1591 items found
Weaknesses
Abstract
It is ambiguous which thread will wake up when notify() is called.
Explanation
There is no way to specify which thread will be awakened by calls to notify().

Example 1: In the following code, notifyJob() calls notify().

public synchronized notifyJob() {
flag = true;
notify();
}
...
public synchronized waitForSomething() {
while(!flag) {
try {
wait();
}
catch (InterruptedException e)
{
...
}
}
...
}

In this case, the developer intends to wake up the thread that calls wait(), but it is possible that notify() will notify a different thread than the intended one.
References
[1] Sun Microsystems, Inc. Java Sun Tutorial - Concurrency
[2] Sun Microsystems, Inc. Java Sun Tutorial - Concurrency
[3] THI02-J. Notify all waiting threads rather than a single thread CERT
[4] Standards Mapping - Common Weakness Enumeration CWE ID 373
desc.structural.java.code_correctness_call_to_notify
Abstract
Calling sleep() while holding a lock can cause a loss of performance and might cause a deadlock.
Explanation
If multiple threads are trying to obtain a lock on a resource, calling sleep() while holding a lock can cause all of the other threads to wait for the resource to be released, which can result in degraded performance and deadlock.

Example 1: The following code calls sleep() while holding a lock.

ReentrantLock rl = new ReentrantLock();
...
rl.lock();
Thread.sleep(500);
...
rl.unlock();
References
[1] LCK09-J. Do not perform operations that can block while holding a lock CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 557
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000336, CCI-000366, CCI-001094
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-4 Security Impact Analysis (P2), CM-6 Configuration Settings (P1), SC-5 Denial of Service Protection (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-4 Impact Analyses, CM-6 Configuration Settings, SC-5 Denial of Service Protection
[6] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[8] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II, APSC-DV-002950 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II, APSC-DV-002950 CAT II
[30] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[31] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.code_correctness_call_to_sleep_in_lock
Abstract
Explicit requests for garbage collection are a bellwether indicating likely performance problems.
Explanation
At some point in every Java developer's career, a problem surfaces that appears to be so mysterious, impenetrable, and impervious to debugging that there seems to be no alternative but to blame the garbage collector. Especially when the bug is related to time and state, there may be a hint of empirical evidence to support this theory: inserting a call to System.gc() sometimes seems to make the problem go away.

In almost every case we have seen, calling System.gc() is the wrong thing to do. In fact, calling System.gc() can cause performance problems if it is invoked too often.
References
[1] D. H. Hovermeyer FindBugs User Manual
[2] Standards Mapping - Common Weakness Enumeration CWE ID 730
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[6] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[8] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[30] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[31] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.java.code_correctness_call_to_system_gc
Abstract
The program calls a thread's run() method instead of calling start().
Explanation
In most cases a direct call to a Thread object's run() method is a bug. The programmer intended to begin a new thread of control, but accidentally called run() instead of start(), so the run() method will execute in the caller's thread of control.

Example 1: The following excerpt from a Java program mistakenly calls run() instead of start().


Thread thr = new Thread() {
public void run() {
...
}
};

thr.run();
References
[1] THI00-J. Do not invoke Thread.run() CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 572
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[5] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[6] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[8] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[30] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[31] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.java.code_correctness_call_to_thread_run
Abstract
The program calls a thread's stop() method, potentially leaking resources.
Explanation
In most cases a direct call to a Thread object's stop() method is a bug. The programmer intended to stop a thread from running, but was unaware that this is not a suitable way to stop a thread. The stop() function within Thread causes a ThreadDeath exception anywhere within the Thread object, likely leaving objects in an inconsistent state and potentially leaking resources. Due to this API being inherently unsafe, its use was deprecated long ago.

Example 1: The following excerpt from a Java program mistakenly calls Thread.stop().


...
public static void main(String[] args){
...
Thread thr = new Thread() {
public void run() {
...
}
};
...
thr.start();
...
thr.stop();
...
}
References
[1] THI05-J. Do not use Thread.stop() to terminate threads CERT
[2] Why are Thread.stop, Thread.suspend, Thread.resume and Runtime.runFinalizersOnExit Deprecated? Oracle
[3] Standards Mapping - Common Weakness Enumeration CWE ID 572
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[7] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[8] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[9] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[31] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[32] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.semantic.java.code_correctness_call_to_thread_stop
Abstract
This class implements a clone() method but does not implement the Cloneable interface.
Explanation
It appears that the programmer intended for this class to implement the Cloneable interface because it implements a method named clone(). However, the class does not implement the Cloneable interface and the clone() method will not behave correctly.

Example 1: Calling clone() for this class will result in a CloneNotSupportedException.

public class Kibitzer {
public Object clone() throws CloneNotSupportedException {
...
}
}

References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 498
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[3] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[4] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[5] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[7] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[8] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[9] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[10] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[29] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[30] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.java.code_correctness_class_does_not_implement_cloneable
Abstract
Equals() is called on an object that does not implement Equals().
Explanation
When comparing objects, developers usually want to compare properties of objects. However, calling Equals() on a class (or any super class/interface) that does not explicitly implement Equals() results in a call to the Equals() method inherited from System.Object. Instead of comparing object member fields or other properties, Object.Equals() compares two object instances to see if they are the same. Although there are legitimate uses of Object.Equals(), it is often an indication of buggy code.

Example 1:

public class AccountGroup
{
private int gid;

public int Gid
{
get { return gid; }
set { gid = value; }
}
}
...
public class CompareGroup
{
public bool compareGroups(AccountGroup group1, AccountGroup group2)
{
return group1.Equals(group2); //Equals() is not implemented in AccountGroup
}
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 398
desc.structural.dotnet.code_correctness_class_does_not_implement_equals
Abstract
The equals() method is called on an object that does not implement equals().
Explanation
When comparing objects, developers usually want to compare properties of objects. However, calling equals() on a class (or any super class/interface) that does not explicitly implement equals() results in a call to the equals() method inherited from java.lang.Object. Instead of comparing object member fields or other properties, Object.equals() compares two object instances to see if they are the same. Although there are legitimate uses of Object.equals(), it is often an indication of buggy code.

Example 1:

public class AccountGroup
{
private int gid;

public int getGid()
{
return gid;
}

public void setGid(int newGid)
{
gid = newGid;
}
}
...
public class CompareGroup
{
public boolean compareGroups(AccountGroup group1, AccountGroup group2)
{
return group1.equals(group2); //equals() is not implemented in AccountGroup
}
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 398
desc.structural.java.code_correctness_class_does_not_implement_equals
Abstract
The ICloneable interface specifies a weak contract for its Clone method and should be avoided.
Explanation
The ICloneable interface does not guarantee deep cloning, classes that implement it may not behave as expected when they are cloned. Classes that implement ICloneable and perform only shallow-cloning (copies only the object, which includes existing references to other objects) may result in unexpected behavior. Because deep-cloning (copies the object and all referenced objects) is typically the assumed behavior of a clone method, the use of the ICloneable interface is error prone and should be avoided.
References
[1] Krzysztof Cwalina, Brad Abrams Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries. Chapter 8: Usage Guidelines Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 398
desc.structural.dotnet.code_correctness_class_implements_icloneable
Abstract
The clone() method within the class calls a function that can be overridden.
Explanation
When a clone() function calls an overridable function, it may cause the clone to be left in a partially initialized state, or become corrupted.

Example 1: The following clone() function calls a method that can be overridden.


...
class User implements Cloneable {
private String username;
private boolean valid;
public Object clone() throws CloneNotSupportedException {
final User clone = (User) super.clone();
clone.doSomething();
return clone;
}
public void doSomething(){
...
}
}


Since the function doSomething() and its enclosing class are not final, it means that the function can be overridden, which may leave the cloned object clone in a partially initialized state, which may lead to errors, if not working around logic in an unexpected way.
References
[1] MET06-J. Do not invoke overridable methods in clone() CERT
[2] EXTEND-5: Limit the extensibility of classes and methods Oracle
desc.structural.java.code_correctness_clone_invokes_overridable_function
Abstract
Comparing boxed primitives using equality operators instead of their equals() method can result in unexpected behavior.
Explanation
When dealing with boxed primitives, when comparing equality, the boxed primitive's equals() method should be called instead of the operators == and !=. The Java Specification states about boxing conversions:

"If the value p being boxed is an integer literal of type int between -128 and 127 inclusive, or the boolean literal true or false, or a character literal between '\u0000' and '\u007f' inclusive, then let a and b be the results of any two boxing conversions of p. It is always the case that a == b."

This means that if a boxed primitive is used (other than Boolean or Byte), only a range of values will be cached, or memoized. For a subset of values, using == or != will return the correct value, for all other values outside of this subset, this will return the result of comparing the object addresses.

Example 1: The following example uses equality operators on boxed primitives.


...
Integer mask0 = 100;
Integer mask1 = 100;
...
if (file0.readWriteAllPerms){
mask0 = 777;
}
if (file1.readWriteAllPerms){
mask1 = 777;
}
...
if (mask0 == mask1){
//assume file0 and file1 have same permissions
...
}
...


The code in Example 1 uses Integer boxed primitives to try to compare two int values. If mask0 and mask1 are both equal to 100, then mask0 == mask1 will return true. However, when mask0 and mask1 are both equal to 777, now mask0 == maske1 will return false as these values are not within the range of cached values for these boxed primitives.
References
[1] EXP03-J. Do not use the equality operators when comparing values of boxed primitives CERT
[2] Java Language Specification Chapter 5. Conversions and Contexts Oracle
[3] Standards Mapping - Common Weakness Enumeration CWE ID 398, CWE ID 754
[4] Standards Mapping - OWASP Application Security Verification Standard 4.0 11.1.7 Business Logic Security Requirements (L2 L3)
[5] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 754
desc.structural.java.code_correctness_comparison_of_boxed_primitive_types
Abstract
Making a comparison with NaN is always an error.
Explanation
When a comparison is made to NaN it is always evaluated as false, except for the != operator, which always evaluates to true since NaN is unordered.

Example 1: The following tries to make sure a variable is not NaN.


...
if (result == Double.NaN){
//something went wrong
throw new RuntimeException("Something went wrong, NaN found");
}
...


This attempts to verify that result is not NaN, however using the operator == with NaN always results in a value of false, so this check will never throw the exception.
References
[1] NUM07-J. Do not attempt comparisons with NaN CERT
[2] Java Language Specification Chapter 4. Types, Values, and Variables Oracle
[3] INJECT-9: Prevent injection of exceptional floating point values Oracle
[4] Standards Mapping - Common Weakness Enumeration CWE ID 486
desc.structural.java.code_correctness_comparison_with_nan
Abstract
A constructor of the class calls a function that can be overridden.
Explanation
When a constructor calls an overridable function, it may allow an attacker to access the this reference prior to the object being fully initialized, which can in turn lead to a vulnerability.

Example 1: The following calls a method that can be overridden.


...
class User {
private String username;
private boolean valid;
public User(String username, String password){
this.username = username;
this.valid = validateUser(username, password);
}
public boolean validateUser(String username, String password){
//validate user is real and can authenticate
...
}
public final boolean isValid(){
return valid;
}
}


Since the function validateUser and the class are not final, it means that they can be overridden, and then initializing a variable to the subclass that overrides this function would allow bypassing of the validateUser functionality. For example:


...
class Attacker extends User{
public Attacker(String username, String password){
super(username, password);
}
public boolean validateUser(String username, String password){
return true;
}
}
...
class MainClass{
public static void main(String[] args){
User hacker = new Attacker("Evil", "Hacker");
if (hacker.isValid()){
System.out.println("Attack successful!");
}else{
System.out.println("Attack failed");
}
}
}


The code in Example 1 prints "Attack successful!", since the Attacker class overrides the validateUser() function that is called from the constructor of the superclass User, and Java will first look in the subclass for functions called from the constructor.
References
[1] MET05-J. Ensure that constructors do not call overridable methods CERT
[2] EXTEND-5: Limit the extensibility of classes and methods Oracle
[3] OBJECT-4: Prevent constructors from calling methods that can be overridden Oracle
desc.structural.java.code_correctness_constructor_invokes_overridable_function
Abstract
Double-checked locking is an incorrect idiom that does not achieve the intended effect.
Explanation
Many talented individuals have spent a great deal of time pondering ways to make double-checked locking work in order to improve performance. None have succeeded.

Example 1: At first blush it may seem that the following bit of code achieves thread safety while avoiding unnecessary synchronization.


if (fitz == null) {
synchronized (this) {
if (fitz == null) {
fitz = new Fitzer();
}
}
}
return fitz;


The programmer wants to guarantee that only one Fitzer() object is ever allocated, but does not want to pay the cost of synchronization every time this code is called. This idiom is known as double-checked locking.

Unfortunately, it does not work, and multiple Fitzer() objects can be allocated. See The "Double-Checked Locking is Broken" Declaration for more details [1].
References
[1] D. Bacon et al. The "Double-Checked Locking is Broken" Declaration
[2] LCK10-J. Use a correct form of the double-checked locking idiom CERT
[3] Standards Mapping - Common Weakness Enumeration CWE ID 609
[4] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[5] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[6] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[7] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[8] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[9] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[10] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
desc.structural.java.code_correctness_double_checked_locking
Abstract
Determining an object's type based on its class name can lead to unexpected behavior or allow an attacker to inject a malicious class.
Explanation
Attackers can deliberately duplicate class names in order to cause a program to execute malicious code. For this reason, class names are not good type identifiers and should not be used as the basis for granting trust to a given object.

Example 1: The following code determines whether to trust input from an inputReader object based on its class name. If an attacker can supply an implementation of inputReader that executes malicious commands, this code cannot differentiate the benign and malicious versions of the object.


if (inputReader.GetType().FullName == "CompanyX.Transaction.Monetary")
{
processTransaction(inputReader);
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 486
desc.dataflow.dotnet.code_correctness_erroneous_class_compare
Abstract
Determining an object's type based on its class name can lead to unexpected behavior or allow an attacker to inject a malicious class.
Explanation
Attackers can deliberately duplicate class names in order to cause a program to execute malicious code. For this reason, class names are not good type identifiers and should not be used as the basis for granting trust to a given object.

Example 1: The following code determines whether to trust input from an inputReader object based on its class name. If an attacker can supply an implementation of inputReader that executes malicious commands, this code cannot differentiate the benign and malicious versions of the object.


if (inputReader.getClass().getName().equals("com.example.TrustedClass")) {
input = inputReader.getInput();
...
}
References
[1] OBJ09-J. Compare classes and not class names CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 486
desc.dataflow.java.code_correctness_erroneous_class_compare
Abstract
Determining an object's type based on its class name can lead to unexpected behavior or allow an attacker to inject a malicious class.
Explanation
Attackers can deliberately duplicate class names in order to cause a program to execute malicious code. For this reason, class names are not good type identifiers and should not be used as the basis for granting trust to a given object.

Example 1: The following code determines whether to trust input from an inputReader object based on its class name. If an attacker can supply an implementation of inputReader that executes malicious commands, this code cannot differentiate the benign and malicious versions of the object.


if (inputReader::class.qualifiedName == "com.example.TrustedClass") {
input = inputReader.getInput()
...
}
References
[1] OBJ09-J. Compare classes and not class names CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 486
desc.dataflow.kotlin.code_correctness_erroneous_class_compare
Abstract
This finalize() method should call super.finalize().
Explanation
The Java Language Specification states that it is a good practice for a finalize() method to call super.finalize() [1].

Example 1: The following method omits the call to super.finalize().


protected void finalize() {
discardNative();
}
References
[1] J. Gosling, B. Joy, G. Steele, G. Bracha The Java Language Specification, Second Edition Addison-Wesley
[2] MET12-J. Do not use finalizers CERT
[3] Standards Mapping - Common Weakness Enumeration CWE ID 568
desc.structural.java.code_correctness_erroneous_finalize_method
Abstract
A field is erroneously assigned a negative value.
Explanation
This field has been annotated with FortifyNonNegative, which is used to indicate that negative values are not permitted.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 20
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[7] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
desc.structural.java.erroneous_negative_value_field
Abstract
The expressions x = NULL and x != NULL will always be false.
Explanation
In PL/SQL, the value of NULL is indeterminate. It is not equal to anything, not even another NULL value. Also, a null value is never not equal to another value.

Example 1: The following statement will always be false.


checkNull BOOLEAN := x = NULL;
Example 2: The following statement will always be false.


checkNotNull BOOLEAN := x != NULL;
References
[1] Steven Feuerstein Oracle PL/SQL Best Practices O'Reilly
[2] Standards Mapping - Common Weakness Enumeration CWE ID 480
desc.structural.sql.code_correctness_erroneous_null_comparison_plsql
Abstract
Strings should be compared with the equals() method, not == or !=.
Explanation
This program uses == or != to compare two strings for equality, which compares two objects for equality, not their values. Chances are good that the two references will never be equal.

Example 1: The following branch will never be taken.


if (args[0] == STRING_CONSTANT) {
logger.info("miracle");
}


The == and != operators will only behave as expected when they are used to compare strings contained in objects that are equal. The most common way for this to occur is for the strings to be interned, whereby the strings are added to a pool of objects maintained by the String class. Once a string is interned, all uses of that string will use the same object and equality operators will behave as expected. All string literals and string-valued constants are interned automatically. Other strings can be interned manually be calling String.intern(), which will return a canonical instance of the current string, creating one if necessary.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 597
desc.structural.java.code_correctness_erroneous_string_compare
Abstract
If a thread fails to unlock a mutex after signaling other threads, the other threads will remain locked waiting on the mutex.
Explanation
After a thread signals other threads waiting on a mutex, it must unlock the mutex by calling pthread_mutex_unlock() before another thread can begin running. If the signaling thread fails to unlock the mutex, the pthread_cond_wait() call in the second thread will not return and the thread will not execute.

Example 1: The following code signals another thread waiting on a mutex by calling pthread_cond_signal(), but fails to unlock the mutex the other thread is waiting on.


...
pthread_mutex_lock(&count_mutex);

// Signal waiting thread
pthread_cond_signal(&count_threshold_cv);
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 373
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000336, CCI-000366, CCI-001094
[3] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 5.2, Rule 1.3
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-4 Security Impact Analysis (P2), CM-6 Configuration Settings (P1), SC-5 Denial of Service Protection (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-4 Impact Analyses, CM-6 Configuration Settings, SC-5 Denial of Service Protection
[8] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[10] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[11] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[12] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[13] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[14] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II, APSC-DV-002950 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II, APSC-DV-002950 CAT II
[32] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[33] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.cpp.code_correctness_erroneous_synchronization
Abstract
A variable is erroneously assigned a zero value.
Explanation
This field has been annotated with FortifyNonZero, which is used to indicate that zero is not a permitted value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 20
[2] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3)
[7] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 020
desc.structural.java.erroneous_zero_value_field