会更大。如果响应缓存在共享的 Web 缓存(如在代理服务器中常见的缓存)中,那么使用该缓存的所有用户都会不断收到恶意内容,直到清除该缓存项为止。同样,如果响应缓存在单个用户的浏览器中,那么在清除该缓存项以前,该用户会不断收到恶意内容。然而,影响仅局限于本地浏览器的用户。

Cross-Site Scripting:一旦攻击者控制了应用程序传送的响应,就可以选择多种恶意内容并将其传播给用户。Cross-Site Scripting 是最常见的攻击形式,这种攻击在响应中包含了恶意的 JavaScript 或其他代码,并在用户的浏览器中执行。基于 XSS 的攻击手段花样百出,几乎是无穷无尽的,但通常它们都会包含传输给攻击者的私有数据(如 Cookie 或者其他会话信息)。在攻击者的控制下,指引受害者进入恶意的网络内容;或者利用易受攻击的站点,对用户的机器进行其他恶意操作。对于易受攻击的应用程序用户,最常见且最危险的攻击就是使用 JavaScript 将会话和身份验证信息返回给攻击者,而后攻击者就可以完全控制受害者的帐号了。

Page Hijacking:除了利用一个易受攻击的应用程序向用户传输恶意内容,还可以利用相同的根漏洞,将服务器生成的供用户使用的敏感内容重定向,转而供攻击者使用。攻击者通过提交一个会导致两个响应的请求,即服务器做出的预期响应和攻击者创建的响应,致使某个中间节点(如共享的代理服务器)误导服务器所生成的响应,将本来应传送给用户的响应错误地传给攻击者。因为攻击者创建的请求产生了两个响应,第一个被解析为针对攻击者请求做出的响应,第二个则被忽略。当用户通过同一 TCP 连接发出合法请求时,攻击者的请求已经在此处等候,并被解析为针对受害者这一请求的响应。这时,攻击者将第二个请求发送给服务器,代理服务器利用针对受害者(用户)的、由该服务器产生的这一请求对服务器做出响应,因此,针对受害者的这一响应中会包含所有头文件或正文中的敏感信息。

Open Redirect:如果允许未验证的输入来控制重定向机制所使用的 URL,可能会有利于攻击者发动钓鱼攻击。
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.1 - Web Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.vb.header_manipulation_cookies
Abstract
在 SMTP 标头中包含未经验证的数据使得攻击者可以添加任意标头(如 CCBCC),从而利用这些标头向其本身泄露邮件内容或将邮件服务器用作垃圾邮件自动程序。
Explanation
SMTP Header Manipulation 漏洞会在以下情况下发生:

1.数据通过不可信数据源进入应用程序,最常见的是 Web 应用程序中的 HTTP 请求。

2.数据包含在未经验证就发送给邮件服务器的 SMTP 标头中。

如同许多软件安全漏洞一样,SMTP Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,该漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,然后该应用程序将这些数据包含在 SMTP 标头中。

一种最常见的 SMTP Header Manipulation 攻击是分发垃圾邮件。如果应用程序包含一个易受攻击的“联系我们”表单,该表单允许设置电子邮件的主题和正文,攻击者就能够设置任意内容,并将包含电子邮件地址列表的 CC 标头匿名注入垃圾邮件,因为电子邮件是从受害者服务器发送的。

示例:以下代码段将读取“联系我们”表单的主题和正文:


func handler(w http.ResponseWriter, r *http.Request) {
subject := r.FormValue("subject")
body := r.FormValue("body")
auth := smtp.PlainAuth("identity", "user@example.com", "password", "mail.example.com")
to := []string{"recipient@example.net"}
msg := []byte("To: " + recipient1 + "\r\n" + subject + "\r\n" + body + "\r\n")
err := smtp.SendMail("mail.example.com:25", auth, "sender@example.org", to, msg)
if err != nil {
log.Fatal(err)
}
}


假设在请求中提交了一个由标准字母和数字字符组成的字符串,如“Page not working”,那么 SMTP 头可能表现为以下形式:


...
subject: [Contact us query] Page not working
...


然而,因为标头值是使用未经验证的用户输入构造的,所以仅当提交给 subject 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交恶意字符串,例如“Congratulations!! You won the lottery!!!\r\ncc:victim1@mail.com,victim2@mail.com ...”,则 SMTP 标头将采用以下形式:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


这使得攻击者可以在其他攻击中制作垃圾邮件或发送匿名电子邮件。
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 93
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[7] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[8] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[9] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[10] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[11] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[12] Standards Mapping - OWASP Top 10 2010 A1 Injection
[13] Standards Mapping - OWASP Top 10 2013 A1 Injection
[14] Standards Mapping - OWASP Top 10 2017 A1 Injection
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.golang.header_manipulation_smtp
Abstract
在 SMTP 头中包括未经验证的数据使得攻击者可以添加任意标题(如 CCBCC),从而利用这些标题向其本身泄露邮件内容或将邮件服务器用作垃圾邮件自动程序。
Explanation
在以下情况下会发生 SMTP Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入应用程序,最常见的是 Web 应用程序中的 HTTP 请求。

2. 数据包含在一个 SMTP 头中,该 SMTP 头未经验证就发送给了邮件服务器。

如同许多软件安全漏洞一样,SMTP Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,且该应用程序将这些数据包含在 SMTP 头中。

一种最常见的 SMTP Header Manipulation 攻击是分发垃圾邮件。如果应用程序包含一个易受攻击的“联系我们”表单,该表单允许设置电子邮件的主题和正文,攻击者就能够设置任意内容,并将包含电子邮件地址列表的 CC 标题匿名注入垃圾邮件,因为电子邮件会从受害者服务器进行发送。

示例:以下代码段读取“联系我们”表单的主题和正文:


String subject = request.getParameter("subject");
String body = request.getParameter("body");
MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress("webform@acme.com"));
message.setRecipients(Message.RecipientType.TO, InternetAddress.parse("support@acme.com"));
message.setSubject("[Contact us query] " + subject);
message.setText(body);
Transport.send(message);


假设在请求中提交了一个由标准字母和数字字符组成的字符串,如“Page not working”,那么 SMTP 头可能表现为以下形式:


...
subject: [Contact us query] Page not working
...


然而,因为该头的值是利用未经验证的用户输入构造的,所以仅当提交给 subject 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交恶意字符串,例如“Congratulations!!You won the lottery!!!\r\ncc:victim1@mail.com,victim2@mail.com ...”,则 SMTP 头将表现为以下形式:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


这将有效地允许攻击者制造垃圾邮件,或者发送匿名电子邮件等攻击。
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - Common Weakness Enumeration CWE ID 93
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.java.header_manipulation_smtp
Abstract
在 SMTP 头中包括未经验证的数据使得攻击者可以添加任意标题(如 CCBCC),从而利用这些标题向其本身泄露邮件内容或将邮件服务器用作垃圾邮件自动程序。
Explanation
在以下情况下会发生 SMTP Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入应用程序,最常见的是 Web 应用程序中的 HTTP 请求。

2. 数据包含在一个 SMTP 头中,该 SMTP 头未经验证就发送给了邮件服务器。

如同许多软件安全漏洞一样,SMTP Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,且该应用程序将这些数据包含在 SMTP 头中。

一种最常见的 SMTP Header Manipulation 攻击用于分发垃圾邮件。如果应用程序包含一个允许设置电子邮件主题和正文的易受攻击的“联系我们”表单,攻击者将能够设置任意内容,并注入包含匿名(因为电子邮件是从受害者服务器发送的)指向垃圾邮件的电子邮件地址列表的 CC 标题。

示例:以下代码段读取“联系我们”表单的主题和正文:


$subject = $_GET['subject'];
$body = $_GET['body'];
mail("support@acme.com", "[Contact us query] " . $subject, $body);


假设在请求中提交了一个由标准字母和数字字符组成的字符串,如“Page not working”,那么 SMTP 头可能表现为以下形式:


...
subject: [Contact us query] Page not working
...


然而,因为该头的值是利用未经验证的用户输入构造的,所以仅当提交给 subject 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交恶意字符串,例如“Congratulations!!You won the lottery!!!\r\ncc:victim1@mail.com,victim2@mail.com ...”,则 SMTP 头将表现为以下形式:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


这将有效地允许攻击者制造垃圾邮件,或者发送匿名电子邮件等攻击。
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - Common Weakness Enumeration CWE ID 93
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.php.header_manipulation_smtp
Abstract
在 SMTP 头中包括未经验证的数据使得攻击者可以添加任意标题(如 CCBCC),从而利用这些标题向其本身泄露邮件内容或将邮件服务器用作垃圾邮件自动程序。
Explanation
在以下情况下会发生 SMTP Header Manipulation 漏洞:

1. 数据通过一个不可信赖的数据源进入应用程序,最常见的是 Web 应用程序中的 HTTP 请求。

2. 数据包含在一个 SMTP 头中,该 SMTP 头未经验证就发送给了邮件服务器。

如同许多软件安全漏洞一样,SMTP Header Manipulation 只是通向终端的一个途径,它本身并不是终端。从本质上看,这些漏洞是显而易见的:攻击者可将恶意数据传送到易受攻击的应用程序,且该应用程序将这些数据包含在 SMTP 头中。

一种最常见的 SMTP Header Manipulation 攻击用于分发垃圾邮件。如果应用程序包含一个允许设置电子邮件主题和正文的易受攻击的“联系我们”表单,攻击者将能够设置任意内容,并注入包含匿名(因为电子邮件是从受害者服务器发送的)指向垃圾邮件的电子邮件地址列表的 CC 标题。

示例:以下代码段读取“联系我们”表单的主题和正文:


body = request.GET['body']
subject = request.GET['subject']
session = smtplib.SMTP(smtp_server, smtp_tls_port)
session.ehlo()
session.starttls()
session.login(username, password)
headers = "\r\n".join(["from: webform@acme.com",
"subject: [Contact us query] " + subject,
"to: support@acme.com",
"mime-version: 1.0",
"content-type: text/html"])
content = headers + "\r\n\r\n" + body
session.sendmail("webform@acme.com", "support@acme.com", content)


假设在请求中提交了一个由标准字母和数字字符组成的字符串,如“Page not working”,那么 SMTP 头可能表现为以下形式:


...
subject: [Contact us query] Page not working
...


然而,因为该头的值是利用未经验证的用户输入构造的,所以仅当提交给 subject 的值不包含任何 CR 和 LF 字符时,响应才会保留这种形式。如果攻击者提交恶意字符串,例如“Congratulations!!You won the lottery!!!\r\ncc:victim1@mail.com,victim2@mail.com ...”,则 SMTP 头将表现为以下形式:


...
subject: [Contact us query] Congratulations!! You won the lottery
cc: victim1@mail.com,victim2@mail.com
...


这将有效地允许攻击者制造垃圾邮件,或者发送匿名电子邮件等攻击。
References
[1] OWASP Testing for IMAP/SMTP Injection (OTG-INPVAL-011)
[2] Vicente Aguilera Díaz MX Injection: Capturing and Exploiting Hidden Mail Servers
[3] Standards Mapping - Common Weakness Enumeration CWE ID 93
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Abuse of Functionality (WASC-42)
desc.dataflow.python.header_manipulation_smtp
Abstract
对机密信息(如客户密码或社会保障号码)处理不当会危及用户的个人隐私,这是一种非法行为。
Explanation
Privacy Violation 会在以下情况下发生:

1. 用户私人信息进入了程序。

2. 数据被写到了一个外部介质,例如控制台、file system 或网络。
示例 1:以下代码包含一个日志记录语句,该语句通过在日志文件中存储添加到数据库中的各条记录信息来跟踪这些信息。


pass = getPassword();
...
dbmsLog.println(id+":"+pass+":"+type+":"+tstamp);
Example 1 中的代码会将明文密码记录到文件系统中。虽然许多开发人员认为文件系统是存储数据的安全位置,但这不是绝对的,特别是涉及到隐私问题时。

在移动世界中隐私是最令人担心的问题之一,其原因有以下两点。一是设备丢失的几率较高。第二点与移动应用程序之间的进程间通信有关。在移动平台上,可以从各种来源下载应用程序,并且可以在同一设备上同时运行这些应用程序。因为恶意软件在银行应用程序附近运行的可能性很高,所以应用程序的作者需要注意消息所包含的信息,这些消息将会发送给在设备上运行的其他应用程序。移动应用程序之间的进程间通信不应包含敏感信息。

示例 2:以下代码会从 Android WebView 存储中读取给定站点的用户名和密码,并将其广播给所有注册的接收者。

...
webview.setWebViewClient(new WebViewClient() {
public void onReceivedHttpAuthRequest(WebView view,
HttpAuthHandler handler, String host, String realm) {
String[] credentials = view.getHttpAuthUsernamePassword(host, realm);
String username = credentials[0];
String password = credentials[1];
Intent i = new Intent();
i.setAction("SEND_CREDENTIALS");
i.putExtra("username", username);
i.putExtra("password", password);
view.getContext().sendBroadcast(i);
}
});
...


此示例演示了几个问题。首先,WebView 凭证以明文的形式存储且不经过 hash 处理。因此,如果用户拥有 root 设备(或使用仿真器),他们就能读取存储的给定站点的密码。其次,明文凭证将被广播给所有注册的接收者,这就意味着任何使用 SEND_CREDENTIALS 收听的注册接收者都将收到消息。即使权限限制接收者人数,广播也不会受到保护;既然这样,我们也不建议将权限作为修复方式使用。

可以通过多种方式将私人数据输入到程序中:

— 以密码或个人信息的形式直接从用户处获取

— 由应用程序访问数据库或者其他数据存储形式

— 间接地从合作者或者第三方处获取

通常,在移动环境下,此私人信息除了包括密码、SSN 和其他常规个人信息之外,还包括以下信息:

- 位置

- 手机号码

- 序列号和设备 ID

- 网络运营商信息

- 语音信箱信息


有时,某些数据并没有贴上私人数据标签,但在特定的上下文中也有可能成为私人信息。比如,通常认为学生的学号不是私人信息,因为学号中并没有明确而公开的信息用以定位特定学生的个人信息。但是,如果学校用学生的社会保障号码生成学号,那么这时学号应被视为私人信息。

安全和隐私似乎一直是一对矛盾。从安全的角度看,您应该记录所有重要的操作,以便日后可以鉴定那些非法的操作。然而,当其中牵涉到私人数据时,这种做法就存在一定风险了。

虽然私人数据处理不当的方式多种多样,但常见风险来自于盲目信任。程序员通常会信任运行程序的操作环境,因此认为将私人信息存放在文件系统、注册表或者其他本地控制的资源中是值得信任的。尽管已经限制了某些资源的访问权限,但仍无法保证所有访问这些资源的个体都是值得信任的。例如,2004 年,一个不道德的 AOL 员工将大约 9200 万个私有客户电子邮件地址卖给了一个通过垃圾邮件进行营销的境外赌博网站 [1]。

鉴于此类备受瞩目的信息盗取事件,私人信息的收集与管理正日益规范化。要求各个组织应根据其经营地点、所从事的业务类型及其处理的私人数据性质,遵守下列一个或若干个联邦和州的规定:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

尽管制定了这些规范,Privacy Violation 漏洞仍时有发生。
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] SQLCipher.
[9] FUNDAMENTALS-4: Establish trust boundaries Oracle
[10] CONFIDENTIAL-2: Do not log highly sensitive information Oracle
[11] Standards Mapping - Common Weakness Enumeration CWE ID 359
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[15] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169
[16] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation
[19] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 10.2.1 Malicious Code Search (L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[22] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[24] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[25] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 6.5.5, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.java.pci_privacy_violation
Abstract
构建包含用户输入的 SimpleDB 选择指令会允许攻击者查看未经授权的记录。
Explanation
Query string injection 漏洞会在以下情况下发生:
1. 数据从一个不可信赖的数据源进入程序。



2. 数据被用于动态地构造 SimpleDB 查询字符串。

例 1:以下代码动态地构造并执行了一个 SimpleDB select() 查询,该查询可搜索与用户指定产品类别相匹配的清单。用户还可以指定对结果进行排序的列。假定在执行此代码片段之前已正确验证了应用程序并设置了 customerID 的值。


...
String customerID = getAuthenticatedCustomerID(customerName, customerCredentials);
...
AmazonSimpleDBClient sdbc = new AmazonSimpleDBClient(appAWSCredentials);
String query = "select * from invoices where productCategory = '"
+ productCategory + "' and customerID = '"
+ customerID + "' order by '"
+ sortColumn + "' asc";
SelectResult sdbResult = sdbc.select(new SelectRequest(query));
...


这一代码所执行的查询如下所示:


select * from invoices
where productCategory = 'Fax Machines'
and customerID = '12345678'
order by 'price' asc


但是,由于这个查询是动态构造的,它由一个不变的基查询字符串和一个用户输入字符串连接而成,因此仅当 productCategoryprice 不包含单引号字符时,才会正确执行这一查询。但是,如果攻击者为 productCategory 提供了字符串“Fax Machines' or productCategory = \"”,并为 sortColumn 提供了字符串“\" order by 'price”,则查询将变为如下所示:


select * from invoices
where productCategory = 'Fax Machines' or productCategory = "'
and customerID = '12345678'
order by '" order by 'price' asc


或者采用以下人类可读性更好的形式:


select * from invoices
where productCategory = 'Fax Machines'
or productCategory = "' and customerID = '12345678' order by '"
order by 'price' asc


这些输入使攻击者能够绕过 customerID 所要求的 Authentication,并查看与 'Fax Machines' 相匹配的所有客户清单记录。
References
[1] Secure Use of Cloud Storage
[2] Standards Mapping - Common Weakness Enumeration CWE ID 89
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[15] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[17] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[18] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2010 A1 Injection
[20] Standards Mapping - OWASP Top 10 2013 A1 Injection
[21] Standards Mapping - OWASP Top 10 2017 A1 Injection
[22] Standards Mapping - OWASP Top 10 2021 A03 Injection
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[35] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[36] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.java.query_string_injection_amazon_web_services
Abstract
构建含有用户输入的 SQLite 查询指令会让攻击者能够查看未经授权的记录。
Explanation
Query string injection 漏洞会在以下情况下发生:
1. 数据从一个不可信赖的数据源进入程序。



在这种情况下,Fortify Static Code Analyzer(Fortify 静态代码分析器)无法确定数据源是否可信赖。

2. 数据用于动态地构造一个 SQLite 查询。

SQLite query string injection 允许恶意用户查看未经授权的记录,但不允许用户以任何方式更改数据库的状态。

例 1:以下代码动态地构造并执行了一个 SQLite 查询,该查询可搜索与客户和用户指定产品类别相关联的清单。用户还可以指定对结果进行排序的列。假定在执行此代码片段之前已正确验证了程序和设置了 customerID 的值。


...
productCategory = this.getIntent().getExtras().getString("productCategory");
sortColumn = this.getIntent().getExtras().getString("sortColumn");
customerID = getAuthenticatedCustomerID(customerName, customerCredentials);
c = invoicesDB.query(Uri.parse(invoices), columns, "productCategory = '" + productCategory + "' and customerID = '" + customerID + "'", null, null, null, "'" + sortColumn + "'asc", null);
...


这一代码所执行的查询如下所示:


select * from invoices
where productCategory = 'Fax Machines'
and customerID = '12345678'
order by 'price' asc


但是,这个查询是动态构造的,由一个常数基查询字符串和一个用户输入字符串 productCategory 连在一起形成。因此只有在 productCategorysortColumn 不包含单引号字符时,这一查询才能正确执行。如果攻击者为 productCategory 提供了字符串“Fax Machines' or productCategory = \"”,并为 sortColumn 提供了字符串“\" order by 'price”,则查询将变为如下所示:


select * from invoices
where productCategory = 'Fax Machines' or productCategory = "'
and customerID = '12345678'
order by '" order by 'price' asc


或者采用以下可读性更好的形式:


select * from invoices
where productCategory = 'Fax Machines'
or productCategory = "' and customerID = '12345678' order by '"
order by 'price' asc


这些输入使攻击者能绕过 customerID 所要求的 authentication,并查看与 'Fax Machines' 相匹配的所有客户清单记录。
References
[1] Android Developers-Reference: SQLite Database
[2] SQL as Understood by SQLite
[3] Standards Mapping - Common Weakness Enumeration CWE ID 89
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[18] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[36] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[37] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.semantic.java.query_string_injection_android_provider