Kingdom: Code Quality

Poor code quality leads to unpredictable behavior. From a user's perspective that often manifests itself as poor usability. For an attacker it provides an opportunity to stress the system in unexpected ways.

94 items found
Weaknesses
Abstract
The application invokes internal or hidden APIs.
Explanation
It is not recommended that developers build their apps using undocumented, or hidden, APIs. There are no guarantees that Google will not remove or change those APIs in the future and therefore they should be avoided therefore using such methods or fields has a high risk of breaking your app.
References
[1] Google Restrictions on non-SDK interfaces
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 2
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[6] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
desc.structural.cpp.android_bad_practices_use_of_internal_apis
Abstract
The application invokes internal or hidden APIs.
Explanation
It is not recommended that developers build their apps using undocumented, or hidden, APIs. There are no guarantees that Google will not remove or change those APIs in the future and therefore they should be avoided therefore using such methods or fields has a high risk of breaking your app.
References
[1] Google Restrictions on non-SDK interfaces
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 2
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[6] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
desc.structural.java.android_bad_practices_use_of_internal_apis
Abstract
The code references the Camera object after it has already been released.
Explanation
The code attempts to use the Camera object after the it has already been released. Any further references to the Camera object without reacquiring the resource will throw an exception, and can cause the application to crash if the exception is not caught.

Example: The following code uses a toggle button to toggle the camera preview on and off. After the user taps the button once, the camera preview stops and the camera resource is released. However, if she taps the button again, startPreview() is called on the previously-released Camera object.


public class ReuseCameraActivity extends Activity {
private Camera cam;

...
private class CameraButtonListener implements OnClickListener {
public void onClick(View v) {
if (toggle) {
cam.stopPreview();
cam.release();
}
else {
cam.startPreview();
}
toggle = !toggle;
}
}
...
}
References
[1] Camera, Android Developers
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[6] Standards Mapping - Common Weakness Enumeration CWE ID 416
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [7] CWE ID 416
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [8] CWE ID 416
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [7] CWE ID 416
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [7] CWE ID 416
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [4] CWE ID 416
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[16] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[48] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.android_bad_practices_use_of_released_camera_resource
Abstract
The code references the Android media object after it has already been released.
Explanation
The code attempts to use the media object after the it has already been released. Any further references to that media object without reacquiring the resource will throw an exception, and can cause the application to crash if the exception is not caught.

Example: The following code uses a pause button to toggle the media playback. After the user taps the button once, the current song or video is paused and the camera resource is released. However, if she taps the button again, start() is called on the previously-released media resource.


public class ReuseMediaPlayerActivity extends Activity {
private MediaPlayer mp;

...
private class PauseButtonListener implements OnClickListener {
public void onClick(View v) {
if (paused) {
mp.pause();
mp.release();
}
else {
mp.start();
}
paused = !paused;
}
}
...
}
References
[1] Media Player, Android Developers
[2] Audio Capture, Android Developers
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 416
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [7] CWE ID 416
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [8] CWE ID 416
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [7] CWE ID 416
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [7] CWE ID 416
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [4] CWE ID 416
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[17] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[49] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[50] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.android_bad_practices_use_of_released_media_resource
Abstract
The code references the Android database handler after it has already been released.
Explanation
The code attempts to use the Android SQLite database handler after the it has already been closed. Any further references to the handler without re-establishing the database connection will throw an exception, and can cause the application to crash if the exception is not caught.

Example: The following code might be from a program that caches user values temporarily in memory, but can call flushUpdates() to commit the changes to disk. The method properly closes the database handler after writing updates to the database. However, when flushUpdates() is called again, the database object is referenced again before reinitializing it.


public class ReuseDBActivity extends Activity {
private myDBHelper dbHelper;
private SQLiteDatabase db;

@Override
public void onCreate(Bundle state) {
...
db = dbHelper.getWritableDatabase();
...
}
...

private void flushUpdates() {
db.insert(cached_data); // flush cached data
dbHelper.close();
}
...
}
References
[1] Data Storage, Android Developers
[2] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[3] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 4
[4] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[5] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[6] Standards Mapping - Common Weakness Enumeration CWE ID 416
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [1] CWE ID 119, [7] CWE ID 416
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [5] CWE ID 119, [8] CWE ID 416
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [7] CWE ID 416
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [7] CWE ID 416
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [4] CWE ID 416
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[16] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[48] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.android_bad_practices_use_of_released_sqlite_resource
Abstract
Unminified JavaScript has been included in this file. Microsoft recommends that minified versions of JavaScript libraries should be included for performance reasons.
Explanation
Minification improves page load times for applications that include JavaScript files by reducing the file size. Minification refers to the process of removing unnecessary whitespace, comments, semicolons, braces, shortening the names of local variables and removing unreachable code.

Example 1: The following ASPX code includes the unminified version of Microsoft's jQuery library:


...
<script src="http://applicationserver.application.com/lib/jquery/jquery-1.4.2.js" type="text/javascript"></script>
...
References
[1] Optimizations for Improving Load Times Microsoft
[2] Introduction to CSS Minification Microsoft
[3] Microsoft AJAX Minifier Microsoft
[4] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[5] Standards Mapping - CIS Microsoft Azure Foundations Benchmark partial
[6] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[7] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[8] Standards Mapping - CIS Google Kubernetes Engine Benchmark integrity
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[11] Standards Mapping - OWASP Top 10 2007 A3 Malicious File Execution
[12] Standards Mapping - OWASP Top 10 2010 A1 Injection
[13] Standards Mapping - OWASP Top 10 2013 A1 Injection
[14] Standards Mapping - OWASP Top 10 2017 A1 Injection
[15] Standards Mapping - OWASP Top 10 2021 A03 Injection
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M1 Weak Server Side Controls
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[19] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 098
[20] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
desc.semantic.dotnet.asp_net_bad_practices_unminified_code
Abstract
The program uses an arithmetic operator on a boolean value, which might not achieve what the programmer had in mind.
Explanation
Arithmetic operations will not act in the same way on boolean values as they would on integral values, which may lead to unexpected behavior.
References
[1] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[2] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 5
[3] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[4] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[5] Standards Mapping - Common Weakness Enumeration CWE ID 398
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 13.4, Rule 14.4
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 5-0-13, Rule 6-2-1
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[13] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[14] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[15] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
desc.structural.cpp.code_correctness_arithmetic_operation_on_boolean
Abstract
Converting a byte array into a String may lead to data loss.
Explanation
When data from a byte array is converted into a String, it is unspecified what will happen to any data that is outside of the applicable character set. This can lead to data being lost, or a decrease in the level of security when binary data is needed to ensure proper security measures are followed.

Example 1: The following code converts data into a String in order to create a hash.


...
FileInputStream fis = new FileInputStream(myFile);
byte[] byteArr = byte[BUFSIZE];
...
int count = fis.read(byteArr);
...
String fileString = new String(byteArr);
String fileSHA256Hex = DigestUtils.sha256Hex(fileString);
// use fileSHA256Hex to validate file
...


Assuming the size of the file is less than BUFSIZE, this works fine as long as the information in myFile is encoded the same as the default character set, however if it's using a different encoding, or is a binary file, it will lose information. This in turn will cause the resulting SHA hash to be less reliable, and could mean it's far easier to cause collisions, especially if any data outside of the default character set is represented by the same value, such as a question mark.
References
[1] STR03-J. Do not encode noncharacter data as a string CERT
[2] When 'EFBFBD' and Friends Come Knocking: Observations of Byte Array to String Conversions GDS Security
[3] Standards Mapping - CIS Azure Kubernetes Service Benchmark 1
[4] Standards Mapping - CIS Amazon Elastic Kubernetes Service Benchmark 3
[5] Standards Mapping - CIS Amazon Web Services Foundations Benchmark 1
[6] Standards Mapping - CIS Google Kubernetes Engine Benchmark normal
[7] Standards Mapping - Common Weakness Enumeration CWE ID 486
desc.semantic.java.code_correctness_byte_array_to_string_conversion