27 items found
Weaknesses
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a statement that relies on an integer and thus is not vulnerable to SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


DATA: id TYPE i.
...
id = request->get_form_field( 'invoiceID' ).

CONCATENATE `INVOICEID = '` id `'` INTO cl_where.
SELECT *
FROM invoices
INTO CORRESPONDING FIELDS OF TABLE itab_invoices
WHERE (cl_where).
ENDSELECT.
...


The problem is that the developer has failed to consider all of the possible values of ID. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.abap.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var id:int = int(Number(params["invoiceID"]));
var query:String = "SELECT * FROM invoices WHERE id = :id";

stmt.sqlConnection = conn;
stmt.text = query;
stmt.parameters[":id"] = id;
stmt.execute();
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.actionscript.access_control_database
Abstract
Without proper access control, executing a SOQL/SOSL statement that may contain a user-supplied primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SOQL/SOSL query.
Example 1: In the following code example, inputID value is originated from a pre-defined list, and a bind variable helps to prevent SOQL/SOSL injection.


...
result = [SELECT Name, Phone FROM Contact WHERE (IsDeleted = false AND Id=:inputID)];
...


The problem with the previous example is that using a pre-defined list of IDs is insufficient to prevent the user from modifying the value of inputID. If the attacker is able to bypass the interface and send a request with a different value he will have access to other contact information. Since the code in this example does not check to ensure that the user has permission to access the requested contact, it will display any contact, even if the user is not authorized to see it.
References
[1] Salesforce Developers Technical Library Secure Coding Guidelines - Authorization and Access Control
[2] Salesforce Developers Technical Library Testing CRUD and FLS Enforcement
[3] Salesforce Developers Technical Library Enforcing CRUD and FLS
[4] Standards Mapping - Common Weakness Enumeration CWE ID 566
[5] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[6] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[8] Standards Mapping - FIPS200 AC
[9] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[13] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[14] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[16] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.apex.access_control_database
Abstract
Without proper access control, executing an LINQ statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used to specify the value of a primary key in an LINQ query.
Example 1: The following code executes an LINQ query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...

int16 id = System.Convert.ToInt16(invoiceID.Text);
var invoice = OrderSystem.getInvoices()
.Where(new Invoice { invoiceID = id });
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.dotnet.access_control_linq
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
CMyRecordset rs(&dbms);
rs.PrepareSQL("SELECT * FROM invoices WHERE id = ?");
rs.SetParam_int(0,atoi(r.Lookup("invoiceID").c_str()));
rs.SafeExecuteSQL();
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.cpp.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
ACCEPT ID.
EXEC SQL
DECLARE C1 CURSOR FOR
SELECT INVNO, INVDATE, INVTOTAL
FROM INVOICES
WHERE INVOICEID = :ID
END-EXEC.
...


The problem is that the developer has failed to consider all of the possible values of ID. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.cobol.access_control_database
Abstract
Without proper access control, executing a deleteDatabase method that contains a user-controlled database name can allow an attacker to delete any database.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a database name.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 566
[2] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[3] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[5] Standards Mapping - FIPS200 AC
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[11] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[13] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[14] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[15] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[16] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[18] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[31] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.dart.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can give an attacker access to unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
id := request.FormValue("invoiceID")
query := "SELECT * FROM invoices WHERE id = ?";
rows, err := db.Query(query, id)
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 566
[2] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[3] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[5] Standards Mapping - FIPS200 AC
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[11] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[13] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[14] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[15] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[16] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[18] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[31] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.golang.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
id = Integer.decode(request.getParameter("invoiceID"));
String query = "SELECT * FROM invoices WHERE id = ?";
PreparedStatement stmt = conn.prepareStatement(query);
stmt.setInt(1, id);
ResultSet results = stmt.execute();
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.

Some think that in the mobile world, classic web application vulnerabilities, such as database access control errors, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 2: The following code adapts Example 1 to the Android platform.


...
String id = this.getIntent().getExtras().getString("invoiceID");
String query = "SELECT * FROM invoices WHERE id = ?";
SQLiteDatabase db = this.openOrCreateDatabase("DB", MODE_PRIVATE, null);
Cursor c = db.rawQuery(query, new Object[]{id});
...


A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.java.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
var id = document.form.invoiceID.value;
var query = "SELECT * FROM invoices WHERE id = ?";
db.transaction(function (tx) {
tx.executeSql(query,[id]);
}
)
...



The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.javascript.access_control_database
Abstract
Without proper access control, the identified method can execute a SQL statement that contains an attacker-controlled primary key, thereby allowing the attacker to access unauthorized records.
Explanation
Database access control errors occur when:

1.Data enters a program from an untrusted source.


2.The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier. The identifier is selected from a list of all invoices associated with the current authenticated user.


...

NSManagedObjectContext *context = [appDelegate managedObjectContext];
NSEntityDescription *entityDesc = [NSEntityDescription entityForName:@"Invoices" inManagedObjectContext:context];
NSFetchRequest *request = [[NSFetchRequest alloc] init];
[request setEntity:entityDesc];
NSPredicate *pred = [NSPredicate predicateWithFormat:@"(id = %@)", invoiceId.text];
[request setPredicate:pred];

NSManagedObject *matches = nil;
NSError *error;
NSArray *objects = [context executeFetchRequest:request error:&error];

if ([objects count] == 0) {
status.text = @"No records found.";
} else {
matches = [objects objectAtIndex:0];
invoiceReferenceNumber.text = [matches valueForKey:@"invRefNum"];
orderNumber.text = [matches valueForKey:@"orderNumber"];
status.text = [NSString stringWithFormat:@"%d records found", [objects count]];
}
[request release];
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.objc.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
$id = $_POST['id'];
$query = "SELECT * FROM invoices WHERE id = ?";
$stmt = $mysqli->prepare($query);
$stmt->bind_param('ss',$id);
$stmt->execute();
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.

A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.php.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


procedure get_item (
itm_cv IN OUT ItmCurTyp,
id in varchar2)
is
open itm_cv for ' SELECT * FROM items WHERE ' ||
'invoiceID = :invid' ||
using id;
end get_item;


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.sql.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
id = request.POST['id']
c = db.cursor()
stmt = c.execute("SELECT * FROM invoices WHERE id = %s", (id,))
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.python.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
id = req['invoiceID'].respond_to(:to_int)
query = "SELECT * FROM invoices WHERE id=?"
stmt = conn.prepare(query)
stmt.execute(id)
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.ruby.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


def searchInvoice(value:String) = Action.async { implicit request =>
val result: Future[Seq[Invoice]] = db.run {
sql"select * from invoices where id=$value".as[Invoice]
}
...
}


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.scala.access_control_database
Abstract
Without proper access control, the identified method can execute a SQL statement that contains an attacker-controlled primary key, thereby allowing the attacker to access unauthorized records.
Explanation
Database access control errors occur when:

1.Data enters a program from an untrusted source.


2.The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
let fetchRequest = NSFetchRequest()
let entity = NSEntityDescription.entityForName("Invoices", inManagedObjectContext: managedContext)
fetchRequest.entity = entity
let pred : NSPredicate = NSPredicate(format:"(id = %@)", invoiceId.text)
fetchRequest.setPredicate = pred
do {
let results = try managedContext.executeFetchRequest(fetchRequest)
let result : NSManagedObject = results.first!
invoiceReferenceNumber.text = result.valueForKey("invRefNum")
orderNumber.text = result.valueForKey("orderNumber")
status.text = "\(results.count) records found"
} catch let error as NSError {
print("Error \(error)")
}
...


The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.swift.access_control_database
Abstract
Without proper access control, executing a SQL statement that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
Database access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in a SQL query.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
id = Request.Form("invoiceID")
strSQL = "SELECT * FROM invoices WHERE id = ?"
objADOCommand.CommandText = strSQL
objADOCommand.CommandType = adCmdText
set objADOParameter = objADOCommand.CreateParameter("id" , adString, adParamInput, 0, 0)
objADOCommand.Parameters("id") = id
...



The problem is that the developer has failed to consider all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] Standards Mapping - Common Weakness Enumeration CWE ID 566
[3] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[6] Standards Mapping - FIPS200 AC
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), AC-23 Data Mining Protection (P0), SC-3 Security Function Isolation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, AC-23 Data Mining Protection, SC-3 Security Function Isolation
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3), 13.4.2 GraphQL and other Web Service Data Layer Security Requirements (L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[12] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-AUTH-1
[14] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[15] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[16] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[17] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[19] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[32] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 863
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.vb.access_control_database
Abstract
Without proper access control, executing an EXEC DLI command that contains a user-controlled primary key can allow an attacker to view unauthorized records.
Explanation
DLI access control errors occur when:

1. Data enters a program from an untrusted source.


2. The data is used to specify the value of a primary key in an EXEC DLI command.
Example 1: The following code uses a parameterized statement, which escapes metacharacters and prevents injection vulnerabilities, to construct and execute an EXEC DLI command that retrieves an invoice matching the specified identifier. The identifier is selected from a list of all invoices associated with the current authenticated user.


...
ACCEPT ID.
EXEC DLI
GU
SEGMENT(INVOICES)
WHERE (INVOICEID = ID)
END-EXEC.
...


The problem is that the developer has failed to consider all of the possible values of ID. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker might bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 639
[2] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[3] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[5] Standards Mapping - FIPS200 AC
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), SC-3 Security Function Isolation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, SC-3 Security Function Isolation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[11] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[12] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[13] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[14] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[15] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[16] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[17] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[54] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.cobol.access_control_dli
Abstract
Allowing user input to control the fields of the MQ object descriptor could enable an attacker to access or modify otherwise protected MQ resources.
Explanation
If an attacker can supply values that the application then uses to determine what kinds of authorization checks to perform on opening an MQ object, the potential exists for an attacker to pass all the access control checks when attempting to open otherwise inaccessible object.

Example 1: The following COBOL code snippet reads values from the terminal and uses them to control MQOD-ALTERNATEUSERID and MQOD-ALTERNATESECURITYID fields of the MQ object descriptor.


...
10 MQOD.
** Alternate user identifier
15 MQOD-ALTERNATEUSERID PIC X(12).
** Alternate security identifier
15 MQOD-ALTERNATESECURITYID PIC X(40).
...
...
ACCEPT MQOD-ALTERNATEUSERID.
ACCEPT MQOD-ALTERNATESECURITYID.
CALL 'MQOPEN' USING HCONN, MQOD, OPTS, HOBJ, COMPOCODE REASON.
...


In this example, an attacker could supply values that allow them to pass access control checks on the MQ object eing opened.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 639
[2] Standards Mapping - Common Weakness Enumeration Top 25 2023 [24] CWE ID 863
[3] Standards Mapping - Common Weakness Enumeration Top 25 2024 [18] CWE ID 863
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000213, CCI-001084, CCI-002165
[5] Standards Mapping - FIPS200 AC
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-3 Access Enforcement (P1), CM-5 Access Restrictions for Change (P1), SC-3 Security Function Isolation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-3 Access Enforcement, CM-5 Access Restrictions for Change, SC-3 Security Function Isolation
[9] Standards Mapping - OWASP Application Security Verification Standard 4.0 4.1.2 General Access Control Design (L1 L2 L3), 4.1.3 General Access Control Design (L1 L2 L3), 4.1.5 General Access Control Design (L1 L2 L3), 4.2.1 Operation Level Access Control (L1 L2 L3)
[10] Standards Mapping - OWASP Mobile 2014 M5 Poor Authorization and Authentication
[11] Standards Mapping - OWASP Mobile 2024 M3 Insecure Authentication/Authorization
[12] Standards Mapping - OWASP Top 10 2004 A2 Broken Access Control
[13] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[14] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[15] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[16] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[17] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.4 - Authentication and Access Control
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.4 - Authentication and Access Control
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.4 - Authentication and Access Control, Control Objective C.2.3 - Web Software Access Controls
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3480.1 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3480.1 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3480.1 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3480.1 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3480.1 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3480.1 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3480.1 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-002360 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000460 CAT I, APSC-DV-000470 CAT II, APSC-DV-001410 CAT II, APSC-DV-002360 CAT II
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authorization (WASC-02)
[54] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authorization
desc.dataflow.cobol.access_control_mq
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the registry key APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
CALL FUNCTION 'REGISTRY_GET'
EXPORTING
KEY = 'APPHOME'
IMPORTING
VALUE = home.

CONCATENATE home INITCMD INTO cmd.
CALL 'SYSTEM' ID 'COMMAND' FIELD cmd ID 'TAB' FIELD TABL[].
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the registry entry APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the registry, if an attacker can control the value of the registry key APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
btype = request->get_form_field( 'backuptype' )
CONCATENATE `/K 'c:\\util\\rmanDB.bat ` btype `&&c:\\util\\cleanup.bat'` INTO cmd.

CALL FUNCTION 'SXPG_COMMAND_EXECUTE_LONG'
EXPORTING
commandname = cmd_exe
long_params = cmd_string
EXCEPTIONS
no_permission = 1
command_not_found = 2
parameters_too_long = 3
security_risk = 4
OTHERS = 5.
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the function module SXPG_COMMAND_EXECUTE_LONG will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to CALL 'SYSTEM'. After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
MOVE 'make' to cmd.
CALL 'SYSTEM' ID 'COMMAND' FIELD cmd ID 'TAB' FIELD TABL[].
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to CALL 'SYSTEM'. If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] SAP OSS notes 677435, 686765, 866732, 854060, 1336776, 1520462, 1530983 and related notes.
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[8] Standards Mapping - FIPS200 SI
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2010 A1 Injection
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A1 Injection
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.abap.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code uses input from configuration file to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
var fs:FileStream = new FileStream();
fs.open(new File(String(configStream.readObject())+".txt"), FileMode.READ);
home = String(fs.readObject(home));
var cmd:String = home + INITCMD;
fscommand("exec", cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the contents of the configuration file configStream to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the file, if an attacker can control that value, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var btype:String = String(params["backuptype"]);
var cmd:String = "cmd.exe /K \"c:\\util\\rmanDB.bat " + btype + "&&c:\\util\\cleanup.bat\"";
fscommand("exec", cmd);
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the fscommand() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to fscommnd(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
fscommand("exec", "make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to fscommand(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.actionscript.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
string val = Environment.GetEnvironmentVariable("APPHOME");
string cmd = val + INITCMD;
ProcessStartInfo startInfo = new ProcessStartInfo(cmd);
Process.Start(startInfo);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
string btype = BackupTypeField.Text;
string cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat"
+ btype + "&&c:\\util\\cleanup.bat\""));
Process.Start(cmd);
...


The problem here is that the program does not do any validation on BackupTypeField. Typically the Process.Start() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Process.Start(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that gives users access to an interface through which they can update their password on the system. Part of the process for updating passwords in this network environment is to run an update.exe command, as follows:


...
Process.Start("update.exe");
...


The problem here is that the program does not specify an absolute path and fails to clean its environment prior to executing the call to Process.start(). If an attacker can modify the $PATH variable to point to a malicious binary called update.exe and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's update.exe will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.dotnet.command_injection
Abstract
Executing commands that include unvalidated user input can cause an application to act on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, in which an attacker explicitly controls the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.


2. The data is part of a string that is executed as a command by the application.


3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following simple program accepts a filename as a command line argument and displays the contents of the file back to the user. The program is installed setuid root because it is intended for use as a learning tool to allow system administrators in-training to inspect privileged system files without giving them the ability to modify them or damage the system.


int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);
}


Because the program runs with root privileges, the call to system() also executes with root privileges. If a user specifies a standard filename, the call works as expected. However, if an attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a lack of arguments and then plows on to recursively delete the contents of the root partition.

Example 2: The following code from a privileged program uses the environment variable $APPHOME to determine the application's installation directory and then executes an initialization script in that directory.


...
char* home=getenv("APPHOME");
char* cmd=(char*)malloc(strlen(home)+strlen(INITCMD));
if (cmd) {
strcpy(cmd,home);
strcat(cmd,INITCMD);
execl(cmd, NULL);
}
...


As in Example 1, the code in this example allows an attacker to execute arbitrary commands with the elevated privilege of the application. In this example, the attacker may modify the environment variable $APPHOME to specify a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, by controlling the environment variable the attacker may fool the application into running malicious code.

The attacker is using the environment variable to control the command that the program invokes, so the effect of the environment is explicit in this example. We will now turn our attention to what can happen when the attacker may change the way the command is interpreted.

Example 3: The following code is from a web-based CGI utility that allows users to change their passwords. The password update process under NIS includes running make in the /var/yp directory. Note that since the program updates password records, it has been installed setuid root.

The program invokes make as follows:


system("cd /var/yp && make &> /dev/null");


Unlike the previous examples, the command in this example is hardcoded, so an attacker cannot control the argument passed to system(). However, since the program does not specify an absolute path for make and does not scrub any environment variables prior to invoking the command, the attacker may modify their $PATH variable to point to a malicious binary named make and execute the CGI script from a shell prompt. And since the program has been installed setuid root, the attacker's version of make now runs with root privileges.

On Windows, additional risks are present.

Example 4: When invoking CreateProcess() either directly or via a call to one of the functions in the _spawn() family, care must be taken when there is a space in an executable or path.


...
LPTSTR cmdLine = _tcsdup(TEXT("C:\\Program Files\\MyApplication -L -S"));
CreateProcess(NULL, cmdLine, ...);
...


Because of the way CreateProcess() parses spaces, the first executable the operating system will try to execute is Program.exe, not MyApplication.exe. Therefore, if an attacker is able to install a malicious application called Program.exe on the system, any program that incorrectly calls CreateProcess() using the Program Files directory will run this application instead of the intended one.

The environment plays a powerful role in the execution of system commands within programs. Functions like system(), exec(), and CreateProcess() use the environment of the program that calls them, and therefore attackers have a potential opportunity to influence the behavior of these calls.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.cpp.command_injection
Abstract
Executing commands without specifying an absolute path can enable an attacker to use the program to execute a malicious binary by changing $PATH or other aspects of the program's execution environment.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls the command.

- An attacker can control parameters to the program.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the second scenario, in which an attacker can change the meaning of the command by changing an environment variable or by inserting a malicious executable early on the search path. Command injection vulnerabilities of this type occur when:

1. An attacker modifies an application's environment.

2. The application executes a command without specifying an absolute path or verifying the binary being executed.



3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: This example demonstrates what can happen when the attacker can change how a command is interpreted. The code is from a web-based CGI utility that allows users to change their passwords. The password update process under NIS includes running make in the /var/yp directory. Note that because the program updates password records, it has been installed setuid root.

The program invokes make as follows:


MOVE "cd /var/yp && make &> /dev/null" to command-line
CALL "CBL_EXEC_RUN_UNIT" USING command-line
length of command-line
run-unit-id
stack-size
flags


The command in this example is hardcoded, so an attacker cannot control the argument passed to CBL_EXEC_RUN_UNIT. However, because the program does not specify an absolute path for make and does not scrub its environment variables prior to invoking the command, the attacker can modify their $PATH variable to point to a malicious binary named make and execute the CGI script from a shell prompt. In addition, because the program has been installed setuid root, the attacker's version of make now runs with root privileges.

Example 2: The following code uses an environment variable to determine the temporary directory that contains the file to print with the pdfprint command.


DISPLAY "TEMP" UPON ENVIRONMENT-NAME
ACCEPT ws-temp-dir FROM ENVIRONMENT-VARIABLE
STRING "pdfprint " DELIMITED SIZE
ws-temp-dir DELIMITED SPACE
"/" DELIMITED SIZE
ws-pdf-filename DELIMITED SPACE
x"00" DELIMITED SIZE
INTO cmd-buffer
CALL "SYSTEM" USING cmd-buffer


Similar to the previous example, the command is hardcoded. However, because the program does not specify an absolute path for pdfprint, the attacker can modify their $PATH variable to point to a malicious binary. Furthermore, while the DELIMITED SPACE phrases prevent embedded spaces in ws-temp-dir and ws-pdf-filename, there could be shell metacharacters (such as &&) embedded in either.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.semantic.cobol.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code allows an attacker to specify arbitrary commands via the cmd request parameter.


...
<cfset var="#url.cmd#">
<cfexecute name = "C:\windows\System32\cmd.exe"
arguments = "/c #var#"
timeout = "1"
variable="mycmd">
</cfexecute>
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.cfml.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker can control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
final cmd = String.fromEnvironment('APPHOME');
await Process.run(cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.dart.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls the command.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker can control the executed command. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.


2. The data is used as or as part of a string that represents a command the application executes.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code runs a user-controller command.


cmdName := request.FormValue("Command")
c := exec.Command(cmdName)
c.Run()
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.golang.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K
\"c:\\util\\rmanDB.bat "+btype+"&&c:\\util\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
System.Runtime.getRuntime().exec("make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.

Some think that in the mobile world, classic vulnerabilities, such as command injection, do not make sense -- why would a user attack him or herself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 4: The following code reads commands to be executed from an Android intent.


...
String[] cmds = this.getIntent().getStringArrayExtra("commands");
Process p = Runtime.getRuntime().exec("su");
DataOutputStream os = new DataOutputStream(p.getOutputStream());
for (String cmd : cmds) {
os.writeBytes(cmd+"\n");
}
os.writeBytes("exit\n");
os.flush();
...


On a rooted device, a malicious application can force a victim application to execute arbitrary commands with super user privileges.
References
[1] IDS07-J. Sanitize untrusted data passed to the Runtime.exec() method CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[8] Standards Mapping - FIPS200 SI
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2010 A1 Injection
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A1 Injection
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.java.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.


2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the environment variable APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


var cp = require('child_process');
...
var home = process.env('APPHOME');
var cmd = home + INITCMD;
child = cp.exec(cmd, function(error, stdout, stderr){
...
});
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Since the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


var cp = require('child_process');
var http = require('http');
var url = require('url');

function listener(request, response){
var btype = url.parse(request.url, true)['query']['backuptype'];
if (btype !== undefined){
cmd = "c:\\util\\rmanDB.bat" + btype;
cp.exec(cmd, function(error, stdout, stderr){
...
});
}
...
}
...
http.createServer(listener).listen(8080);


The problem here is that the program does not do any validation on the backuptype parameter read from the user apart from verifying its existence. After the shell is invoked, it may allow for the execution of multiple commands, and due to the nature of the application, it will run with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
require('child_process').exec("make", function(error, stdout, stderr){
...
});
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to child_process.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.javascript.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
$home = $_ENV['APPHOME'];
$cmd = $home . $INITCMD;
system(cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
$btype = $_GET['backuptype'];
$cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat " . $btype . "&&c:\\util\\cleanup.bat\"";
system(cmd);
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
$result = shell_exec("make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.php.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example: The following code defines a T-SQL stored procedure that, when called with untrusted data, will execute a system command controlled by an attacker.


...
CREATE PROCEDURE dbo.listFiles (@path NVARCHAR(200))
AS

DECLARE @cmd NVARCHAR(500)
SET @cmd = 'dir ' + @path

exec xp_cmdshell @cmd

GO
...
References
[1] xp_cmdshell
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[8] Standards Mapping - FIPS200 SI
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2010 A1 Injection
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A1 Injection
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.sql.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
home = os.getenv('APPHOME')
cmd = home.join(INITCMD)
os.system(cmd);
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
btype = req.field('backuptype')
cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat " + btype + "&&c:\\util\\cleanup.bat\""
os.system(cmd);
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
result = os.system("make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to os.system(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.python.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.


2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
home = ENV['APPHOME']
cmd = home + INITCMD
Process.spawn(cmd)
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
btype = req['backuptype']
cmd = "C:\\util\\rmanDB.bat #{btype} &&C:\\util\\cleanup.bat"
spawn(cmd)
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. After the shell is invoked via Kernel.spawn, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
system("make")
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to Kernel.system(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.ruby.command_injection
Abstract
Executing commands that include unvalidated user input can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the second scenario, the possibility that an attacker may be able to change the meaning of the command by changing an environment variable or by putting a malicious executable early in the search path. Command injection vulnerabilities of this type occur when:

1. An attacker modifies an application's environment.

2. The application executes a command without specifying an absolute path or verifying the binary being executed.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code is from a web application that provides an interface through which users can update their password on the system.


def changePassword(username: String, password: String) = Action { request =>
...
s'echo "${password}" | passwd ${username} --stdin'.!
...
}
References
[1] IDS07-J. Sanitize untrusted data passed to the Runtime.exec() method CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[6] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[7] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[8] Standards Mapping - FIPS200 SI
[9] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2010 A1 Injection
[23] Standards Mapping - OWASP Top 10 2013 A1 Injection
[24] Standards Mapping - OWASP Top 10 2017 A1 Injection
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.scala.command_injection
Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the command that is executed. Command injection vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that is executed by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory.


...
Dim cmd
Dim home

home = Environ$("AppHome")
cmd = home & initCmd
Shell cmd, vbNormalFocus
...


The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.


...
btype = Request.Form("backuptype")
cmd = "cmd.exe /K " & Chr(34) & "c:\util\rmanDB.bat " & btype & "&&c:\util\cleanup.bat" & Chr(34) & ";
Shell cmd, vbNormalFocus
...


The problem here is that the program does not do any validation on the backuptype parameter read from the user. After the shell is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker passes a string of the form "&& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.

Example 3: The following code is from a web application that provides an interface through which users can update their password on the system. Part of the process for updating passwords in certain network environments is to run a make command in the /var/yp directory.


...
$result = shell_exec("make");
...


The problem here is that the program does not specify an absolute path for make and fails to clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 77, CWE ID 78
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [11] CWE ID 078
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [10] CWE ID 078
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [5] CWE ID 078, [25] CWE ID 077
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [7] CWE ID 078, [13] CWE ID 077
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[7] Standards Mapping - FIPS200 SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3, Rule 21.21
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 21.2.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.3 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.5 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.2.8 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.8 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3), 12.3.5 File Execution Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[19] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 078
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 078
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 078
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002510 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002510 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 OS Commanding (WASC-31)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 OS Commanding
desc.dataflow.vb.command_injection
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ABAP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
DATA: BEGIN OF itab_employees,
eid TYPE employees-itm,
name TYPE employees-name,
END OF itab_employees,
itab LIKE TABLE OF itab_employees.
...
itab_employees-eid = '...'.
APPEND itab_employees TO itab.

SELECT *
FROM employees
INTO CORRESPONDING FIELDS OF TABLE itab_employees
FOR ALL ENTRIES IN itab
WHERE eid = itab-eid.
ENDSELECT.
...
response->append_cdata( 'Employee Name: ').
response->append_cdata( itab_employees-name ).
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following ABAP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
eid = request->get_form_field( 'eid' ).
...
response->append_cdata( 'Employee ID: ').
response->append_cdata( eid ).
...


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] SAP OSS notes 1582870, 1582867 and related notes for ABAP XSS support
[2] SAP OSS Notes 822881, 1600317, 1640092, 1671470 and 1638779 for XSS support in BSPs
[3] Understanding Malicious Content Mitigation for Web Developers CERT
[4] HTML 4.01 Specification W3
[5] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[21] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.abap.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ActionScript code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


stmt.sqlConnection = conn;
stmt.text = "select * from emp where id="+eid;
stmt.execute();
var rs:SQLResult = stmt.getResult();
if (null != rs) {
var name:String = String(rs.data[0]);
var display:TextField = new TextField();
display.htmlText = "Employee Name: " + name;
}


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following ActionScript code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var eid:String = String(params["eid"]);
...
var display:TextField = new TextField();
display.htmlText = "Employee ID: " + eid;
...


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.actionscript.cross_site_scripting_persistent
Abstract
Sending unvalidated data to the web browser may lead to the execution of malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent XSS, an untrusted source is most frequently the results of a database query, and in the case of Reflected XSS - a web request.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content usually is a segment of JavaScript code, but can also be HML, Flash or any other active content that might be executed by the browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Apex code segment queries a database for a contact name with a given ID and returns the corresponding employee's name, which later gets printed by the Visualforce code.


...
variable = Database.query('SELECT Name FROM Contact WHERE id = ID');
...

<div onclick="this.innerHTML='Hello {!variable}'">Click me!</div>


This code behaves correctly when the values of name are well defined like just alphanumeric characters, but does nothing to check for malicious data. Even read from a database, the value should be properly validated because the content of the database can be originated from user-supplied data. This way, an attacker can have malicious commands executed in the user's web browser without the need to interact with the victim like in Reflected XSS. This type of attack, known as Stored XSS (or Persistent), can be very hard to detect since the data is indirectly provided to the vulnerable function and also have a higher impact due to the possibility to affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following Visualforce code segment reads an HTTP request parameter, username, and displays it to the user.


<script>
document.write('{!$CurrentPage.parameters.username}')
</script>


The code in this example was intended to receive only alphanumeric text and display it. However, if username contains metacharacters or source code, it will be executed by the web browser.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are two vectors by which an XSS attack can be executed:

- As in Example 1, the database or other data store can provide dangerous data to the application that will be included in dynamic content. From the attacker's perspective, the best place to store malicious content is an area accessible to all users specially those with elevated privileges, who are more likely to handle sensitive information or perform critical operations.

- As in Example 2, data is read from the HTTP request and reflected back in the HTTP response. Reflected XSS occurs when an attacker can have dangerous content delivered to a vulnerable web application and then reflected back to the user and execute by his browser. The most common mechanism to deliver malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to the victim. URLs crafted this way are the core of many phishing schemes, where the attacker lures the victim to visit the URL. After the site reflects the content back to the user, it is executed and can perform several actions like forward private sensitive information, execute unauthorized operations on the victim computer etc.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Salesforce Developers Technical Library Secure Coding Guidelines - Cross Site Scripting
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.apex.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP.NET Web Form queries a database for an employee with a given employee ID and prints the name corresponding with the ID.

<script runat="server">
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;
</script>


Where EmployeeName is a form control defined as follows:


<form runat="server">
...
<asp:Label id="EmployeeName" runat="server">
...
</form>
Example 2: The following ASP.NET code segment is functionally equivalent to Example 1, but implements all of the form elements programmatically.

protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;


These code examples function correctly when the values of name are well-behaved, but they do nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 3: The following ASP.NET Web Form reads an employee ID number from an HTTP request and displays it to the user.

<script runat="server">
...
EmployeeID.Text = Login.Text;
...
</script>


Where Login and EmployeeID are form controls defined as follows:


<form runat="server">
<asp:TextBox runat="server" id="Login"/>
...
<asp:Label runat="server" id="EmployeeID"/>
</form>
Example 4: The following ASP.NET code segment shows the programmatic way to implement Example 3.

protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;


As in Example 1 and Example 2, these examples operate correctly if Login contains only standard alphanumeric text. If Login has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks in order to lure victims into clicking a link. When the victims click the link, they unwittingly reflect the malicious content through the vulnerable web application and back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1 and Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3 and Example 4, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including ASP.NET Request Validation and WCF). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. With ASP.NET Request Validation, we also provide evidence for when validation is explicitly disabled. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Anti-Cross Site Scripting Library MSDN
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.dotnet.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.

2. The data is included in dynamic content that is sent to a web browser without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
EXEC SQL
SELECT NAME
INTO :ENAME
FROM EMPLOYEE
WHERE ID = :EID
END-EXEC.

EXEC CICS
WEB SEND
FROM(ENAME)
...
END-EXEC.
...


The code in this example functions correctly when the values of ENAME are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of ENAME is read from a database, whose contents are apparently managed by the application. However, if the value of ENAME originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Stored XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following code segment reads an employee ID, EID, from an HTML form and displays it to the user.


...
EXEC CICS
WEB READ
FORMFIELD(ID)
VALUE(EID)
...
END-EXEC.

EXEC CICS
WEB SEND
FROM(EID)
...
END-EXEC.
...


As in Example 1, this code operates correctly if EID contains only standard alphanumeric text. If EID has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Stored XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker might perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTML Form and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cobol.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following CFML code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

 
<cfquery name="matchingEmployees" datasource="cfsnippets">
SELECT name
FROM Employees
WHERE eid = '#Form.eid#'
</cfquery>
<cfoutput>
Employee Name: #name#
</cfoutput>


The code in this example functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following CFML code segment reads an employee ID, eid, from a web form and displays it to the user.


<cfoutput>
Employee ID: #Form.eid#
</cfoutput>


As in Example 1, this code operates correctly if Form.eid contains only standard alphanumeric text. If Form.eid has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] ColdFusion Developer Center: Security Macromedia
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cfml.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Go code segment reads a user name, user, from an HTTP request and displays it to the user.

func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", user)
}


The code in this example operates correctly if user contains only standard alphanumeric text. If user has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Go code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", name)
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As shown in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As shown in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.golang.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>

Employee Name: <%= name %>


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Node.js code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


var http = require('http');
...

function listener(request, response){
connection.query('SELECT * FROM emp WHERE eid="' + eid + '"', function(err, rows){
if (!err && rows.length > 0){
response.write('<p>Welcome, ' + rows[0].name + '!</p>');
}
...
});
...
}
...
http.createServer(listener).listen(8080);


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following Node.js code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


var http = require('http');
var url = require('url');

...

function listener(request, response){
var eid = url.parse(request.url, true)['query']['eid'];
if (eid !== undefined){
response.write('<p>Welcome, ' + eid + '!</p>');
}
...
}
...
http.createServer(listener).listen(8080);


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.
As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.javascript.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name in the servlet response.


...
val stmt: Statement = conn.createStatement()
val rs: ResultSet = stmt.executeQuery("select * from emp where id=$eid")
rs.next()
val name: String = rs.getString("name")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee Name: $name")
...
out.close()
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following code reads an employee ID, eid, from an HTTP servlet request, then displays the value back to the user in the servlet's response.


val eid: String = request.getParameter("eid")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee ID: $eid")
...
out.close()
...


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(url)
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.


A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Spring MVC). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.kotlin.cross_site_scripting_persistent
Abstract
The method sends unvalidated data to a web browser which can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store while in the case of reflected XSS it is typically through user components, URL scheme handlers, or external notifications.


2. The data is included in dynamic content that is sent to a UIWebView component without being validated.


The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.



This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following Objective-C code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


...
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {

UIWebView *webView;
NSString *partAfterSlashSlash = [[url host] stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
webView = [[UIWebView alloc] initWithFrame:CGRectMake(0.0,0.0,360.0, 480.0)];
[webView loadHTMLString:partAfterSlashSlash baseURL:nil]

...


As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.objc.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following PHP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<?php...
$con = mysql_connect($server,$user,$password);
...
$result = mysql_query("select * from emp where id="+eid);
$row = mysql_fetch_array($result)
echo 'Employee name: ', mysql_result($row,0,'name');
...
?>


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following PHP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<?php
$eid = $_GET['eid'];
...
?>
...
<?php
echo "Employee ID: $eid";
?>


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.php.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
SELECT ename INTO name FROM emp WHERE id = eid;
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee Name: ' || name || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
-- Assume QUERY_STRING looks like EID=EmployeeID
eid := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 5);
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee ID: ' || eid || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.sql.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Python code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


req = self.request() # fetch the request object
eid = req.field('eid',None) # tainted request message
...
self.writeln("Employee ID:" + eid)


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Python code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
cursor.execute("select * from emp where id="+eid)
row = cursor.fetchone()
self.writeln('Employee name: ' + row["emp"]')
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.python.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.
Example 1: The following Ruby code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
rs = conn.exec_params("select * from emp where id=?", eid)
...
Rack::Response.new.finish do |res|
...
rs.each do |row|
res.write("Employee name: #{escape(row['name'])}")
...
end
end
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Alternative types of XSS may not come from a database, but other places of potential user input. The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 2: The following Ruby code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


eid = req.params['eid'] #gets request parameter 'eid'
Rack::Response.new.finish do |res|
...
res.write("Employee ID: #{eid}")
end


As in Example 1, the code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS, however please note that if using Rack::Request#params() as in Example 2, this sees both GET and POST parameters, so may be vulnerable to various types of attacks other than just having the malicious code appended to the URL.
As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.ruby.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Play controller code segment reads an employee ID, eid, from a database query and displays it to the user.


def getEmployee = Action { implicit request =>

val employee = getEmployeeFromDB()
val eid = employee.id

if (employee == Null) {
val html = Html(s"Employee ID ${eid} not found")
Ok(html) as HTML
}
...
}
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] INJECT-3: XML and HTML generation requires care Oracle
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.scala.cross_site_scripting_persistent
Abstract
The method sends unvalidated data to a web browser which can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store while in the case of reflected XSS it is typically through user components, URL scheme handlers, or external notifications.


2. The data is included in dynamic content that is sent to a UIWebView component without being validated.


The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.



This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following code reads the contents of a UITextField and displays it to the user within a WKWebView:


...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...


The code in this example operates without issues if the text within inputTextField contains only standard alphanumeric text. If the text within inputTextField includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone provide input that can cause malicious code to run on their own device? The real danger is that an attacker may use email or social engineering tricks to lure victims into performing such actions. When this is successful, the victims unwittingly reflect the malicious content through the vulnerable web application back to their own devices. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following Swift code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = UIWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...


As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.swift.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of persistent (also known as stored) XSS, the untrusted source is typically a database or other back-end data store, while in the case of reflected XSS it is typically a web request.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
eid = Request("eid")
strSQL = "Select * from emp where id=" & eid
objADORecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
while not objRec.EOF
Response.Write "Employee Name:" & objADORecordSet("name")
objADORecordSet.MoveNext
Wend
...


This code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Example 2: The following ASP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
eid = Request("eid")
Response.Write "Employee ID:" & eid & "<br/>"
..


As in Example 1, this code operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.vb.cross_site_scripting_persistent
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ABAP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
eid = request->get_form_field( 'eid' ).
...
response->append_cdata( 'Employee ID: ').
response->append_cdata( eid ).
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ABAP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
DATA: BEGIN OF itab_employees,
eid TYPE employees-itm,
name TYPE employees-name,
END OF itab_employees,
itab LIKE TABLE OF itab_employees.
...
itab_employees-eid = '...'.
APPEND itab_employees TO itab.

SELECT *
FROM employees
INTO CORRESPONDING FIELDS OF TABLE itab_employees
FOR ALL ENTRIES IN itab
WHERE eid = itab-eid.
ENDSELECT.
...
response->append_cdata( 'Employee Name: ').
response->append_cdata( itab_employees-name ).
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] SAP OSS notes 1582870, 1582867 and related notes for ABAP XSS support
[2] SAP OSS Notes 822881, 1600317, 1640092, 1671470 and 1638779 for XSS support in BSPs
[3] Understanding Malicious Content Mitigation for Web Developers CERT
[4] HTML 4.01 Specification W3
[5] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[21] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2021 A03 Injection
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[38] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[65] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.abap.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ActionScript code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var eid:String = String(params["eid"]);
...
var display:TextField = new TextField();
display.htmlText = "Employee ID: " + eid;
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ActionScript code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


stmt.sqlConnection = conn;
stmt.text = "select * from emp where id="+eid;
stmt.execute();
var rs:SQLResult = stmt.getResult();
if (null != rs) {
var name:String = String(rs.data[0]);
var display:TextField = new TextField();
display.htmlText = "Employee Name: " + name;
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.actionscript.cross_site_scripting_reflected
Abstract
Sending unvalidated data to the web browser may lead to the execution of malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, an untrusted source is most frequently a web request, and in the case of persistent (also known as stored) XSS it is the results of a database query.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content usually is a segment of JavaScript code, but can also be HML, Flash or any other active content that might be executed by the browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Visualforce code segment reads an HTTP request parameter, username, and displays it to the user.


<script>
document.write('{!$CurrentPage.parameters.username}')
</script>


The code in this example was intended to receive only alphanumeric text and display it. However, if username contains metacharacters or source code, it will be executed by the web browser.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Apex code segment queries a database for a contact name with a given ID and returns the corresponding employee's name, which later gets printed by the Visualforce code.


...
variable = Database.query('SELECT Name FROM Contact WHERE id = ID');
...

<div onclick="this.innerHTML='Hello {!variable}'">Click me!</div>


As in Example 1, this code behaves correctly when the values of name are well defined like just alphanumeric characters, but does nothing to check for malicious data. Even read from a database, the value should be properly validated because the content of the database can be originated from user-supplied data. This way, an attacker can have malicious commands executed in the user's web browser without the need to interact with the victim like in Reflected XSS. This type of attack, known as Stored XSS (or Persistent), can be very hard to detect since the data is indirectly provided to the vulnerable function and also have a higher impact due to the possibility to affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are two vectors by which an XSS attack can be executed:

- As in Example 1, data is read from the HTTP request and reflected back in the HTTP response. Reflected XSS occurs when an attacker can have dangerous content delivered to a vulnerable web application and then reflected back to the user and execute by his browser. The most common mechanism to deliver malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to the victim. URLs crafted this way are the core of many phishing schemes, where the attacker lures the victim to visit the URL. After the site reflects the content back to the user, it is executed and can perform several actions like forward private sensitive information, execute unauthorized operations on the victim computer etc.

- As in Example 2, the database or other data store can provide dangerous data to the application that will be included in dynamic content. From the attacker's perspective, the best place to store malicious content is an area accessible to all users specially those with elevated privileges, who are more likely to handle sensitive information or perform critical operations.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Salesforce Developers Technical Library Secure Coding Guidelines - Cross Site Scripting
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.apex.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP.NET Web Form reads an employee ID number from an HTTP request and displays it to the user.

<script runat="server">
...
EmployeeID.Text = Login.Text;
...
</script>


Where Login and EmployeeID are form controls defined as follows:


<form runat="server">
<asp:TextBox runat="server" id="Login"/>
...
<asp:Label runat="server" id="EmployeeID"/>
</form>
Example 2: The following ASP.NET code segment shows the programmatic way to implement Example 1.

protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;


The code in these examples operates correctly if Login contains only standard alphanumeric text. If Login has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks in order to lure victims into clicking a link. When the victims click the link, they unwittingly reflect the malicious content through the vulnerable web application and back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 3: The following ASP.NET Web Form queries a database for an employee with a given employee ID and prints the name corresponding with the ID.

<script runat="server">
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;
</script>


Where EmployeeName is a form control defined as follows:


<form runat="server">
...
<asp:Label id="EmployeeName" runat="server">
...
</form>
Example 4: The following ASP.NET code segment is functionally equivalent to Example 3, but implements all of the form elements programmatically.

protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;


As in Example 1 and Example 2, these code examples function correctly when the values of name are well-behaved, but they nothing to prevent exploits if the values are not. Again, these can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1 and Example 2, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 3 and Example 4, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including ASP.NET Request Validation and WCF). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. With ASP.NET Request Validation, we also provide evidence for when validation is explicitly disabled. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Anti-Cross Site Scripting Library MSDN
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.dotnet.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.

2. The data is included in dynamic content that is sent to a web browser without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment reads an employee ID, EID, from an HTML form and displays it to the user.


...
EXEC CICS
WEB READ
FORMFIELD(ID)
VALUE(EID)
...
END-EXEC.

EXEC CICS
WEB SEND
FROM(EID)
...
END-EXEC.
...


The code in this example operates correctly if EID contains only standard alphanumeric text. If EID has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
EXEC SQL
SELECT NAME
INTO :ENAME
FROM EMPLOYEE
WHERE ID = :EID
END-EXEC.

EXEC CICS
WEB SEND
FROM(ENAME)
...
END-EXEC.
...


As in Example 1, this code functions correctly when the values of ENAME are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of ENAME is read from a database, whose contents are apparently managed by the application. However, if the value of ENAME originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Stored XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTML Form and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Stored XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker might perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cobol.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following CFML code segment reads an employee ID, eid, from a web form and displays it to the user.


<cfoutput>
Employee ID: #Form.eid#
</cfoutput>


The code in this example operates correctly if Form.eid contains only standard alphanumeric text. If Form.eid has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following CFML code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

 
<cfquery name="matchingEmployees" datasource="cfsnippets">
SELECT name
FROM Employees
WHERE eid = '#Form.eid#'
</cfquery>
<cfoutput>
Employee Name: #name#
</cfoutput>


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] ColdFusion Developer Center: Security Macromedia
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.cfml.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.

2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Go code segment reads a user name, user, from an HTTP request and displays it to the user.

func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
user := r.FormValue("user")
...
fmt.Fprintln(w, "Username is: ", user)
}


The code in this example operates correctly if user contains only standard alphanumeric text. If user has a value that includes metacharacters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Go code segment queries a database for an employee with a given ID and prints the corresponding employee's name.

func someHandler(w http.ResponseWriter, r *http.Request){
...
row := db.QueryRow("SELECT name FROM users WHERE id =" + userid)
err := row.Scan(&name)
...
fmt.Fprintln(w, "Username is: ", name)
}


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack affects multiple users. XSS began in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As shown in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As shown in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker can perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.golang.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
}
%>

Employee Name: <%= name %>


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
WebView webview = (WebView) findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.

A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Struts 2). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.java.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Node.js code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


var http = require('http');
var url = require('url');

...

function listener(request, response){
var eid = url.parse(request.url, true)['query']['eid'];
if (eid !== undefined){
response.write('<p>Welcome, ' + eid + '!</p>');
}
...
}
...
http.createServer(listener).listen(8080);


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Node.js code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


var http = require('http');
...

function listener(request, response){
connection.query('SELECT * FROM emp WHERE eid="' + eid + '"', function(err, rows){
if (!err && rows.length > 0){
response.write('<p>Welcome, ' + rows[0].name + '!</p>');
}
...
});
...
}
...
http.createServer(listener).listen(8080);


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.javascript.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code reads an employee ID, eid, from an HTTP servlet request, then displays the value back to the user in the servlet's response.


val eid: String = request.getParameter("eid")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee ID: $eid")
...
out.close()
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name in the servlet's response.


val stmt: Statement = conn.createStatement()
val rs: ResultSet = stmt.executeQuery("select * from emp where id=$eid")
rs.next()
val name: String = rs.getString("name")
...
val out: ServletOutputStream = response.getOutputStream()
out.print("Employee Name: $name")
...
out.close()
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

Some think that in the mobile environment, classic web application vulnerabilities, such as cross-site scripting, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code enables JavaScript in Android's WebView (by default, JavaScript is disabled) and loads a page based on the value received from an Android intent.


...
val webview = findViewById<View>(R.id.webview) as WebView
webview.settings.javaScriptEnabled = true
val url = this.intent.extras!!.getString("url")
webview.loadUrl(url)
...


If the value of url starts with javascript:, JavaScript code that follows executes within the context of the web page inside WebView.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- As in Example 3, a source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.


A number of modern web frameworks provide mechanisms to perform user input validation (including Struts and Spring MVC). To highlight the unvalidated sources of input, Fortify Secure Coding Rulepacks dynamically re-prioritize the issues Fortify Static Code Analyzer reports by lowering their probability of exploit and providing pointers to the supporting evidence whenever the framework validation mechanism is in use. We refer to this feature as Context-Sensitive Ranking. To further assist the Fortify user with the auditing process, the Fortify Software Security Research group makes available the Data Validation project template that groups the issues into folders based on the validation mechanism applied to their source of input.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.kotlin.cross_site_scripting_reflected
Abstract
The method sends unvalidated data to a web browser which can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of reflected XSS, the untrusted source is typically through user components, URL scheme handlers, or notifications, while in the case of Persistent (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a UIWebView component without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.


Example 1: The following Objective-C code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {

UIWebView *webView;
NSString *partAfterSlashSlash = [[url host] stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
webView = [[UIWebView alloc] initWithFrame:CGRectMake(0.0,0.0,360.0, 480.0)];
[webView loadHTMLString:partAfterSlashSlash baseURL:nil]

...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from a custom URL scheme and reflected back in the content of a UIWebView response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable iOS application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a custom scheme URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable app. After the app reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.objc.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following PHP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


<?php
$eid = $_GET['eid'];
...
?>
...
<?php
echo "Employee ID: $eid";
?>


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following PHP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


<?php...
$con = mysql_connect($server,$user,$password);
...
$result = mysql_query("select * from emp where id="+eid);
$row = mysql_fetch_array($result)
echo 'Employee name: ', mysql_result($row,0,'name');
...
?>


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.php.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
-- Assume QUERY_STRING looks like EID=EmployeeID
eid := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 5);
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee ID: ' || eid || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
SELECT ename INTO name FROM emp WHERE id = eid;
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Employee Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('< b >Employee Name: ' || name || '</ b >');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.sql.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Python code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


req = self.request() # fetch the request object
eid = req.field('eid',None) # tainted request message
...
self.writeln("Employee ID:" + eid)


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Python code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
cursor.execute("select * from emp where id="+eid)
row = cursor.fetchone()
self.writeln('Employee name: ' + row["emp"]')
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.python.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Ruby code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


eid = req.params['eid'] #gets request parameter 'eid'
Rack::Response.new.finish do |res|
...
res.write("Employee ID: #{eid}")
end


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS, however please note that if using Rack::Request#params() as in Example 1, this sees both GET and POST parameters, so may be vulnerable to various types of attacks other than just having the malicious code appended to the URL.

Example 2: The following Ruby code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
rs = conn.exec_params("select * from emp where id=?", eid)
...
Rack::Response.new.finish do |res|
...
rs.each do |row|
res.write("Employee name: #{escape(row['name'])}")
...
end
end
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.ruby.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following Play controller code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


def getEmployee = Action { implicit request =>
val eid = request.getQueryString("eid")

val employee = getEmployee(eid)

if (employee == Null) {
val html = Html(s"Employee ID ${eid} not found")
Ok(html) as HTML
}
...
}


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin Attacks on WebView in the Android System
[4] Erika Chin and David Wagner Bifocals: Analyzing WebView Vulnerabilities in Android Applications
[5] INJECT-3: XML and HTML generation requires care Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[22] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[25] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.scala.cross_site_scripting_reflected
Abstract
The method sends unvalidated data to a web browser which can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web page through an untrusted source. In the case of reflected XSS, the untrusted source is typically through user components, URL scheme handlers, or notifications, while in the case of Persistent (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a WKWebView component without being validated.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following code reads the contents of a UITextField and displays it to the user within a WKWebView:


...
let webView : WKWebView
let inputTextField : UITextField
webView.loadHTMLString(inputTextField.text, baseURL:nil)
...


The code in this example operates without issues if the text within inputTextField contains only standard alphanumeric text. If the text within inputTextField includes metacharacters or source code, then the input may be executed as code by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone provide input that can cause malicious code to run on their own device? The real danger is that an attacker may use email or social engineering tricks to lure victims into performing such actions. When this is successful, the victims unwittingly reflect the malicious content through the vulnerable web application back to their own devices. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following Swift code segment reads the text portion of a custom URL scheme which was passed to and invoked the application (myapp://input_to_the_application). The untrusted data in the URL is then used to render HTML output in a UIWebView component.


func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
...
let name = getQueryStringParameter(url.absoluteString, "name")
let html = "Hi \(name)"
let webView = UIWebView()
webView.loadHTMLString(html, baseURL:nil)
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}


As in Example 2, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in HTTP content. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from a user-controllable UI component and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, a source outside the target application makes a URL request using the target application's custom URL scheme, and unvalidated data from the URL request subsequently read back into the application as trusted data and included in dynamic content.

- As in Example 3, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] W/Labs Continued Adventures with iOS UIWebViews
[4] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[20] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[24] Standards Mapping - OWASP Top 10 2021 A03 Injection
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[39] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.swift.cross_site_scripting_reflected
Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.
Explanation
Cross-site scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source. In the case of reflected XSS, the untrusted source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a database or other back-end data store.


2. The data is included in dynamic content that is sent to a web user without validation.

The malicious content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML, Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.

Example 1: The following ASP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


...
eid = Request("eid")
Response.Write "Employee ID:" & eid & "<br/>"
..


The code in this example operates correctly if eid contains only standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code is executed by the web browser as it displays the HTTP response.

Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected XSS.

Example 2: The following ASP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


...
eid = Request("eid")
strSQL = "Select * from emp where id=" & eid
objADORecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
while not objRec.EOF
Response.Write "Employee Name:" & objADORecordSet("name")
objADORecordSet.MoveNext
Wend
...


As in Example 1, this code functions correctly when the values of name are well-behaved, but it does nothing to prevent exploits if they are not. Again, this code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker may execute malicious commands in the user's web browser. This type of exploit, known as Persistent (or Stored) XSS, is particularly insidious because the indirection caused by the data store makes it difficult to identify the threat and increases the possibility that the attack might affect multiple users. XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page would execute the malicious code.

As the examples demonstrate, XSS vulnerabilities are caused by code that includes unvalidated data in an HTTP response. There are three vectors by which an XSS attack can reach a victim:

- As in Example 1, data is read directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then reflected back to the user and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the user, the content is executed and proceeds to transfer private information, such as cookies that might include session information, from the user's machine to the attacker or perform other nefarious activities.

- As in Example 2, the application stores dangerous data in a database or other trusted data store. The dangerous data is subsequently read back into the application and included in dynamic content. Persistent XSS exploits occur when an attacker injects dangerous content into a data store that is later read and included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user.

- A source outside the application stores dangerous data in a database or other data store, and the dangerous data is subsequently read back into the application as trusted data and included in dynamic content.
References
[1] Understanding Malicious Content Mitigation for Web Developers CERT
[2] HTML 4.01 Specification W3
[3] Standards Mapping - Common Weakness Enumeration CWE ID 79, CWE ID 80
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [2] CWE ID 079
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [1] CWE ID 079
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [2] CWE ID 079
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [2] CWE ID 079
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [2] CWE ID 079
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [1] CWE ID 079
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.3 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.6 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Top 10 2004 A4 Cross Site Scripting
[19] Standards Mapping - OWASP Top 10 2007 A1 Cross Site Scripting (XSS)
[20] Standards Mapping - OWASP Top 10 2010 A2 Cross-Site Scripting (XSS)
[21] Standards Mapping - OWASP Top 10 2013 A3 Cross-Site Scripting (XSS)
[22] Standards Mapping - OWASP Top 10 2017 A7 Cross-Site Scripting (XSS)
[23] Standards Mapping - OWASP Top 10 2021 A03 Injection
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.7
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.7
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.7
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.7
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.7
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 079
[37] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 079
[38] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 079
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3580 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3580 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3580 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3580 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3580 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3580 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3580 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002490 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002490 CAT I, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Cross-Site Scripting (WASC-08)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Cross-Site Scripting
desc.dataflow.vb.cross_site_scripting_reflected
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author = request->get_form_field( 'author' ).
response->set_cookie( name = 'author' value = author ).
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.abap.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation, or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently in an HTTP request.


2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code sets an HTTP header whose name and value could be controlled by an attacker:


@HttpGet
global static void doGet() {
...
Map<String, String> params = ApexPages.currentPage().getParameters();

RestResponse res = RestContext.response;
res.addHeader(params.get('name'), params.get('value'));
...
}


Assuming a name/value pair consisting of author and Jane Smith, the HTTP response including this header might take the following form:


HTTP/1.1 200 OK
...
author:Jane Smith
...


However, because the value of the header is formed from unvalidated user input, an attacker might submit a malicious name/value pair, such as HTTP/1.1 200 OK\r\n...foo and bar, then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker can make a single request to a vulnerable server that causes the server to create two responses, the second of which might be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker might leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker might provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: After attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker might cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks such as Cross-Site Request Forgery, attackers might change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.apex.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers and frameworks will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Microsoft's .NET framework will convert CR, LF, and NULL characters to %0d, %0a and %00 when they are sent to the HttpResponse.AddHeader() method. If you are using the latest .NET framework that prevents setting headers with new line characters, then your application might not be vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


protected System.Web.UI.WebControls.TextBox Author;
...
string author = Author.Text;
Cookie cookie = new Cookie("author", author);
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for Author.Text does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dotnet.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement or page hijacking attacks.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated for malicious characters.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTML form and sets it in a cookie header of an HTTP response.


...
EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(AUTHOR)
...
END-EXEC.

EXEC CICS
WEB WRITE
HTTPHEADER(COOKIE)
VALUE(AUTHOR)
...
END-EXEC.
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cobol.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently a web request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from a web form and sets it in a cookie header of an HTTP response.


<cfcookie name = "author"
value = "#Form.author#"
expires = "NOW">


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1/1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the sever to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the sever. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response an executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] Amit Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Diabolic Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.cfml.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without validation.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the 'content-type' from an HTTP request and sets it in a header of an new HTTP request.


final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final contentType = headers.value('content-type');
final client = HttpClient();
final clientRequest = await client.getUrl(Uri.parse('https://example.com'));
clientRequest.headers.add('Content-Type', contentType as Object);
});


Because the value of the 'Content-Type' header is formed of unvalidated user input, it can be manipulated by malicious actors to exploit vulnerabilities, execute code injection attacks, expose sensitive data, enable malicious file execution, or trigger denial of service situations, posing significant risks to the application's security and stability.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 113
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[11] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.dart.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation, or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.


Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author := request.FormValue("AUTHOR_PARAM")
cookie := http.Cookie{
Name: "author",
Value: author,
Domain: "www.example.com",
}
http.SetCookie(w, &cookie)
...


The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker can make a single request to a vulnerable server that causes the server to create two responses, the second of which can be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker might leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker might provide especially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance is affected.

Cross-Site Scripting: After attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker might cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers can change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] Standards Mapping - Common Weakness Enumeration CWE ID 113
[3] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[5] Standards Mapping - FIPS200 SI
[6] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[9] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[10] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[12] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[13] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[14] Standards Mapping - OWASP Top 10 2010 A1 Injection
[15] Standards Mapping - OWASP Top 10 2013 A1 Injection
[16] Standards Mapping - OWASP Top 10 2017 A1 Injection
[17] Standards Mapping - OWASP Top 10 2021 A03 Injection
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[54] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.golang.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.java.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


author = form.author.value;
...
document.cookie = "author=" + author + ";expires="+cookieExpiration;
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: web and browser cache poisoning, cross-site scripting, and page hijacking.


Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like cross-site request forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.javascript.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.


2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment assumes name and value may be controlled by an attacker. The code sets an HTTP header whose name and value may be controlled by an attacker:


...
NSURLSessionConfiguration * config = [[NSURLSessionConfiguration alloc] init];
NSMutableDictionary *dict = @{};
[dict setObject:value forKey:name];
[config setHTTPAdditionalHeaders:dict];
...


Assuming a name/value pair consisting of author and Jane Smith, the HTTP response including this header might take the following form:


HTTP/1.1 200 OK
...
author:Jane Smith
...


However, because the value of the header is formed of unvalidated user input, an attacker may submit a malicious name/value pair, such as HTTP/1.1 200 OK\r\n...foo and bar, then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.objc.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of PHP will generate a warning and stop header creation when new lines are passed to the header() function. If your version of PHP prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the location from an HTTP request and sets it in the header location field of an HTTP response.


<?php
$location = $_GET['some_location'];
...
header("location: $location");
?>


Assuming a string consisting of standard alphanumeric characters, such as "index.html", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
location: index.html
...


However, because the value of the location is formed of unvalidated user input the response will only maintain this form if the value submitted for some_location does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.php.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
-- Assume QUERY_STRING looks like AUTHOR_PARAM=Name
author := SUBSTR(OWA_UTIL.get_cgi_env('QUERY_STRING'), 14);
OWA_UTIL.mime_header('text/html', false);
OWA_COOKE.send('author', author);
OWA_UTIL.http_header_close;
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.sql.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the location from an HTTP request and sets it in a the header its location field of an HTTP response.


location = req.field('some_location')
...
response.addHeader("location",location)


Assuming a string consisting of standard alphanumeric characters, such as "index.html", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
location: index.html
...


However, because the value of the location is formed of unvalidated user input the response will only maintain this form if the value submitted for some_location does not contain any CR and LF characters. If an attacker submits a malicious string, such as "index.html\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
location: index.html

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide especially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.python.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and uses this in a get request to another part of the site.


author = req.params[AUTHOR_PARAM]
http = Net::HTTP.new(URI("http://www.mysite.com"))
http.post('/index.php', "author=#{author}")


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith" is submitted in the request, the HTTP response might take the following form:


POST /index.php HTTP/1.1
Host: www.mysite.com
author=Jane Smith
...


However, because the value of the URL is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nPOST /index.php HTTP/1.1\r\n...", then the HTTP response would be split into two responses of the following form:


POST /index.php HTTP/1.1
Host: www.mysite.com
author=Wiley Hacker

POST /index.php HTTP/1.1
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue to receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 113
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[8] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[9] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[11] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[12] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[13] Standards Mapping - OWASP Top 10 2010 A1 Injection
[14] Standards Mapping - OWASP Top 10 2013 A1 Injection
[15] Standards Mapping - OWASP Top 10 2017 A1 Injection
[16] Standards Mapping - OWASP Top 10 2021 A03 Injection
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.ruby.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, Play Framework will throw an exception if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.scala.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.


2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if you attempt to set a header with prohibited characters. If your application server prevents setting headers with new line characters, then your application is not vulnerable to HTTP Response Splitting. However, solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open Redirects, so care must still be taken when setting HTTP headers with user input.

Example 1: The following code segment assumes name and value may be controlled by an attacker. The code sets an HTTP header whose name and value may be controlled by an attacker:


...
var headers = []
headers[name] = value
let config = NSURLSessionConfiguration.backgroundSessionConfigurationWithIdentifier("com.acme")
config.HTTPAdditionalHeaders = headers
...


Assuming a name/value pair consisting of author and Jane Smith, the HTTP response including this header might take the following form:


HTTP/1.1 200 OK
...
author:Jane Smith
...


However, because the value of the header is formed of unvalidated user input, an attacker may submit a malicious name/value pair, such as HTTP/1.1 200 OK\r\n...foo and bar, then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...

HTTP/1.1 200 OK
...
foo:bar


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.swift.header_manipulation
Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting, cross-user defacement, page hijacking, cookie manipulation or open redirect.
Explanation
Header Manipulation vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

2. The data is included in an HTTP response header sent to a web user without being validated.

As with many software security vulnerabilities, Header Manipulation is a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes malicious data to a vulnerable application, and the application includes the data in an HTTP response header.

One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header. These characters not only give attackers control of the remaining headers and body of the response the application intends to send, but also allows them to create additional responses entirely under their control.

Many of today's modern application servers will prevent the injection of malicious characters into HTTP headers, however, servers that support classic ASP often do not have that protection mechanism.

Example 1: The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response.


...
author = Request.Form(AUTHOR_PARAM)
Response.Cookies("author") = author
Response.Cookies("author").Expires = cookieExpiration
...


Assuming a string consisting of standard alphanumeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...


However, because the value of the cookie is formed of unvalidated user input the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be split into two responses of the following form:


HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...


Clearly, the second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site scripting, and page hijacking.

Cross-User Defacement: An attacker will be able to make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server. This can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this ability to convince users that the application has been hacked, causing users to lose confidence in the security of the application. In the worst case, an attacker may provide specially crafted content designed to mimic the behavior of the application but redirect private information, such as account numbers and passwords, back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a single user. If a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although only the user of the local browser instance will be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data such as cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the same root vulnerability can also be leveraged to redirect sensitive content generated by the server and intended for the user to the attacker instead. By submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker may cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server for the user to the attacker. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim.

Cookie Manipulation: When combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a legitimate user's cookies.

Open Redirect: Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.
References
[1] A. Klein Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
[2] D. Crab HTTP Response Splitting
[3] Standards Mapping - Common Weakness Enumeration CWE ID 113
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[10] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[11] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[12] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[13] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[14] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[15] Standards Mapping - OWASP Top 10 2010 A1 Injection
[16] Standards Mapping - OWASP Top 10 2013 A1 Injection
[17] Standards Mapping - OWASP Top 10 2017 A1 Injection
[18] Standards Mapping - OWASP Top 10 2021 A03 Injection
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[31] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Web Application Security Consortium Version 2.00 HTTP Response Splitting (WASC-25)
[55] Standards Mapping - Web Application Security Consortium 24 + 2 HTTP Response Splitting
desc.dataflow.vb.header_manipulation
Abstract
Not accounting for integer overflow can result in logic errors or buffer overflow.
Explanation
Integer overflow errors occur when a program fails to account for the fact that an arithmetic operation can result in a quantity either greater than a data type's maximum value or less than its minimum value. These errors often cause problems in memory allocation functions, where user input intersects with an implicit conversion between signed and unsigned values. If an attacker can cause the program to under-allocate memory or interpret a signed value as an unsigned value in a memory operation, the program might be vulnerable to a buffer overflow.

Example 1: The following code excerpt from OpenSSH 3.3 demonstrates a classic case of integer overflow:


nresp = packet_get_int();
if (nresp > 0) {
response = xmalloc(nresp*sizeof(char*));
for (i = 0; i < nresp; i++)
response[i] = packet_get_string(NULL);
}


If nresp has the value 1073741824 and sizeof(char*) has its typical value of 4, then the result of the operation nresp*sizeof(char*) overflows, and the argument to xmalloc() will be 0. Most malloc() implementations will allow for the allocation of a 0-byte buffer, causing the subsequent loop iterations to overflow the heap buffer response.

Example 2: This example processes user input comprised of a series of variable-length structures. The first 2 bytes of input dictate the size of the structure to be processed.


char* processNext(char* strm) {
char buf[512];
short len = *(short*) strm;
strm += sizeof(len);
if (len <= 512) {
memcpy(buf, strm, len);
process(buf);
return strm + len;
} else {
return -1;
}
}


The programmer has set an upper bound on the structure size: if it is larger than 512, the input will not be processed. The problem is that len is a signed integer, so the check against the maximum structure length is done with signed integers, but len is converted to an unsigned integer for the call to memcpy(). If len is negative, then it will appear that the structure has an appropriate size (the if branch will be taken), but the amount of memory copied by memcpy() will be quite large, and the attacker will be able to overflow the stack with data in strm.
References
[1] blexim Basic Integer Overflows Phrack
[2] D. Plakosh Coding Flaws That Lead to Security Failures 2nd Annual Hampton University Information Assurance Symposium
[3] Les Hatton Safer C: Developing Software for High-integrity and Safety-critical Systems McGraw-Hill Companies
[4] Standards Mapping - Common Weakness Enumeration CWE ID 190, CWE ID 191
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [8] CWE ID 190
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [11] CWE ID 190
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [12] CWE ID 190
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [13] CWE ID 190
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [14] CWE ID 190
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [23] CWE ID 190
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 7.5, Rule 7.6, Rule 21.18
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 5-19-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.3 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 682
[36] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 190
[37] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 190
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3550 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3550 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3550 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3550 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3550 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3550 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3550 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[61] Standards Mapping - Smart Contract Weakness Classification SWC-101
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Integer Overflows (WASC-03)
desc.dataflow.cpp.integer_overflow
Abstract
Not accounting for integer overflow can result in logic errors or buffer overflow.
Explanation
Integer overflow errors occur when a program fails to account for the fact that an arithmetic operation can result in a quantity either greater than a data type's maximum value or less than its minimum value. These errors often cause problems in memory allocation functions, where user input intersects with an implicit conversion between signed and unsigned values. If an attacker can cause the program to under-allocate memory or interpret a signed value as an unsigned value in a memory operation, the program might be vulnerable to a buffer overflow.

Example 1: The following code excerpt demonstrates a classic case of integer overflow:


77 accept-in PIC 9(10).
77 num PIC X(4) COMP-5. *> native 32-bit unsigned integer
77 mem-size PIC X(4) COMP-5.
...
ACCEPT accept-in
MOVE accept-in TO num
MULTIPLY 4 BY num GIVING mem-size

CALL "CBL_ALLOC_MEM" USING
mem-pointer
BY VALUE mem-size
BY VALUE 0
RETURNING status-code
END-CALL


If num has the value 1073741824, then the result of the operation MULTIPLY 4 BY num overflows, and the argument mem-size to malloc() will be 0. Most malloc() implementations will allow for the allocation of a 0-byte buffer, causing the heap buffer mem-pointer to overflow in subsequent statements.
References
[1] blexim Basic Integer Overflows Phrack
[2] D. Plakosh Coding Flaws That Lead to Security Failures 2nd Annual Hampton University Information Assurance Symposium
[3] Les Hatton Safer C: Developing Software for High-integrity and Safety-critical Systems McGraw-Hill Companies
[4] Standards Mapping - Common Weakness Enumeration CWE ID 190, CWE ID 191
[5] Standards Mapping - Common Weakness Enumeration Top 25 2019 [8] CWE ID 190
[6] Standards Mapping - Common Weakness Enumeration Top 25 2020 [11] CWE ID 190
[7] Standards Mapping - Common Weakness Enumeration Top 25 2021 [12] CWE ID 190
[8] Standards Mapping - Common Weakness Enumeration Top 25 2022 [13] CWE ID 190
[9] Standards Mapping - Common Weakness Enumeration Top 25 2023 [14] CWE ID 190
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [23] CWE ID 190
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[12] Standards Mapping - FIPS200 SI
[13] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 7.5, Rule 7.6, Rule 21.18
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 5-19-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.3 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[35] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 682
[36] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 190
[37] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 190
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3550 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3550 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3550 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3550 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3550 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3550 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3550 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[61] Standards Mapping - Smart Contract Weakness Classification SWC-101
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Integer Overflows (WASC-03)
desc.dataflow.cobol.integer_overflow
Abstract
A function incorrectly handles an integer calculation that results in overflow/underflow.
Explanation
An integer overflow/underflow occurs when a calculation or an arithmetic operation results in a value that is over/under the maximum/minimum value of the integer type, causing the value to loop back to the lower/upper limit and continuing from there. The resulting value of an arithmetic operation is effectively the modulus of the integer range from the upper/lower boundaries.

For example, if a number is stored in a uint256 type, it means it is stored as a 256 bits unsigned number that ranges from 0 to 2^256-1. If an arithmetic operation results in a number that is larger than the upper limit, then an overflow occurs and the remainder is added from the starting value (0). If an arithmetic operation causes the number to go below than the lower limit, then an underflow occurs and the remainder is subtracted from the largest value (2^256-1).

Example 1: The following public function updates a uint256 mapping using an arithmetic operation that can lead to integer overflow/underflow and affect unintended indexes in the map.


contract overflow {
mapping(uint256 => uint256) map;

function init(uint256 k, uint256 v) public {
map[k] -= v;
}
}
References
[1] Enterprise Ethereum Alliance No Overflow/Underflow
[2] Standards Mapping - Common Weakness Enumeration CWE ID 190, CWE ID 191
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [8] CWE ID 190
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [11] CWE ID 190
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [12] CWE ID 190
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [13] CWE ID 190
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [14] CWE ID 190
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020, [23] CWE ID 190
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754, CCI-002824
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 7.5, Rule 7.6, Rule 21.18
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1, Rule 5-19-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1), SI-16 Memory Protection (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation, SI-16 Memory Protection
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.4.3 Memory/String/Unmanaged Code Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[20] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.2
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.2 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 682
[34] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 190
[35] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 190
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3550 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3550 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3550 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3550 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3550 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3550 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3550 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002590 CAT I
[59] Standards Mapping - Smart Contract Weakness Classification SWC-101
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Integer Overflows (WASC-03)
desc.structural.solidity.swc101
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read a value from a request object. The value then is logged.


...
DATA log_msg TYPE bal_s_msg.

val = request->get_form_field( 'val' ).

log_msg-msgid = 'XY'.
log_msg-msgty = 'E'.
log_msg-msgno = '123'.
log_msg-msgv1 = 'VAL: '.
log_msg-msgv2 = val.

CALL FUNCTION 'BAL_LOG_MSG_ADD'
EXPORTING
I_S_MSG = log_msg
EXCEPTIONS
LOG_NOT_FOUND = 1
MSG_INCONSISTENT = 2
LOG_IS_FULL = 3
OTHERS = 4.
...


If a user submits the string "FOO" for val, the following entry is logged:


XY E 123 VAL: FOO


However, if an attacker submits the string "FOO XY E 124 VAL: BAR", the following entry is logged:


XY E 123 VAL: FOO XY E 124 VAL: BAR


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.abap.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var val:String = String(params["username"]);
var value:Number = parseInt(val);
if (value == Number.NaN) {
trace("Failed to parse val = " + val);
}


If a user submits the string "twenty-one" for val, the following entry is logged:


Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


Failed to parse val=twenty-one

User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.actionscript.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1.Data enters an application from an untrusted source.

2.The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
string val = (string)Session["val"];
try {
int value = Int32.Parse(val);
}
catch (FormatException fe) {
log.Info("Failed to parse val= " + val);
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.log_forging
Abstract
Writing unvalidated user input to log files could allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending upon the nature of the application, log files can be reviewed manually as required, or culled automatically by tools that search the logs for important data points or trends.

Examination of the log files can be hindered or conclusions based on log data can be wrong if an attacker is allowed to supply data to the application that is subsequently logged verbatim. An attacker might insert false entries into the log file by including log entry separator characters in their data. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker injects code or other commands into the log file and takes advantage of a vulnerability in the log processing utility [2].

Example 1: The following code from a CGI script accepts a string submitted by the user and attempts to convert it into the long integer value it represents. If the value fails to parse as an integer, then its value is logged with an error message indicating what happened.


long value = strtol(val, &endPtr, 10);
if (*endPtr != '\0')
syslog(LOG_INFO,"Illegal value = %s",val);
...



If a user submits the string "twenty-one" for val, the following entry is logged:


Illegal value=twenty-one


However, if an attacker submits the string "twenty-one\n\nINFO: User logged out=evil", the following entry is logged:


INFO: Illegal value=twenty-one

INFO: User logged out=evil


Clearly, the attacker may use this same mechanism to insert arbitrary log entries. For this type of log forging attack to be effective, an attacker must first identify valid log entry formats, but this can often be accomplished by through system information leaks in the target application.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cpp.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker might insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker might render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read a value from an HTML form. The value then is logged.


...
01 LOGAREA.
05 VALHEADER PIC X(50) VALUE 'VAL: '.
05 VAL PIC X(50).
...

EXEC CICS
WEB READ
FORMFIELD(NAME)
VALUE(VAL)
...
END-EXEC.

EXEC DLI
LOG
FROM(LOGAREA)
LENGTH(50)
END-EXEC.
...


If a user submits the string "FOO" for VAL, the following entry is logged:


VAL: FOO


However, if an attacker submits the string "FOO VAL: BAR", the following entry is logged:


VAL: FOO VAL: BAR


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cobol.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.


2. The data is written to an application or system log file.


Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a web form. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


<cflog file="app_log" application="No" Thread="No"
text="Failed to parse val="#Form.val#">


If a user submits the string "twenty-one" for val, the following entry is logged:


"Information",,"02/28/01","14:50:37",,"Failed to parse val=twenty-one"


However, if an attacker submits the string "twenty-one%0a%0a%22Information%22%2C%2C%2202/28/01%22%2C%2214:53:40%22%2C%2C%22User%20logged%20out:%20badguy%22", the following entry is logged:


"Information",,"02/28/01","14:50:37",,"Failed to parse val=twenty-one"

"Information",,"02/28/01","14:53:40",,"User logged out: badguy"


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cfml.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events, view transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
name := r.FormValue("name")
logout := r.FormValue("logout")
...
if (logout){
...
} else {
log.Printf("Attempt to log out: name: %s logout: %s", name, logout)
}
}


If a user submits the string "twenty-one" for logout and he was able to create a user with name "admin", the following entry is logged:


Attempt to log out: name: admin logout: twenty-one


However, if an attacker is able to create a username "admin+logout:+1+++++++++++++++++++++++", the following entry is logged:


Attempt to log out: name: admin logout: 1 logout: twenty-one
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
String val = request.getParameter("val");
try {
int value = Integer.parseInt(val);
}
catch (NumberFormatException nfe) {
log.info("Failed to parse val = " + val);
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.

Some think that in the mobile world, classic web application vulnerabilities, such as log forging, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 2: The following code adapts Example 1 to the Android platform.


...
String val = this.getIntent().getExtras().getString("val");
try {
int value = Integer.parseInt();
}
catch (NumberFormatException nfe) {
Log.e(TAG, "Failed to parse val = " + val);
}
...
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] IDS03-J. Do not log unsanitized user input CERT
[4] Standards Mapping - Common Weakness Enumeration CWE ID 117
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[7] Standards Mapping - FIPS200 AU, SI
[8] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[16] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[17] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[19] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[20] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[21] Standards Mapping - OWASP Top 10 2010 A1 Injection
[22] Standards Mapping - OWASP Top 10 2013 A1 Injection
[23] Standards Mapping - OWASP Top 10 2017 A1 Injection
[24] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


var cp = require('child_process');
var http = require('http');
var url = require('url');

function listener(request, response){
var val = url.parse(request.url, true)['query']['val'];
if (isNaN(val)){
console.log("INFO: Failed to parse val = " + val);
}
...
}
...
http.createServer(listener).listen(8080);
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val = twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.log_forging
Abstract
The identified function writes unvalidated user input to the log. An attacker could take advantage of this behavior to forge log entries or inject malicious content into the log.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending upon the nature of the application, log files can be reviewed manually as required, or culled automatically by tools that search the logs for important data points or trends.

Examination of the log files can be hindered or conclusions based on log data can be wrong if an attacker is allowed to supply data to the application that is subsequently logged verbatim. An attacker might insert false entries into the log file by including log entry separator characters in their data. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker injects code or other commands into the log file and takes advantage of a vulnerability in the log processing utility [2].

Example 1: The following code from a CGI script accepts a string submitted by the user and attempts to convert it into the long integer value it represents. If the value fails to parse as an integer, then its value is logged with an error message indicating what happened.


long value = strtol(val, &endPtr, 10);
if (*endPtr != '\0')
NSLog("Illegal value = %s",val);
...



If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Illegal value=twenty-one


However, if an attacker submits the string "twenty-one\n\nINFO: User logged out=evil", the following entry is logged:


INFO: Illegal value=twenty-one

INFO: User logged out=evil


Clearly, the attacker may use this same mechanism to insert arbitrary log entries. For this type of log forging attack to be effective, an attacker must first identify valid log entry formats, but this can often be accomplished through system information leaks in the target application.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.objc.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


<?php
$name =$_GET['name'];
...
$logout =$_GET['logout'];

if(is_numeric($logout))
{
...
}
else
{
trigger_error("Attempt to log out: name: $name logout: $val");
}
?>


If a user submits the string "twenty-one" for logout and he was able to create a user with name "admin", the following entry is logged:


PHP Notice: Attempt to log out: name: admin logout: twenty-one


However, if an attacker is able to create a username "admin+logout:+1+++++++++++++++++++++++", the following entry is logged:


PHP Notice: Attempt to log out: name: admin logout: 1 logout: twenty-one
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.php.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


name = req.field('name')
...
logout = req.field('logout')

if (logout):
...
else:
logger.error("Attempt to log out: name: %s logout: %s" % (name,logout))


If a user submits the string "twenty-one" for logout and he was able to create a user with name "admin", the following entry is logged:


Attempt to log out: name: admin logout: twenty-one


However, if an attacker is able to create a username "admin+logout:+1+++++++++++++++++++++++", the following entry is logged:


Attempt to log out: name: admin logout: 1 logout: twenty-one
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
val = req['val']
unless val.respond_to?(:to_int)
logger.info("Failed to parse val")
logger.info(val)
end
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Failed to parse val
INFO: twenty-one


However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:


INFO: Failed to parse val
INFO: twenty-one

INFO: User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.ruby.log_forging
Abstract
The identified function writes unvalidated user input to the log. An attacker could take advantage of this behavior to forge log entries or inject malicious content into the log.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending upon the nature of the application, log files can be reviewed manually as required, or culled automatically by tools that search the logs for important data points or trends.

Examination of the log files can be hindered or conclusions based on log data can be wrong if an attacker is allowed to supply data to the application that is subsequently logged verbatim. An attacker might insert false entries into the log file by including log entry separator characters in their data. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker injects code or other commands into the log file and takes advantage of a vulnerability in the log processing utility [2].

Example 1: The following code accepts a string submitted by the user and attempts to convert it into the integer value it represents. If the value fails to parse as an integer, then its value is logged with an error message indicating what happened.


...
let num = Int(param)
if num == nil {
NSLog("Illegal value = %@", param)
}
...


If a user submits the string "twenty-one" for val, the following entry is logged:


INFO: Illegal value = twenty-one


However, if an attacker submits the string "twenty-one\n\nINFO: User logged out=evil", the following entry is logged:


INFO: Illegal value=twenty-one

INFO: User logged out=evil


Clearly, the attacker may use this same mechanism to insert arbitrary log entries. For this type of log forging attack to be effective, an attacker must first identify valid log entry formats, but this can often be accomplished through system information leaks in the target application.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.swift.log_forging
Abstract
Writing unvalidated user input to log files can allow an attacker to forge log entries or inject malicious content into the logs.
Explanation
Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. If the log file is processed automatically, the attacker may be able to render the file unusable by corrupting the format of the file or injecting unexpected characters. A more subtle attack might involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an attacker's tracks or even to implicate another party in the commission of a malicious act [1]. In the worst case, an attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility [2].

Example 1: The following web application code attempts to read an integer value from a request object. If the value fails to parse as an integer, then the input is logged with an error message indicating what happened.


...
Dim Val As Variant
Dim Value As Integer
Set Val = Request.Form("val")
If IsNumeric(Val) Then
Set Value = Val
Else
App.EventLog "Failed to parse val=" & Val, 1
End If
...


If a user submits the string "twenty-one" for val, the following entry is logged:


Failed to parse val=twenty-one


However, if an attacker submits the string "twenty-one%0a%0a+User+logged+out%3dbadguy", the following entry is logged:


Failed to parse val=twenty-one

User logged out=badguy


Clearly, attackers may use this same mechanism to insert arbitrary log entries.
References
[1] A. Muffet The night the log was forged.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 117
[4] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[6] Standards Mapping - FIPS200 AU, SI
[7] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 AU-9 Protection of Audit Information (P1), AU-10 Non-Repudiation (P2), SC-24 Fail in Known State (P1), SI-10 Information Input Validation (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 AU-9 Protection of Audit Information, AU-10 Non-Repudiation, SC-24 Fail in Known State, SI-10 Information Input Validation
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 7.3.1 Log Protection Requirements (L2 L3), 7.3.2 Log Protection Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[16] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[18] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[19] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[20] Standards Mapping - OWASP Top 10 2010 A1 Injection
[21] Standards Mapping - OWASP Top 10 2013 A1 Injection
[22] Standards Mapping - OWASP Top 10 2017 A1 Injection
[23] Standards Mapping - OWASP Top 10 2021 A09 Security Logging and Monitoring Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1, Requirement 10.5.2
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2, Requirement 10.5.2
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1, Requirement 10.5.2
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1, Requirement 10.5.2
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1, Requirement 10.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1, Requirement 10.5.2
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1, Requirement 10.5.2
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 10.3.2
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4, Requirement 10.3.2
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 8.4 - Activity Tracking, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3690.2 CAT II, APP3690.4 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000590 CAT II, APSC-DV-002320 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.vb.log_forging
Abstract
Memory is allocated but never freed.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker may be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The following C function leaks a block of allocated memory if the call to read() fails to return the expected number of bytes:


char* getBlock(int fd) {
char* buf = (char*) malloc(BLOCK_SIZE);
if (!buf) {
return NULL;
}
if (read(fd, buf, BLOCK_SIZE) != BLOCK_SIZE) {
return NULL;
}
return buf;
}
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[46] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[47] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.memory_leak
Abstract
Memory is allocated but never freed.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker might be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The following Micro Focus COBOL program leaks a block of allocated memory if an error occurs:


CALL "CBL_ALLOC_MEM"
USING mem-pointer
BY VALUE mem-size
BY VALUE flags
RETURNING status-code
END-CALL

IF status-code NOT = 0
DISPLAY "Error!"
GOBACK
ELSE
SET ADDRESS OF mem TO mem-pointer
END-IF

PERFORM write-data
IF ws-status-code NOT = 0
DISPLAY "Error!"
GOBACK
ELSE
DISPLAY "Success!"
END-IF

CALL "CBL_FREE_MEM"
USING BY VALUE mem-pointer
RETURNING status-code
END-CALL

GOBACK
.
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[46] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[47] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cobol.memory_leak
Abstract
An object allocates memory for a member variable and fails to free it in its dealloc() method.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker may be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The Objective-C object allocates memory in the init() method but fails to free it in the deallocate() method, resulting in a memory leak:


- (void)init
{
myVar = [NSString alloc] init];
...
}

- (void)dealloc
{
[otherVar release];
}
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[46] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[47] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.structural.objc.memory_leak
Abstract
The program resizes a block of allocated memory. If the resize fails, the original block will be leaked.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker may be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The following C function leaks a block of allocated memory if the call to realloc() fails to resize the original allocation.


char* getBlocks(int fd) {
int amt;
int request = BLOCK_SIZE;
char* buf = (char*) malloc(BLOCK_SIZE + 1);
if (!buf) {
goto ERR;
}
amt = read(fd, buf, request);
while ((amt % BLOCK_SIZE) != 0) {
if (amt < request) {
goto ERR;
}
request = request + BLOCK_SIZE;
buf = realloc(buf, request);
if (!buf) {
goto ERR;
}
amt = read(fd, buf, request);
}

return buf;

ERR:
if (buf) {
free(buf);
}
return NULL;
}
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[38] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.memory_leak_reallocation
Abstract
The program resizes a block of allocated memory. If the resize fails, the original block will be leaked.
Explanation
Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for freeing the memory.

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker might be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Example 1: The following Micro Focus COBOL program leaks a block of allocated memory if the call to realloc() fails to resize the original allocation.


CALL "malloc" USING
BY VALUE mem-size
RETURNING mem-pointer
END-CALL

ADD 1000 TO mem-size

CALL "realloc" USING
BY VALUE mem-pointer
BY VALUE mem-size
RETURNING mem-pointer
END-CALL

IF mem-pointer <> null
CALL "free" USING
BY VALUE mem-pointer
END-CALL
END-IF
References
[1] J. Whittaker and H. Thompson How to Break Software Security Addison Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 401
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 21.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 21.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 18-4-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 21.6.1
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-2
[12] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[14] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[15] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[16] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[17] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[18] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[19] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[20] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[37] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[38] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cobol.memory_leak_reallocation
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a properties file and uses the password to set default authentication credentials for URL requests.


...
var fs:FileStream = new FileStream();
fs.open(new File("config.properties"), FileMode.READ);
var password:String = fs.readMultiByte(fs.bytesAvailable, File.systemCharset);

URLRequestDefaults.setLoginCredentialsForHost(hostname, usr, password);
...


This code will run successfully, but anyone who has access to config.properties can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.actionscript.password_management
Abstract
Storing a password in plain text could result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's configuration files or other data store.
Example 1: The following code reads a password from the registry and uses the password to create a new network credential.


...
string password = regKey.GetValue(passKey).ToString());
NetworkCredential netCred =
new NetworkCredential(username,password,domain);
...


This code will run successfully, but anyone who has access to the registry key used to store the password can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Scott Mitchell Protecting Connection Strings and Other Configuration Information Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 256
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[36] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.dotnet.password_management
Abstract
Storing a password in plain text could result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's configuration files or other data store.
Example 1: The following code reads a password from the registry and uses the password to connect to a database.


...
RegQueryValueEx(hkey,TEXT(.SQLPWD.),NULL,
NULL,(LPBYTE)password, &size);
rc = SQLConnect(*hdbc, server, SQL_NTS, uid,
SQL_NTS, password, SQL_NTS);
...


This code will run successfully, but anyone who has access to the registry key used to store the password can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 256
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[36] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.cpp.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
01 RECORD.
05 UID PIC X(10).
05 PASSWORD PIC X(10).
...
EXEC CICS
READ
FILE('CFG')
INTO(RECORD)
RIDFLD(ACCTNO)
...
END-EXEC.

EXEC SQL
CONNECT :UID
IDENTIFIED BY :PASSWORD
AT :MYCONN
USING :MYSERVER
END-EXEC.
...


This code will run successfully, but anyone who has access to CFG can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.cobol.password_management
Abstract
Storing a password in plain text could result in a system compromise.
Explanation
Password management issues occur when a password is accepted from a user or is stored in plain text in an application's configuration files or database.
Example 1: The following code reads a password from a web form and uses the password to connect to a database.


<cfquery name = "GetCredentials" dataSource = "master">
SELECT Username, Password
FROM Credentials
WHERE DataSource="users"
</cfquery>
...
<cfquery name = "GetSSNs" dataSource = "users"
username = "#Username#" password = "#Password#">
SELECT SSN
FROM Users
</cfquery>
...


This code will run successfully, but anyone who has access to the table master can read the value of Username and Password. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.cfml.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a JSON file and uses the password to set the request's authorization header:


...
file, _ := os.Open("config.json")
decoder := json.NewDecoder(file)
decoder.Decode(&values)

request.SetBasicAuth(values.Username, values.Password)
...


This code will run successfully, but anyone who has access to config.json can read the value of values.Password. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.golang.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = prop.getProperty("password");

DriverManager.getConnection(url, usr, password);
...


This code will run successfully, but anyone who has access to config.properties can read the value of password. Any devious employee with access to this information can use it to break into the system.

In the mobile environment, password management is especially important given that there is such a high chance of device loss.
Example 2: The following code reads username and password from an Android WebView store and uses them to setup authentication for viewing protected pages.

...
webview.setWebViewClient(new WebViewClient() {
public void onReceivedHttpAuthRequest(WebView view,
HttpAuthHandler handler, String host, String realm) {
String[] credentials = view.getHttpAuthUsernamePassword(host, realm);
String username = credentials[0];
String password = credentials[1];
handler.proceed(username, password);
}
});
...


By default, WebView credentials are stored in plain text and are not hashed. So if a user has a rooted device (or uses an emulator), she is able to read stored passwords for given sites.
References
[1] SQLCipher.
[2] Standards Mapping - Common Weakness Enumeration CWE ID 256
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[36] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.java.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application.
Example 1: The following code uses a hardcoded password to connect to an application and retrieve address book entries:


...
obj = new XMLHttpRequest();
obj.open('GET','/fetchusers.jsp?id='+form.id.value,'true','scott','tiger');
...


This code will run successfully, but anyone who accesses the containing web page can view the password.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.javascript.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a plist file and uses it to unzip a password-protected file.

...
NSDictionary *dict= [NSDictionary dictionaryWithContentsOfFile:[[NSBundle mainBundle] pathForResource:@"Config" ofType:@"plist"]];
NSString *password = [dict valueForKey:@"password"];
[SSZipArchive unzipFileAtPath:zipPath toDestination:destPath overwrite:TRUE password:password error:&error];
...

In the mobile environment, password management is especially important given that there is such a high chance of device loss.
References
[1] SQLCipher.
[2] Standards Mapping - Common Weakness Enumeration CWE ID 256
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[36] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.objc.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
$props = file('config.properties', FILE_IGNORE_NEW_LINES | FILE_SKIP_EMPTY_LINES);
$password = $props[0];

$link = mysql_connect($url, $usr, $password);
if (!$link) {
die('Could not connect: ' . mysql_error());
}
...


This code will run successfully, but anyone who has access to config.properties can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.php.password_management
Abstract
Hardcoding or storing a password in plain text could result in a system compromise.
Explanation
Password management issues occur when a password is hardcoded or stored in plain text in an application's configuration files or other data store. It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability
Example: The following code authenticates the user by reading the password that the user used to log into the database server and comparing it to an expected value.


...
ip_address := OWA_SEC.get_client_ip;
IF ((OWA_SEC.get_user_id = 'scott') AND
(OWA_SEC.get_password = 'tiger') AND
(ip_address(1) = 144) and (ip_address(2) = 25)) THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.semantic.sql.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
props = os.open('config.properties')
password = props[0]

link = MySQLdb.connect (host = "localhost",
user = "testuser",
passwd = password,
db = "test")
...


This code will run successfully, but anyone who has access to config.properties can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.python.password_management
Abstract
Storing a password in plain text could result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's configuration files or other data store.
Example 1: The following code reads a password from an environment variable and uses the password to connect to a database.


require 'pg'
...
passwd = ENV['PASSWD']
...
conn = PG::Connection.new(:dbname => "myApp_production", :user => username, :password => passwd, :sslmode => 'require')


This code will run successfully, but anyone who has access to the environment variable used to store the password can read the value of PASSWD. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.ruby.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
val prop = new Properties()
prop.load(new FileInputStream("config.properties"))
val password = prop.getProperty("password")

DriverManager.getConnection(url, usr, password)
...


This code will run successfully, but anyone who has access to config.properties can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.scala.password_management
Abstract
Storing a password in plain text can result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a plist file and uses it to unzip a password-protected file.

...
var myDict: NSDictionary?
if let path = NSBundle.mainBundle().pathForResource("Config", ofType: "plist") {
myDict = NSDictionary(contentsOfFile: path)
}
if let dict = myDict {
zipArchive.unzipOpenFile(zipPath, password:dict["password"])
}
...

In the mobile environment, password management is especially important given that there is such a high chance of device loss.
References
[1] SQLCipher.
[2] Standards Mapping - Common Weakness Enumeration CWE ID 256
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[36] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[37] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.swift.password_management
Abstract
Storing a password in plain text could result in a system compromise.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
Private Declare Function GetPrivateProfileString _
Lib "kernel32" Alias "GetPrivateProfileStringA" _
(ByVal lpApplicationName As String, _
ByVal lpKeyName As Any, ByVal lpDefault As String, _
ByVal lpReturnedString As String, ByVal nSize As Long, _
ByVal lpFileName As String) As Long
...
Dim password As String
...
password = GetPrivateProfileString("MyApp", "Password", _
"", value, Len(value), _
App.Path & "\" & "Config.ini")
...
con.ConnectionString = "Driver={Microsoft ODBC for Oracle};Server=OracleServer.world;Uid=scott;Passwd=" & password &";"
...


This code will run successfully, but anyone who has access to config.properties can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 256
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [18] CWE ID 522
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [21] CWE ID 522
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.1.1 Password Security Requirements (L1 L2 L3), 2.1.2 Password Security Requirements (L1 L2 L3), 2.1.3 Password Security Requirements (L1 L2 L3), 2.1.4 Password Security Requirements (L1 L2 L3), 2.1.7 Password Security Requirements (L1 L2 L3), 2.1.8 Password Security Requirements (L1 L2 L3), 2.1.9 Password Security Requirements (L1 L2 L3), 2.7.5 Out of Band Verifier Requirements (L2 L3), 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 6.4.1 Secret Management (L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 10.2.3 Malicious Code Search (L3), 14.1.3 Build (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[16] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[17] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[18] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[20] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[34] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[35] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
desc.dataflow.vb.password_management
Abstract
Hardcoded passwords could compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code hardcodes a password:


...
password = 'tiger'.
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system.
References
[1] Scott Mitchell Protecting Connection Strings and Other Configuration Information Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.abap.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code sets default authentication credentials for URL requests, supplying a hardcoded string for a password:


...
URLRequestDefaults.setLoginCredentialsForHost(hostname, "scott", "tiger");
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the binary for the application they can use one of many publicly available decompilers to access the disassembled code, which will contain the values of the passwords used.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.actionscript.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password make it visible to all the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.

Example 1: The following code uses a hardcoded password to authenticate a client certificate:


...
HttpRequest req = new HttpRequest();
req.setClientCertificate('mycert', 'tiger');
...


This code will run successfully, but anyone who has access to it will have the password. Anyone with access to this information can use it to compromise the system. After the program is released, changing the password for the certificate is difficult.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.apex.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability. In Bicep code, the password may also be saved to the deployment history or logs, making it very easy for attackers to compromise the system.
Example 1: The following code uses a hardcoded administrator password to connect to a MySQL database:


...
resource mysqlserver 'Microsoft.DBforMySQL/servers@2017-12-01' = {
...
properties: {
administratorLogin: 'administratorUserName'
administratorLoginPassword: 'administratorLoginPass'
...


This code will run successfully, but anyone who has access to the code, deployment history, or logs will have access to the password. After the program ships, there is likely no way to change the MySQL administrator credentials unless the program is patched. Anyone with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.bicep.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to create a network credential:


...
NetworkCredential netCred =
new NetworkCredential("scott", "tiger", domain);
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the network credential user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. If attackers have access to the executable for the application they can disassemble the code, which will contain the values of the passwords used.
References
[1] Scott Mitchell Protecting Connection Strings and Other Configuration Information Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.dotnet.password_management_hardcoded_password
Abstract
Hardcoded passwords may compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
rc = SQLConnect(*hdbc, server, SQL_NTS, "scott",
SQL_NTS, "tiger", SQL_NTS);
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. If attackers have access to the executable for the application they can disassemble the code, which will contain the values of the passwords used.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.cpp.password_management_hardcoded_password
Abstract
Hardcoded passwords may compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
MOVE "scott" TO UID.
MOVE "tiger" TO PASSWORD.
EXEC SQL
CONNECT :UID
IDENTIFIED BY :PASSWORD
AT :MYCONN
USING :MYSERVER
END-EXEC.
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.cobol.password_management_hardcoded_password
Abstract
Hardcoded passwords may compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
<cfquery name = "GetSSNs" dataSource = "users"
username = "scott" password = "tiger">
SELECT SSN
FROM Users
</cfquery>
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.cfml.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
var password = "foobarbaz";
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the bytecode for the application they can use the javap -c command to access the disassembled code, which will contain the values of the passwords used. The result of this operation might look something like the following for Example 1:


javap -c ConnMngr.class

22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott
26: ldc #17; //String tiger
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.dart.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that you cannot easily remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code hardcodes a password:


password := "letmein"
...
response.SetBasicAuth(usrName, password)


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the binary for the application they can use one of many publicly available decompilers to access the disassembled code, which will contain the values of the passwords used.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.golang.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
DriverManager.getConnection(url, "scott", "tiger");
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the bytecode for the application they can use the javap -c command to access the disassembled code, which will contain the values of the passwords used. The result of this operation might look something like the following for Example 1:


javap -c ConnMngr.class

22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott
26: ldc #17; //String tiger


In the mobile environment, password management is especially important given that there is such a high chance of device loss.
Example 2: The following code uses hardcoded username and password to setup authentication for viewing protected pages with Android's WebView.

...
webview.setWebViewClient(new WebViewClient() {
public void onReceivedHttpAuthRequest(WebView view,
HttpAuthHandler handler, String host, String realm) {
handler.proceed("guest", "allow");
}
});
...


Similar to Example 1, this code will run successfully, but anyone who has access to it will have access to the password.
References
[1] SQLCipher.
[2] MSC03-J. Never hard code sensitive information CERT
[3] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[11] Standards Mapping - FIPS200 IA
[12] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[16] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[17] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[37] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[38] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[39] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.java.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to an application and retrieve address book entries:


...
obj = new XMLHttpRequest();
obj.open('GET','/fetchusers.jsp?id='+form.id.value,'true','scott','tiger');
...


This code will run successfully, but anyone who accesses the containing web page can view the password.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.javascript.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is difficult to remedy.
Explanation
Never hardcode passwords. Not only does it expose the password to all of the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, a program patch is probably the only way to change the password. If the account the password protects is compromised, the system owners must choose between security and availability.
Example 1: The following JSON uses a hardcoded password:


...
{
"username":"scott"
"password":"tiger"
}
...


This configuration may be valid, but anyone who has access to the configuration will have access to the password. After the program is released, changing the default user account "scott" with a password of "tiger" is difficult. Anyone with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.json.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
DriverManager.getConnection(url, "scott", "tiger")
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the bytecode for the application they can use the javap -c command to access the disassembled code, which will contain the values of the passwords used. The result of this operation might look something like the following for Example 1:


javap -c ConnMngr.class

22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott
26: ldc #17; //String tiger


In the mobile environment, password management is especially important given that there is such a high chance of device loss.
Example 2: The following code uses hardcoded username and password to setup authentication for viewing protected pages with Android's WebView.

...
webview.webViewClient = object : WebViewClient() {
override fun onReceivedHttpAuthRequest( view: WebView,
handler: HttpAuthHandler, host: String, realm: String
) {
handler.proceed("guest", "allow")
}
}
...


Similar to Example 1, this code will run successfully, but anyone who has access to it will have access to the password.
References
[1] SQLCipher.
[2] MSC03-J. Never hard code sensitive information CERT
[3] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[11] Standards Mapping - FIPS200 IA
[12] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[15] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[16] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[17] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[19] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[20] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[37] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[38] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[39] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.kotlin.password_management_hardcoded_password
Abstract
Hardcoded passwords may compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.

Example 1: The following code uses a hardcoded password to connect to a database:


...
rc = SQLConnect(*hdbc, server, SQL_NTS, "scott",
SQL_NTS, "tiger", SQL_NTS);
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract the password value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.objc.password_management_hardcoded_password
Abstract
Hardcoded passwords could compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
$link = mysql_connect($url, 'scott', 'tiger');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.php.password_management_hardcoded_password
Abstract
Hardcoded passwords could compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example: The following code hardcodes a password:


DECLARE
password VARCHAR(20);
BEGIN
password := "tiger";
END;


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the binary for the application they can use one of many publicly available decompilers to access the disassembled code, which will contain the values of the passwords used.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.sql.password_management_hardcoded_password
Abstract
Hardcoded passwords could compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code hardcodes a password:


password = "tiger"
...
response.writeln("Password:" + password)


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the binary for the application they can use one of many publicly available decompilers to access the disassembled code, which will contain the values of the passwords used.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.python.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
Mysql.new(URI(hostname, 'scott', 'tiger', databasename)
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. As Ruby is an interpreted language, if this is an application that other users can run, it will mean that attackers will have access to the source, so it is very important that this does not go into production software. Even if using an implementation of Ruby that can compile to native code, or writing C extensions to Ruby, these should not be implicitly trusted as information may still be able to be retrieved through investigation of the binary.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.ruby.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a Web Service:


...
ws.url(url).withAuth("john", "secret", WSAuthScheme.BASIC)
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "john" with a password of "secret" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the bytecode for the application they can use the javap -c command to access the disassembled code, which will contain the values of the passwords used. The result of this operation might look something such as the following for Example 1:


javap -c MyController.class

24: ldc #38; //String john
26: ldc #17; //String secret
References
[1] MSC03-J. Never hard code sensitive information CERT
[2] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[15] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[16] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[36] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.scala.password_management_hardcoded_password
Abstract
Hardcoded passwords may compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.

Example 1: The following code uses a hardcoded password to connect to a database:


...
let password = "secret"
let username = "scott"
let con = DBConnect(username, password)
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even if attackers only had access to the application's executable, they could extract the password value.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.swift.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is difficult to remedy.
Explanation
Never hardcode passwords. Not only does it expose the password to all of the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, a program patch is probably the only way to change the password. If the account protected by the password is compromised, the organization must choose between security and system availability.

Example 1: The following URL uses a hardcoded password:


...
https://user:secretpassword@example.com
...
Example 2: The following ODBC connection string uses a hardcoded password:


...
server=Server;database=Database;UID=UserName;PWD=Password;Encrypt=yes;
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.regex.universal.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. After the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following code uses a hardcoded password to connect to a database:


...
Dim con As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim rst As New ADODB.Recordset

con.ConnectionString = "Driver={Microsoft ODBC for Oracle};Server=OracleServer.world;Uid=scott;Passwd=tiger;"
...


This code will run successfully, but anyone who has access to it will have access to the password. After the program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless the program is patched. An employee with access to this information can use it to break into the system. Even worse, if attackers have access to the binary for the application they can use one of many publicly available decompilers to access the disassembled code, which will contain the values of the passwords used.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.semantic.vb.password_management_hardcoded_password
Abstract
Hardcoded passwords can compromise system security in a way that is difficult to remedy.
Explanation
Never hardcode passwords. Not only does it expose the password to all of the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, a program patch is probably the only way to change the password. If the account the password protects is compromised, the system owners must choose between security and availability.
Example 1: The following YAML uses a hardcoded password:


...
credential_settings:
username: scott
password: tiger
...


This configuration may be valid, but anyone who has access to the configuration will have access to the password. After the program is released, changing the default user account "scott" with a password of "tiger" is difficult. Anyone with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 259, CWE ID 798
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287, [19] CWE ID 798
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287, [20] CWE ID 798
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287, [16] CWE ID 798
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287, [15] CWE ID 798
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287, [18] CWE ID 798
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287, [22] CWE ID 798
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367, CCI-003109
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SA-4 Acquisition Process (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SA-4 Acquisition Process, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.3.1 Authenticator Lifecycle Requirements (L1 L2 L3), 2.6.2 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.4 Service Authentication Requirements (L2 L3), 3.5.2 Token-based Session Management (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.4.1 Secret Management (L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.3 Malicious Code Search (L3)
[14] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[15] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A07 Identification and Authentication Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 5.3 - Authentication and Access Control, Control Objective 6.3 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective C.2.1.2 - Web Software Access Controls
[35] Standards Mapping - SANS Top 25 2009 Porous Defenses - CWE ID 259
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 798
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 798
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I, APSC-DV-003270 CAT II, APSC-DV-003280 CAT I
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Insufficient Authentication (WASC-01)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Insufficient Authentication
desc.structural.yaml.password_management_hardcoded_password
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password for FTP connection:


...
* Default username for FTP connection is "scott"
* Default password for FTP connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Scott Mitchell Protecting Connection Strings and Other Configuration Information Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 615
[3] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[5] Standards Mapping - FIPS200 IA
[6] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[9] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[10] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[11] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[12] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[13] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[15] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[17] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[30] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[53] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[54] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.abap.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.actionscript.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.

Example 1: The following comment specifies the default password to connect to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.apex.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.dotnet.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.cpp.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
* Default username for database connection is "scott"
* Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.cobol.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
<!-- Default username for database connection is "scott" -->
<!-- Default password for database connection is "tiger" -->
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.cfml.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.java.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.javascript.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now accessible to the outside world and cannot be protected or changed without patching the software. If the account the password protects is compromised, the system owner must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...

This configuration may be valid, but anyone who has access to the configuration will have access to the password. Anyone with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.json.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.php.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
-- Default username for database connection is "scott"
-- Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.sql.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
# Default username for database connection is "scott"
# Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.python.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
#Default username for database connection is "scott"
#Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.ruby.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password for connecting to a database:


...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.regex.universal.password_management_password_in_comment
Abstract
Storing passwords or password details in plain text anywhere in the system or system code might compromise system security in a way that is not easy to remedy.
Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to hardcoding passwords. Not only is the password visible to the project's developers, it also makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to the outside world and cannot be protected or changed without patching the software. If the account protected by the password is compromised, the owners of the system must choose between security and availability.
Example 1: The following comment specifies the default password to connect to a database:


...
'Default username for database connection is "scott"
'Default password for database connection is "tiger"
...


This code will run successfully, but anyone who has access to it will have access to the password. An employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 615
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199, CCI-002367
[4] Standards Mapping - FIPS200 IA
[5] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[6] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[7] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[8] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[9] Standards Mapping - OWASP Mobile 2024 M1 Improper Credential Usage
[10] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[11] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[12] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[13] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[14] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[15] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.2.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography
[29] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I, APP3350 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II, APSC-DV-003110 CAT I
[52] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[53] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.vb.password_management_password_in_comment
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a properties file and uses the password to set default authentication credentials for URL requests.


...
var fs:FileStream = new FileStream();
fs.open(new File("config.properties"), FileMode.READ);
var decoder:Base64Decoder = new Base64Decoder();
decoder.decode(fs.readMultiByte(fs.bytesAvailable, File.systemCharset));
var password:String = decoder.toByteArray().toString();

URLRequestDefaults.setLoginCredentialsForHost(hostname, usr, password);
...


This code will run successfully, but anyone with access to config.properties can read the value of password and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.actionscript.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's configuration files or other data store. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from the registry and uses the password to create a new network credential.


...
string value = regKey.GetValue(passKey).ToString());
byte[] decVal = Convert.FromBase64String(value);
NetworkCredential netCred =
new NetworkCredential(username,decVal.toString(),domain);
...


This code will run successfully, but anyone who has access to the registry key used to store the password can read the value of password. Any devious employee with access to this information can use it to break into the system.
References
[1] Scott Mitchell Protecting Connection Strings and Other Configuration Information Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 261
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.dotnet.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's configuration files or other data store. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from the registry, decodes it using a trivial encoding algorithm and uses the password to connect to a database.


...
RegQueryValueEx(hkey, TEXT(.SQLPWD.), NULL,
NULL, (LPBYTE)password64, &size64);
Base64Decode(password64, size64, (BYTE*)password, &size);
rc = SQLConnect(*hdbc, server, SQL_NTS, uid,
SQL_NTS, password, SQL_NTS);
...


This code will run successfully, but anyone who has access to the registry key used to store the password can read the value of password64 and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Windows Data Protection Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 261
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cpp.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
01 RECORDX.
05 UID PIC X(10).
05 PASSWORD PIC X(10).
05 LEN PIC S9(4) COMP.
...
EXEC CICS
READ
FILE('CFG')
INTO(RECORDX)
RIDFLD(ACCTNO)
...
END-EXEC.

CALL "g_base64_decode_inplace" using
BY REFERENCE PASSWORD
BY REFERENCE LEN
ON EXCEPTION
DISPLAY "Requires GLib library" END-DISPLAY
END-CALL.

EXEC SQL
CONNECT :UID
IDENTIFIED BY :PASSWORD
END-EXEC.
...


This code will run successfully, but anyone with access to CFG can read the value of password and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cobol.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a JSON file and uses the password to set the request's authorization header.


...
file, _ := os.Open("config.json")
decoder := json.NewDecoder(file)
decoder.Decode(&values)
password := base64.StdEncoding.DecodeString(values.Password)

request.SetBasicAuth(values.Username, password)
...


This code will run successfully, but anyone with access to config.json can read the value of password and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.golang.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = Base64.decode(prop.getProperty("password"));

DriverManager.getConnection(url, usr, password);
...


This code will run successfully, but anyone with access to config.properties can read the value of password and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.

In the mobile environment, password management is especially important given that there is such a high chance of device loss.
Example 2: The following code reads username and password from an Android WebView store and uses them to setup authentication for viewing protected pages.

...
webview.setWebViewClient(new WebViewClient() {
public void onReceivedHttpAuthRequest(WebView view,
HttpAuthHandler handler, String host, String realm) {
String[] credentials = view.getHttpAuthUsernamePassword(host, realm);
String username = new String(Base64.decode(credentials[0], DEFAULT));
String password = new String(Base64.decode(credentials[1], DEFAULT));
handler.proceed(username, password);
}
});
...


By default, WebView credentials are stored in plain text and are not hashed. So if a user has a rooted device (or uses an emulator), she is able to read stored passwords for given sites.
References
[1] SQLCipher.
[2] Standards Mapping - Common Weakness Enumeration CWE ID 261
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.java.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code uses a hardcoded password to connect to an application and retrieve address book entries:


...
obj = new XMLHttpRequest();
obj.open('GET','/fetchusers.jsp?id='+form.id.value,'true','scott','tiger');
...


This code will run successfully, but anyone who accesses the containing web page can view the password.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.javascript.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a plist file and uses it to unzip a password-protected file.

...
NSDictionary *dict= [NSDictionary dictionaryWithContentsOfFile:[[NSBundle mainBundle] pathForResource:@"Config" ofType:@"plist"]];
NSString *encoded_password = [dict valueForKey:@"encoded_password"];
NSData *decodedData = [[NSData alloc] initWithBase64EncodedString:encoded_password options:0];
NSString *decodedString = [[NSString alloc] initWithData:decodedData encoding:NSUTF8StringEncoding];
[SSZipArchive unzipFileAtPath:zipPath toDestination:destPath overwrite:TRUE password:decodedString error:&error];
...


This code will run successfully, but anyone with access to the Config.plist file can read the value of encoded_password and easily determine that the value has been base64 encoded.

In the mobile environment, password management is especially important given that there is such a high chance of device loss.
References
[1] SQLCipher.
[2] Standards Mapping - Common Weakness Enumeration CWE ID 261
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.objc.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
$props = file('config.properties', FILE_IGNORE_NEW_LINES | FILE_SKIP_EMPTY_LINES);
$password = base64_decode($props[0]);

$link = mysql_connect($url, $usr, $password);
if (!$link) {
die('Could not connect: ' . mysql_error());
}
...


This code will run successfully, but anyone with access to config.properties can read the value of password and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.php.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
props = os.open('config.properties')
password = base64.b64decode(props[0])

link = MySQLdb.connect (host = "localhost",
user = "testuser",
passwd = password,
db = "test")
...


This code will run successfully, but anyone with access to config.properties can read the value of password and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.python.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's configuration files or other data store. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from an environment variable, decodes it using a trivial encoding algorithm and uses the password to connect to a database.


require 'pg'
require 'base64'
...
passwd = Base64.decode64(ENV['PASSWD64'])
...
conn = PG::Connection.new(:dbname => "myApp_production", :user => username, :password => passwd, :sslmode => 'require')



This code will run successfully, but anyone who has access to the environment variable used to store the password can read the value of PASSWD64 and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.ruby.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
val prop = new Properties();
prop.load(new FileInputStream("config.properties"));
val password = Base64.decode(prop.getProperty("password"));

DriverManager.getConnection(url, usr, password);
...


This code will run successfully, but anyone with access to config.properties can read the value of password and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.scala.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a plist file and uses it to unzip a password-protected file.

...
var myDict: NSDictionary?
if let path = NSBundle.mainBundle().pathForResource("Config", ofType: "plist") {
myDict = NSDictionary(contentsOfFile: path)
}
if let dict = myDict {
let password = base64decode(dict["encoded_password"])
zipArchive.unzipOpenFile(zipPath, password:password])
}
...


This code will run successfully, but anyone with access to the Config.plist file can read the value of encoded_password and easily determine that the value has been base64 encoded.

In the mobile environment, password management is especially important given that there is such a high chance of device loss.
References
[1] SQLCipher.
[2] Standards Mapping - Common Weakness Enumeration CWE ID 261
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[10] Standards Mapping - FIPS200 IA
[11] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[14] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[15] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[16] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[17] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[18] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[19] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[36] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[59] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[60] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.swift.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.

Example 1: The following Linux shadow file contains a password that is using the weak encryption algorithm DES.


...
root:qFio7llfVKk.s:19033:0:99999:7:::
...


The DES algorithm has proven weak, and can be brute-forced in a matter of days.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.regex.universal.password_management_weak_cryptography
Abstract
Obscuring a password with trivial encoding does not protect the password.
Explanation
Password management issues occur when a password is stored in plain text in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base64 encoding, but this does not adequately protect the password.
Example 1: The following code reads a password from a properties file and uses the password to connect to a database.


...
...
Private Declare Function GetPrivateProfileString _
Lib "kernel32" Alias "GetPrivateProfileStringA" _
(ByVal lpApplicationName As String, _
ByVal lpKeyName As Any, ByVal lpDefault As String, _
ByVal lpReturnedString As String, ByVal nSize As Long, _
ByVal lpFileName As String) As Long
...
Dim password As String
...
password = StrConv(DecodeBase64(GetPrivateProfileString("MyApp", "Password", _
"", value, Len(value), _
App.Path & "\" & "Config.ini")), vbUnicode)
...
con.ConnectionString = "Driver={Microsoft ODBC for Oracle};Server=OracleServer.world;Uid=scott;Passwd=" & password &";"
...



This code will run successfully, but anyone with access to Config.ini can read the value of Password and easily determine that the value has been base64 encoded. Any devious employee with access to this information can use it to break into the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 261
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [13] CWE ID 287
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [14] CWE ID 287
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [14] CWE ID 287
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [14] CWE ID 287
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [13] CWE ID 287
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [14] CWE ID 287
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000196, CCI-001199
[9] Standards Mapping - FIPS200 IA
[10] Standards Mapping - General Data Protection Regulation (GDPR) Insufficient Data Protection
[11] Standards Mapping - NIST Special Publication 800-53 Revision 4 IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1)
[12] Standards Mapping - NIST Special Publication 800-53 Revision 5 IA-5 Authenticator Management, SC-28 Protection of Information at Rest
[13] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.3 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.1 Service Authentication Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 6.2.3 Algorithms (L2 L3), 6.2.4 Algorithms (L2 L3), 6.2.5 Algorithms (L2 L3), 6.2.6 Algorithms (L2 L3), 9.1.2 Communications Security Requirements (L1 L2 L3), 9.1.3 Communications Security Requirements (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3)
[14] Standards Mapping - OWASP Mobile 2014 M6 Broken Cryptography
[15] Standards Mapping - OWASP Mobile 2024 M10 Insufficient Cryptography
[16] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CRYPTO-1
[17] Standards Mapping - OWASP Top 10 2004 A8 Insecure Storage
[18] Standards Mapping - OWASP Top 10 2007 A8 Insecure Cryptographic Storage
[19] Standards Mapping - OWASP Top 10 2010 A7 Insecure Cryptographic Storage
[20] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[21] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.8, Requirement 8.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.3, Requirement 6.5.8, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.3.1, Requirement 6.5.3, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 6.2.4, Requirement 6.5.3, Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 7 - Use of Cryptography
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 7 - Use of Cryptography
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 7 - Use of Cryptography
[35] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3150.1 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3150.1 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3150.1 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3150.1 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3150.1 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3150.1 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3150.1 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001740 CAT I, APSC-DV-002330 CAT II
[58] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[59] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.vb.password_management_weak_cryptography
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected files.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a filename.


...
*Get the report that is to be deleted
r_name = request->get_form_field( 'report_name' ).
CONCATENATE `C:\\users\\reports\\` r_name INTO dsn.
DELETE DATASET dsn.
...


If an attacker provides a file name like "..\\..\\usr\\sap\\DVEBMGS00\\exe\\disp+work.exe", the application will delete a critical file and immediately crash the SAP system.

Example 2: The following code is to display the invoice details for any date provided by the user.


...
PARAMETERS: p_date TYPE string.

*Get the invoice file for the date provided
CALL FUNCTION 'FILE_GET_NAME'
EXPORTING
logical_filename = 'INVOICE'
parameter_1 = p_date
IMPORTING
file_name = v_file
EXCEPTIONS
file_not_found = 1
OTHERS = 2.
IF sy-subrc <> 0.
* Implement suitable error handling here
ENDIF.

OPEN DATASET v_file FOR INPUT IN TEXT MODE.

DO.
READ DATASET v_file INTO v_record.
IF SY-SUBRC NE 0.
EXIT.
ELSE.
WRITE: / v_record.
ENDIF.
ENDDO.
...


If an attacker provides a string like "..\\..\\usr\\sap\\sys\\profile\\default.pfl" instead of a valid date, the application will reveal all the default SAP application server profile parameter settings - possibly leading to more refined attacks.
References
[1] SAP OSS Notes 1497003, 1543851, 177702 and related ones.
[2] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[3] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[24] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[25] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[27] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[28] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[42] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[43] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[44] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[67] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[68] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.abap.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var rName:String = String(params["reportName"]);
var rFile:File = new File("/usr/local/apfr/reports/" + rName);
...
rFile.deleteFile();
Example 2: The following code uses input from a configuration file to determine which file to open and write to a "Debug" console or a log file. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


var fs:FileStream = new FileStream();
fs.open(new File(String(configStream.readObject())+".txt"), FileMode.READ);
fs.readBytes(arr);
trace(arr);
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.actionscript.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

Example 1: The following Visualforce action method uses input from the user to access a static resource.


public class MyController {
...
public PageRerference loadRes() {
PageReference ref = ApexPages.currentPage();
Map<String,String> params = ref.getParameters();
if (params.containsKey('resName')) {
if (params.containsKey('resPath')) {
return PageReference.forResource(params.get('resName'), params.get('resPath'));
}
}
return null;
}
}


The programmer has not considered the possibility that an attacker could manipulate the resource name and path to access resources that are not intended to be public-facing.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.apex.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker may provide a file name like "..\\..\\Windows\\System32\\krnl386.exe", which will cause the application to delete an important Windows system file.


String rName = Request.Item("reportName");
...
File.delete("C:\\users\\reports\\" + rName);
Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension ".txt".


sr = new StreamReader(resmngr.GetString("sub")+".txt");
while ((line = sr.ReadLine()) != null) {
Console.WriteLine(line);
}
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.dotnet.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from a CGI request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../apache/conf/httpd.conf", which will cause the application to delete the specified configuration file.


char* rName = getenv("reportName");
...
unlink(rName);
Example 2: The following code uses input from the command line to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can create soft links to the file, they can use the program to read the first part of any file on the system.


ifstream ifs(argv[0]);
string s;
ifs >> s;
cout << s;
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.cpp.path_manipulation
Abstract
Allowing user input to control file resource names used in file operations could enable an attacker to access or modify datasets not intended by the application.
Explanation
Path manipulation errors in CICS occur when the following two conditions are met:

1. An attacker can specify a file resource (FCT) name used in a CICS file operation.

2. By specifying the resource, the attacker can gain unauthorized access.

For example, the program might give the attacker the ability to read or write data configured for the CICS region that the application does not normally access.
Example 1: The following code uses input from an HTML form to update or possibly delete a record from a file.


...
EXEC CICS
WEB READ
FORMFIELD(FILE)
VALUE(FILENAME)
...
END-EXEC.

EXEC CICS
READ
FILE(FILENAME)
INTO(RECORD)
RIDFLD(ACCTNO)
UPDATE
...
END-EXEC.
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.cobol.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from a web form to create a file name. The programmer has not considered the possibility that an attacker may provide a file name like "..\\..\\Windows\\System32\\krnl386.exe", which will cause the application to delete an important Windows system file.


<cffile action = "delete"
file = "C:\\users\\reports\\#Form.reportName#">
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.cfml.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to arbitrarily overwrite files on the system.
Explanation
Example 1: The following example insecurely delete files.


final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final path = headers.value('path');
File(path!).delete();
}


In Example 1, there is no validation of headers.value('path') prior to performing delete functions on files.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[21] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[22] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[23] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[24] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[26] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[40] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[41] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.dart.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


rName := "/usr/local/apfr/reports/" + req.FormValue("fName")

rFile, err := os.OpenFile(rName, os.O_RDWR|os.O_CREATE, 0755)

defer os.Remove(rName);
defer rFile.Close()
...

Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


...
config := ReadConfigFile()

filename := config.fName + ".txt";
data, err := ioutil.ReadFile(filename)

...

fmt.Println(string(data))
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.golang.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();
Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.println(arr);


Some think that in the mobile environment, classic vulnerabilities, such as path manipulation, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code adapts Example 1 to the Android platform.


...
String rName = this.getIntent().getExtras().getString("reportName");
File rFile = getBaseContext().getFileStreamPath(rName);
...
rFile.delete();
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] FIO00-J. Do not operate on files in shared directories CERT
[3] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[24] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[25] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[27] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[28] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[42] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[43] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[44] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[67] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[68] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.java.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


...
var reportNameParam = "reportName=";
var reportIndex = document.indexOf(reportNameParam);
if (reportIndex < 0) return;
var rName = document.URL.substring(reportIndex+reportNameParam.length);
window.requestFileSystem(window.TEMPORARY, 1024*1024, function(fs) {
fs.root.getFile('/usr/local/apfr/reports/' + rName, {create: false}, function(fileEntry) {
fileEntry.remove(function() {
console.log('File removed.');
}, errorHandler);

}, errorHandler);
}, errorHandler);
Example 2: The following code uses input from the local storage to determine which file to open and echo back to the user. If malicious users can change the contents of the local storage, they can use the program to read any file on the system that ends with the extension .txt.


...
var filename = localStorage.sub + '.txt';
function oninit(fs) {
fs.root.getFile(filename, {}, function(fileEntry) {
fileEntry.file(function(file) {
var reader = new FileReader();
reader.onloadend = function(e) {
var txtArea = document.createElement('textarea');
txtArea.value = this.result;
document.body.appendChild(txtArea);
};
reader.readAsText(file);
}, errorHandler);
}, errorHandler);
}

window.requestFileSystem(window.TEMPORARY, 1024*1024, oninit, errorHandler);
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.javascript.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


val rName: String = request.getParameter("reportName")
val rFile = File("/usr/local/apfr/reports/$rName")
...
rFile.delete()
Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


fis = FileInputStream(cfg.getProperty("sub").toString() + ".txt")
amt = fis.read(arr)
out.println(arr)


Some think that in the mobile environment, classic vulnerabilities, such as path manipulation, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code adapts Example 1 to the Android platform.


...
val rName: String = getIntent().getExtras().getString("reportName")
val rFile: File = getBaseContext().getFileStreamPath(rName)
...
rFile.delete()
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] FIO00-J. Do not operate on files in shared directories CERT
[3] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[24] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[25] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[27] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[28] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[42] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[43] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[44] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[67] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[68] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.kotlin.path_manipulation
Abstract
Attackers are able to control the file system path argument which allows them to access or modify otherwise protected files.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from the user to create a file path. The programmer has not considered the possibility that an attacker could provide a different file name which could cause the application to delete an unintended file.


- (NSData*) testFileManager {

NSString *rootfolder = @"/Documents/";
NSString *filePath = [rootfolder stringByAppendingString:[fileName text]];

NSFileManager *fm = [NSFileManager defaultManager];
return [fm contentsAtPath:filePath];
}
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.objc.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


$rName = $_GET['reportName'];
$rFile = fopen("/usr/local/apfr/reports/" . rName,"a+");
...
unlink($rFile);
Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


...
$filename = $CONFIG_TXT['sub'] . ".txt";
$handle = fopen($filename,"r");
$amt = fread($handle, filesize($filename));
echo $amt;
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.php.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


rName = req.field('reportName')
rFile = os.open("/usr/local/apfr/reports/" + rName)
...
os.unlink(rFile);
Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


...
filename = CONFIG_TXT['sub'] + ".txt";
handle = os.open(filename)
print handle
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.python.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


rName = req['reportName']
File.delete("/usr/local/apfr/reports/#{rName}")
Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


...
fis = File.new("#{cfg.getProperty("sub")}.txt")
amt = fis.read
puts amt
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.ruby.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files.


def readFile(reportName: String) = Action { request =>
val rFile = new File("/usr/local/apfr/reports/" + reportName)
...
rFile.delete()
}
Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


val fis = new FileInputStream(cfg.getProperty("sub")+".txt")
val amt = fis.read(arr)
out.println(arr)
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] FIO00-J. Do not operate on files in shared directories CERT
[3] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[23] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[24] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[25] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[27] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[28] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[42] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[43] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[44] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[67] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[68] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.scala.path_manipulation
Abstract
Attackers are able to control the file system path argument which allows them to access or modify otherwise protected files.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from the user to create a file path. The programmer has not considered the possibility that an attacker could provide a different file name which could cause the application to delete an unintended file.


func testFileManager() -> NSData {
let filePath : String = "/Documents/\(fileName.text)"
let fm : NSFileManager = NSFileManager.defaultManager()
return fm.contentsAtPath(filePath)
}
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.swift.path_manipulation
Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or modify otherwise protected system resources.
Explanation
Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the file system.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.
Example 1: The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "..\conf\server.xml", which causes the application to delete one of its own configuration files.


Dim rName As String
Dim fso As New FileSystemObject
Dim rFile as File
Set rName = Request.Form("reportName")
Set rFile = fso.GetFile("C:\reports\" & rName)
...
fso.DeleteFile("C:\reports\" & rName)
...
Example 2: The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with adequate privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.


Dim fileName As String
Dim tsContent As String
Dim ts As TextStream
Dim fso As New FileSystemObject

fileName = GetPrivateProfileString("MyApp", "sub", _
"", value, Len(value), _
App.Path & "\" & "Config.ini")
...
Set ts = fso.OpenTextFile(fileName,1)
tsContent = ts.ReadAll
Response.Write tsContent
...
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 22, CWE ID 73
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [10] CWE ID 022
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [12] CWE ID 022
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [8] CWE ID 022
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [8] CWE ID 022
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [8] CWE ID 022
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [5] CWE ID 022, [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000345, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.2.2 Sanitization and Sandboxing Requirements (L1 L2 L3), 12.3.1 File Execution Requirements (L1 L2 L3), 12.3.2 File Execution Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 426
[41] Standards Mapping - SANS Top 25 2010 Risky Resource Management - CWE ID 022
[42] Standards Mapping - SANS Top 25 2011 Risky Resource Management - CWE ID 022
[43] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[65] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I, APSC-DV-002960 CAT II
[66] Standards Mapping - Web Application Security Consortium Version 2.00 Path Traversal (WASC-33)
[67] Standards Mapping - Web Application Security Consortium 24 + 2 Path Traversal
desc.dataflow.vb.path_manipulation
Abstract
Ignoring a condition can cause the program to overlook unexpected states and errors.
Explanation
Just about every serious attack on a software system begins with the violation of a programmer's assumptions. After the attack, the programmer's assumptions seem flimsy and poorly founded, but before an attack many programmers would defend their assumptions well past the end of their lunch break.

Two dubious assumptions that are easy to spot in code are "this method call can never fail" and "it doesn't matter if this call fails". When a programmer ignores a condition, they implicitly state that they are operating under one of these assumptions.

Example 1: The following code excerpt ignores an error condition that might happen during a CICS transaction.


...
EXEC CICS
INGNORE CONDITION ERROR
END-EXEC.
...


If a transaction were to ever fail with this error condition, the program would continue to execute as though nothing unusual had occurred. The program records no evidence indicating the special situation, potentially frustrating any later attempt to explain the program's behavior.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 391
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-003272
[3] Standards Mapping - FIPS200 AU
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - NIST Special Publication 800-53 Revision 4 SA-15 Development Process and Standards and Tools (P2), SI-11 Error Handling (P2)
[6] Standards Mapping - NIST Special Publication 800-53 Revision 5 SA-15 Development Process and Standards and Tools, SI-11 Error Handling
[7] Standards Mapping - OWASP Top 10 2004 A7 Improper Error Handling
[8] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[9] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.7
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.2, Requirement 6.5.6
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention, Control Objective B.3.2 - Terminal Software Attack Mitigation
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention, Control Objective B.3.2 - Terminal Software Attack Mitigation
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3120 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3120 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3120 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3120 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3120 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3120 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3120 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002570 CAT II, APSC-DV-002580 CAT II, APSC-DV-003235 CAT II
desc.semantic.cobol.poor_condition_handling_ignored_condition
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system or network.
Example 1: The following code sends FTP account credentials in plain text to the screen.

...
uid = 'scott'.
password = 'tiger'.
WRITE: / 'Default username for FTP connection is: ', uid.
WRITE: / 'Default password for FTP connection is: ', password.
...


Other examples may contain logging statements that store plain text passwords to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.abap.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the records added to a database by storing the contents in a log file.


pass = getPassword();
...
trace(id+":"+pass+":"+type+":"+tstamp);


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.actionscript.privacy_violation
Abstract
Sending unobfuscated private user data, such as customer passwords or social security numbers, to external locations can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information is retrieved.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that prints a newly set password to the debug log.


...
ResetPasswordResult passRes = System.resetPassword(id1, true);
System.Debug('New password: '+passRes.getPassword());
...


Although many developers trust the eventlog as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.apex.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private information enters the program.
2. The data is written to an external location, such as the console, file system or network.

Example 1: The following code outputs a password.



@description('Provide the password')
@secure()
param password string

...
output my_output_data string = password


The code in Example 1 outputs a plaintext password, despite the parameter having the @secure() decorator.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.bicep.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system or network.
Example 1: The following code contains a logging statement that tracks the records added to a database by storing the contents in a log file.


pass = GetPassword();
...
dbmsLog.WriteLine(id+":"+pass+":"+type+":"+tstamp);


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.dotnet.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored, the get_password() function returns the user-supplied plain text password associated with the account.


pass = get_password();
...
fprintf(dbms_log, "%d:%s:%s:%s", id, pass, type, tstamp);


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for any and all data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information.

- Accessed from a database or other data store by the application.

- Indirectly from a partner or other third party.

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates student identification based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create additional risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, it does not guarantee that the individuals who do have access can be trusted with certain data. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cpp.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system or network.
Example 1: The following code sends database account credentials in plain text to the terminal.

...
MOVE "scott" TO UID.
MOVE "tiger" TO PASSWORD.
DISPLAY "Default username for database connection is: ", UID.
DISPLAY "Default password for database connection is: ", PASSWORD.
...


Other examples may contain logging statements that store plain text passwords to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cobol.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.


2. The data is written to an external location, such as the console, file system or network.
Example 1: The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored, the Session.pword variable contains the plain text password associated with the account.


<cflog file="app_log" application="No" Thread="No"
text="#Session.uname#:#Session.pword#:#type#:#Now()#">


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cfml.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the records added to a database by storing the contents in a log file.


var pass = getPassword();
...
dbmsLog.println(id+":"+pass+":"+type+":"+tstamp);


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Privacy is one of the biggest concerns in the mobile world for a couple of reasons. One of them is a much higher chance of device loss. The other has to do with inter-process communication between mobile applications. With mobile platforms, applications are downloaded from various sources and are run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which is why application authors need to be careful about what information they include in messages addressed to other applications running on the device. Never include sensitive information in inter-process communication between mobile applications.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Typically, in the context of the mobile environment, this private information includes (along with passwords, SSNs, and other general personal information):

- Location

- Cell phone number

- Serial numbers and device IDs

- Network Operator information

- Voicemail information


Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 359
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[7] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[10] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[11] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[12] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[16] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[17] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[28] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[30] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[31] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.dart.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The program writes the data to an external location, such as the console, file system, or network.
Example 1: The following code contains a statement that writes the contents of records added to a database in a log file. One of the stored values is the return value from the GetPassword() function, which returns user-supplied plain text password associated with the account.


pass = GetPassword();
...
if err != nil {
log.Printf('%s: %s %s %s', id, pass, type, tsstamp)
}


The code in Example 1 logs a plain text password to the application eventlog. Although many developers trust the eventlog as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization might be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.golang.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the records added to a database by storing the contents in a log file.


pass = getPassword();
...
dbmsLog.println(id+":"+pass+":"+type+":"+tstamp);


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Privacy is one of the biggest concerns in the mobile world for a couple of reasons. One of them is a much higher chance of device loss. The other has to do with inter-process communication between mobile applications. With mobile platforms, applications are downloaded from various sources and are run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which is why application authors need to be careful about what information they include in messages addressed to other applications running on the device. Sensitive information should never be part of inter-process communication between mobile applications.

Example 2: The following code reads username and password for a given site from an Android WebView store and broadcasts them to all the registered receivers.

...
webview.setWebViewClient(new WebViewClient() {
public void onReceivedHttpAuthRequest(WebView view,
HttpAuthHandler handler, String host, String realm) {
String[] credentials = view.getHttpAuthUsernamePassword(host, realm);
String username = credentials[0];
String password = credentials[1];
Intent i = new Intent();
i.setAction("SEND_CREDENTIALS");
i.putExtra("username", username);
i.putExtra("password", password);
view.getContext().sendBroadcast(i);
}
});
...


This example demonstrates several problems. First of all, by default, WebView credentials are stored in plain text and are not hashed. If a user has a rooted device (or uses an emulator), they can read stored passwords for given sites. Second, plain text credentials are broadcast to all the registered receivers, which means that any receiver registered to listen to intents with the SEND_CREDENTIALS action will receive the message. The broadcast is not even protected with a permission to limit the number of recipients, although in this case we do not recommend using permissions as a fix.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Typically, in the context of the mobile environment, this private information includes (along with passwords, SSNs, and other general personal information):

- Location

- Cell phone number

- Serial numbers and device IDs

- Network Operator information

- Voicemail information


Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] SQLCipher.
[9] FUNDAMENTALS-4: Establish trust boundaries Oracle
[10] CONFIDENTIAL-2: Do not log highly sensitive information Oracle
[11] Standards Mapping - Common Weakness Enumeration CWE ID 359
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[15] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[16] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[17] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[22] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[24] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[25] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[26] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[27] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[40] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[41] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.java.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code stores user's plain text password to the local storage.


localStorage.setItem('password', password);


Although many developers treat the local storage as a safe location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.javascript.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the records added to a database by storing the contents in a log file.


pass = getPassword()
...
dbmsLog.println("$id:$pass:$type:$tstamp")


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Privacy is one of the biggest concerns in the mobile environment for a couple of reasons. One of them is a much higher chance of device loss. The other has to do with inter-process communication between mobile applications. With mobile platforms, applications are downloaded from various sources and are run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which is why developers must be careful about the information included in messages addressed to other applications running on the device. Never include sensitive information in inter-process communication between mobile applications.

Example 2: The following code reads username and password for a given site from an Android WebView store and broadcasts them to all the registered receivers.

...
webview.webViewClient = object : WebViewClient() {
override fun onReceivedHttpAuthRequest(view: WebView,
handler: HttpAuthHandler, host: String, realm: String
) {
val credentials = view.getHttpAuthUsernamePassword(host, realm)
val username = credentials!![0]
val password = credentials[1]
val i = Intent()
i.action = "SEND_CREDENTIALS"
i.putExtra("username", username)
i.putExtra("password", password)
view.context.sendBroadcast(i)
}
}
...


This example demonstrates several problems. First of all, by default, WebView credentials are stored in plain text and are not hashed. If a user has a rooted device (or uses an emulator), they can read stored passwords for given sites. Second, plain text credentials are broadcast to all the registered receivers, which means that any receiver registered to listen to intents with the SEND_CREDENTIALS action will receive the message. The broadcast is not even protected with a permission to limit the number of recipients, although in this case we do not recommend using permissions as a fix.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Typically, in the context of the mobile environment, this private information includes (along with passwords, SSNs, and other general personal information):

- Location

- Cell phone number

- Serial numbers and device IDs

- Network Operator information

- Voicemail information


Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] SQLCipher.
[9] FUNDAMENTALS-4: Establish trust boundaries Oracle
[10] CONFIDENTIAL-2: Do not log highly sensitive information Oracle
[11] Standards Mapping - Common Weakness Enumeration CWE ID 359
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[15] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[16] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[17] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[22] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[24] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[25] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[26] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[27] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[40] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[41] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.kotlin.privacy_violation
Abstract
The identified function mishandles confidential information. This program could compromise user privacy.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code retrieves geolocation information from the mobile device and sends it to a server, while logging it to the device. Although many developers trust the log files as a safe storage location for any and all data, it should not be trusted implicitly, particularly when privacy is a concern.

locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
locationManager.desiredAccuracy = kCLLocationAccuracyBest;
locationManager.distanceFilter = kCLDistanceFilterNone;
[locationManager startUpdatingLocation];
CLLocation *location = [locationManager location];
// Configure the new event with information from the location
CLLocationCoordinate2D coordinate = [location coordinate];

NSString *latitude = [NSString stringWithFormat:@"%f", coordinate.latitude];
NSString *longitude = [NSString stringWithFormat:@"%f", coordinate.longitude];

NSLog(@"dLatitude : %@", latitude);
NSLog(@"dLongitude : %@",longitude);

NSString *urlWithParams = [NSString stringWithFormat:TOKEN_URL, latitude, longitude];

NSMutableURLRequest *request = [NSMutableURLRequest requestWithURL:[NSURL URLWithString:urlWithParams]];
[request setHTTPMethod:@"GET"];
[[NSURLConnection alloc] initWithRequest:request delegate:self];


Other areas of concern for maintaining the privacy of user data arise when a device has been lost or stolen. Once in possession of an iOS device, an attacker may access a great deal of data by connecting the device by USB. Files such as iOS Property Lists (plists) and SQLite databases are easily accessed and can disclose personal information. As a general rule, privacy related information should not be stored unprotected on the file system.

Example 2: The following code adds a password entry to the list of user defaults, and stores them immediately to a plist file.


NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

// Add password to user defaults
[defaults setObject:@"Super Secret" forKey:@"passwd"];

[defaults synchronize];


Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information.

- Accessed from a database or other data store by the application.

- Indirectly from a partner or other third party.

- Retrieved from mobile data stores including: address book, snapped photos, geolocation, configuration files (including plist), archived SMS messages, etc.

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates student identification based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create additional risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, it does not guarantee that the individuals who do have access can be trusted with certain data. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] Standards Mapping - Common Weakness Enumeration CWE ID 359
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[13] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[20] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.objc.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored is the return value from the getPassword() function that returns user-supplied plain text password associated with the account.


<?php
$pass = getPassword();
trigger_error($id . ":" . $pass . ":" . $type . ":" . $tstamp);
?>


The code in Example 1 logs a plain text password to the application eventlog. Although many developers trust the eventlog as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.php.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system or network.
Example: The following code sends account credentials to a web user. Specifically, the OWA_SEC.get_password() function returns the user-supplied plain text password associated with the account, which is then printed to the HTTP response.

...
HTP.htmlOpen;
HTP.headOpen;
HTP.title (.Account Information.);
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('User ID: ' ||
OWA_SEC.get_user_id || '
');
HTP.print('User Password: ' ||
OWA_SEC.get_password || '
');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...


Other examples may contain logging statements that store plain text passwords to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.sql.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored is the return value from the getPassword() function that returns user-supplied plain text password associated with the account.


pass = getPassword();
logger.warning('%s: %s %s %s', id, pass, type, tsstamp)


The code in Example 1 logs a plain text password to the application eventlog. Although many developers trust the eventlog as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.python.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored, the get_password() function returns the user-supplied plain text password associated with the account.


pass = get_password()
...
dbms_logger.warn("#{id}:#{pass}:#{type}:#{tstamp}")


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can, in fact, create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] SQLCipher.
[9] Standards Mapping - Common Weakness Enumeration CWE ID 359
[10] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[13] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[15] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[20] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[22] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[23] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[25] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[38] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[39] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[64] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.ruby.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the records added to a database by storing the contents in a log file.


val pass = getPassword()
...
dbmsLog.println(id+":"+pass+":"+type+":"+tstamp)


The code in Example 1 logs a plain text password to the file system. Although many developers trust the file system as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] SQLCipher.
[9] FUNDAMENTALS-4: Establish trust boundaries Oracle
[10] CONFIDENTIAL-2: Do not log highly sensitive information Oracle
[11] Standards Mapping - Common Weakness Enumeration CWE ID 359
[12] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[13] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[14] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[15] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[16] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[17] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[18] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[19] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[20] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[21] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[22] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[23] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[24] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[25] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[26] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[27] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[40] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[41] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[65] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.scala.privacy_violation
Abstract
The identified function mishandles confidential information. This program could compromise user privacy.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code retrieves geolocation information from the mobile device and sends it to a server, while logging it to the device. Although many developers trust the log files as a safe storage location for any and all data, it should not be trusted implicitly, particularly when privacy is a concern.

import CoreLocation
...
var locationManager : CLLocationManager!
var seenError : Bool = false
var locationFixAchieved : Bool = false
var locationStatus : NSString = "Not Started"

seenError = false
locationFixAchieved = false
locationManager = CLLocationManager()
locationManager.delegate = self
locationManager.locationServicesEnabled
locationManager.desiredAccuracy = kCLLocationAccuracyBest

locationManager.startUpdatingLocation()

...

if let location: CLLocation! = locationManager.location {
var coordinate : CLLocationCoordinate2D = location.coordinate

let latitude = NSString(format:@"%f", coordinate.latitude)
let longitude = NSString(format:@"%f", coordinate.longitude)

NSLog("dLatitude : %@", latitude)
NSLog("dLongitude : %@",longitude)

let urlString : String = "http://myserver.com/?lat=\(latitude)&lon=\(longitude)"
let url : NSURL = NSURL(string:urlString)
let request : NSURLRequest = NSURLRequest(URL:url)
var err : NSError?
var response : NSURLResponse?
var data : NSData = NSURLConnection.sendSynchronousRequest(request, returningResponse: &response, error:&err)
} else {
println("no location...")
}


Other areas of concern for maintaining the privacy of user data arise when a device has been lost or stolen. Once in possession of an iOS device, an attacker may access a great deal of data by connecting the device by USB. Files such as iOS Property Lists (plists) and SQLite databases are easily accessed and can disclose personal information. As a general rule, privacy related information should not be stored unprotected on the file system.

Example 2: The following code adds a password entry to the list of user defaults, and stores them immediately to a plist file.


let defaults : NSUserDefaults = NSUserDefaults.standardUserDefaults()

// Add password to user defaults
defaults.setObject("Super Secret" forKey:"passwd")

defaults.synchronize()


Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information.

- Accessed from a database or other data store by the application.

- Indirectly from a partner or other third party.

- Retrieved from mobile data stores including: address book, snapped photos, geolocation, configuration files (including plist), archived SMS messages, etc.

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates student identification based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create additional risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, it does not guarantee that the individuals who do have access can be trusted with certain data. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] Standards Mapping - Common Weakness Enumeration CWE ID 359
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[13] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[14] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[15] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[20] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[21] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[22] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[37] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[38] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[62] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.swift.privacy_violation
Abstract
Mishandling private information, such as usernames, passwords, or social security numbers, can compromise user privacy and is often illegal.
Explanation
.
Privacy violations occur when:
1. Private user information is mishandled by an application or program.
2. The data is written to an external location, such as the console, file system, network, or log files.

Although many developers treat local storage as a safe location for data, it should not be trusted implicitly, particularly when privacy is a concern.
Private data can enter a program in a variety of ways:
- Directly from the user in the form of a password or personal information
- Accessed from a database or other data store by the application
- Indirectly from a partner or other third party

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.
Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling website [1].
In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization might be required to comply with one or more of the following federal and state regulations:
- Safe Harbor Privacy Framework [3]
- Gramm-Leach Bliley Act (GLBA) [4]
- Health Insurance Portability and Accountability Act (HIPAA) [5]
- California SB-1386 [6]
Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.regex.universal.privacy_violation
Abstract
Mishandling private information, such as customer passwords or social security numbers, can compromise user privacy and is often illegal.
Explanation
Privacy violations occur when:

1. Private user information enters the program.

2. The data is written to an external location, such as the console, file system, or network.
Example 1: The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored, the getPassword function returns the user-supplied plain text password associated with the account.


pass = getPassword
...
App.EventLog id & ":" & pass & ":" & type & ":" &tstamp, 4
...


The code in Example 1 logs a plain text password to the application eventlog. Although many developers trust the eventlog as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways:

- Directly from the user in the form of a password or personal information

- Accessed from a database or other data store by the application

- Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Security and privacy concerns often seem to compete with each other. From a security perspective, you should record all important operations so that any anomalous activity can later be identified. However, when private data is involved, this practice can create risk.

Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable to store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted. For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private customer email addresses to a spammer marketing an offshore gambling web site [1].

In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Depending on its location, the type of business it conducts, and the nature of any private data it handles, an organization may be required to comply with one or more of the following federal and state regulations:

- Safe Harbor Privacy Framework [3]

- Gramm-Leach Bliley Act (GLBA) [4]

- Health Insurance Portability and Accountability Act (HIPAA) [5]

- California SB-1386 [6]

Despite these regulations, privacy violations continue to occur with alarming frequency.
References
[1] J. Oates AOL man pleads guilty to selling 92m email addies The Register
[2] Privacy Initiatives U.S. Federal Trade Commission
[3] Safe Harbor Privacy Framework U.S. Department of Commerce
[4] Financial Privacy: The Gramm-Leach Bliley Act (GLBA) Federal Trade Commission
[5] Health Insurance Portability and Accountability Act (HIPAA) U.S. Department of Human Services
[6] California SB-1386 Government of the State of California
[7] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[8] Standards Mapping - Common Weakness Enumeration CWE ID 359
[9] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[11] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000169, CCI-000196, CCI-000197, CCI-001199, CCI-001312, CCI-001314
[14] Standards Mapping - General Data Protection Regulation (GDPR) Privacy Violation
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AU-12 Audit Generation (P1), IA-5 Authenticator Management (P1), SC-28 Protection of Information at Rest (P1), SI-11 Error Handling (P2)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AU-12 Audit Record Generation, IA-5 Authenticator Management, SC-28 Protection of Information at Rest, SI-11 Error Handling
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 2.2.1 General Authenticator Requirements (L1 L2 L3), 2.6.3 Look-up Secret Verifier Requirements (L2 L3), 2.7.1 Out of Band Verifier Requirements (L1 L2 L3), 2.7.2 Out of Band Verifier Requirements (L1 L2 L3), 2.7.3 Out of Band Verifier Requirements (L1 L2 L3), 2.8.4 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.8.5 Single or Multi Factor One Time Verifier Requirements (L2 L3), 2.10.2 Service Authentication Requirements (L2 L3), 2.10.3 Service Authentication Requirements (L2 L3), 3.7.1 Defenses Against Session Management Exploits (L1 L2 L3), 6.2.1 Algorithms (L1 L2 L3), 8.2.1 Client-side Data Protection (L1 L2 L3), 8.2.2 Client-side Data Protection (L1 L2 L3), 8.3.6 Sensitive Private Data (L2 L3), 8.1.1 General Data Protection (L2 L3), 8.1.2 General Data Protection (L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 9.2.3 Server Communications Security Requirements (L2 L3), 10.2.1 Malicious Code Search (L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile 2024 M6 Inadequate Privacy Controls
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[21] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[22] Standards Mapping - OWASP Top 10 2013 A6 Sensitive Data Exposure
[23] Standards Mapping - OWASP Top 10 2017 A3 Sensitive Data Exposure
[24] Standards Mapping - OWASP Top 10 2021 A02 Cryptographic Failures
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.4
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.6, Requirement 8.4
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 6.5.5, Requirement 8.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 3.2, Requirement 3.4, Requirement 4.2, Requirement 8.2.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 3.3.1, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 3.3.1, Requirement 3.3.2, Requirement 3.3.3, Requirement 3.5.1, Requirement 4.2.2, Requirement 8.3.1
[34] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection
[35] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.3 - Sensitive Data Retention, Control Objective 6.1 - Sensitive Data Protection, Control Objective 7 - Use of Cryptography, Control Objective A.2.3 - Cardholder Data Protection, Control Objective B.2.5 - Terminal Software Design
[37] Standards Mapping - SANS Top 25 2010 Porous Defenses - CWE ID 311
[38] Standards Mapping - SANS Top 25 2011 Porous Defenses - CWE ID 311
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3210.1 CAT II, APP3310 CAT I, APP3340 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3210.1 CAT II, APP3340 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3210.1 CAT II, APP3340 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3210.1 CAT II, APP3340 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3210.1 CAT II, APP3340 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3210.1 CAT II, APP3340 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3210.1 CAT II, APP3340 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000650 CAT II, APSC-DV-001740 CAT I, APSC-DV-001750 CAT I, APSC-DV-002330 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[63] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.vb.privacy_violation
Abstract
Transferring program control to an untrusted program or a transaction, or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the program or the code of the transaction being invoked: the attacker explicitly controls what the program name or transaction code is.

- An attacker can change the environment in which the program or the transaction is invoked: the attacker implicitly controls a communication area made available to the invoked program or the transaction.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the program or the code of the transaction that is invoked. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a program name or a transaction code that is invoked.



3. By executing code from the invoked program or the transaction, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code excerpt from a privileged system utility reads a value from an HTTP request to determine the code of the transaction to call.


...
tid = request->get_form_field( 'tid' ).

CALL TRANSACTION tid USING bdcdata MODE 'N'
MESSAGES INTO messtab.
...


This code excerpt allows an attacker to call any transaction and potentially execute arbitrary code with the elevated privilege of the application. Because the program does not validate the value read from the HTTP request, if an attacker can control this value, then they can fool the application into running malicious code and take control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[22] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[23] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[24] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[26] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.abap.process_control
Abstract
Loading libraries or executables from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the library or executable that the program loads: the attacker explicitly controls what the name of the library or executable is.

- An attacker can change the environment in which the library or executable loads: the attacker implicitly controls what the library or executable name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library or an executable that is loaded by the application.



3. By executing code from the library or executable, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged system utility uses the application configuration property APPHOME and then loads a native library based on a relative path from the specified directory.


...
string lib = ConfigurationManager.AppSettings["APPHOME"];
Environment.ExitCode = AppDomain.CurrentDomain.ExecuteAssembly(lib);
...


This code allows an attacker to load a library or an executable and potentially execute arbitrary code with the elevated privilege of the application by modifying the application configuration property APPHOME to point to a different path containing a malicious version of LIBNAME. Because the program does not validate the value read from the environment, if attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.
References
[1] Dotnet 4.6 API Documentation Microsoft
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.dotnet.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious code on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the library that the program executes: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.

2. The data is used as part of a string representing a library name that is loaded by the application.

3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged application uses a registry entry to determine the directory in which it is installed and loads a library file based on a relative path from the specified directory.


...
RegQueryValueEx(hkey, "APPHOME",
0, 0, (BYTE*)home, &size);
char* lib=(char*)malloc(strlen(home)+strlen(INITLIB));
if (lib) {
strcpy(lib,home);
strcat(lib,INITCMD);
LoadLibrary(lib);
}
...


The code in this example allows an attacker to load an arbitrary library, from which code will be executed with the elevated privilege of the application, by modifying a registry key to specify a different path containing a malicious version of INITLIB. Because the program does not validate the value read from the environment, if an attacker can control the value of APPHOME, they can fool the application into running malicious code.

Example 2: The following code is from a web-based administration utility that allows users access to an interface through which they can update their profile on the system. The utility uses a library named liberty.dll, which is intended to be found in a standard system directory.


LoadLibrary("liberty.dll");


However, the program does not specify an absolute path for liberty.dll. If an attacker places a malicious library named liberty.dll higher in the search order than the intended file and has a way to execute the program in their environment rather than the web server's environment, then the application will load the malicious library instead of the trusted one. Because this type of application runs with elevated privileges, the contents of the attacker's liberty.dll is now be run with elevated privileges, potentially giving them complete control of the system.

This type of attack is possible due to the search order used by LoadLibrary() when an absolute path is not specified. If the current directory is searched before system directories, as was the case up until the most recent versions of Windows, then this type of attack becomes trivial if the attacker may execute the program locally. The search order is operating system version dependent, and is controlled on newer operating systems by the value of this registry key:


HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode


This key is not defined on Windows 2000/NT and Windows Me/98/95 systems.

On systems where the key does exist, LoadLibrary() behaves as follows:
If SafeDllSearchMode is 1, the search order is as follows:
(Default setting for Windows XP-SP1 and later, as well as Windows Server 2003.)
1. The directory from which the application was loaded.
2. The system directory.
3. The 16-bit system directory, if it exists.
4. The Windows directory.
5. The current directory.
6. The directories that are listed in the PATH environment variable.
If SafeDllSearchMode is 0, the search order is as follows:
1. The directory from which the application was loaded.
2. The current directory.
3. The system directory.
4. The 16-bit system directory, if it exists.
5. The Windows directory.
6. The directories that are listed in the PATH environment variable.
References
[1] LoadLibraryW function Microsoft
[2] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[3] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[4] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[9] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[10] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[11] Standards Mapping - FIPS200 SI
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[17] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[18] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[19] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[20] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[21] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[22] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[23] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[24] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[25] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[27] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[28] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[41] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[64] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.cpp.process_control
Abstract
Transferring program control to an untrusted application program or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the program being invoked: the attacker explicitly controls what the name of the application program is.

- An attacker can change the environment in which the program is invoked: the attacker implicitly controls a communication area made available to the invoked program.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker might control the name of the program that is invoked. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as part of, or the entire string representing a program that is invoked or determines some control over the environment in which the program is invoked.



3. By executing code from the invoked program, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged system utility reads a value from the terminal to determine the name of the program to transfer control to.


...
ACCEPT PROGNAME.
EXEC CICS
LINK PROGRAM(PROGNAME)
COMMAREA(COMA)
LENGTH(LENA)
DATALENGTH(LENI)
SYSID('CONX')
END-EXEC.
...


This code allows an attacker to transfer control to a program and potentially execute arbitrary code with the elevated privilege of the application. Because the program does not validate the value read from the terminal, if an attacker can control this value, then they can fool the application into running malicious code and take control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[22] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[23] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[24] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[26] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.cobol.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the library that the program loads: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library that is loaded by the application.



3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged system utility uses the system property APPHOME to determine the directory in which it is installed and then loads a native library based on a relative path from the specified directory.


...
String home = System.getProperty("APPHOME");
String lib = home + LIBNAME;
java.lang.Runtime.getRuntime().load(lib);
...


This code allows an attacker to load a library and potentially execute arbitrary code with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of LIBNAME. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code uses System.loadLibrary() to load code from a native library named library.dll, which is normally found in a standard system directory.


...
System.loadLibrary("library.dll");
...


The problem here is that System.loadLibrary() accepts a library name, not a path, for the library to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]:

A file containing native code is loaded from the local file system from a place where library files are conventionally obtained. The details of this process are implementation-dependent. The mapping from a library name to a specific filename is done in a system-specific manner.

If an attacker is able to place a malicious copy of library.dll higher in the search order than file the application intends to load, then the application will load the malicious copy instead of the intended file. Because of the nature of the application, it runs with elevated privileges, which means the contents of the attacker's library.dll will now be run with elevated privileges, possibly giving them complete control of the system.
References
[1] Java 1.4.2 API Documentation Sun Microsystems
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.java.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the library that the program loads: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library that is loaded by the application.



3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code uses a currently undocumented "feature" of Express to dynamically load a library file. Node.js will then continue to search through its regular library load path for a file or directory containing this library[1].


var express = require('express');
var app = express();

app.get('/', function(req, res, next) {
res.render('tutorial/' + req.params.page);
});


In Express, the page passed to Response.render() will load a library of the extension when previously unknown. This is usually fine for input such as "foo.pug", as this will mean loading the pug library, a well known templating engine. However, if an attacker can control the page and thus the extension, then they can choose to load any library within the Node.js module loading paths. Since the program does not validate the information received from the URL parameter, the attacker may fool the application into running malicious code and take control of the system.
References
[1] Node.js Modules Documentation Node.js
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.javascript.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker.
Explanation
Process control vulnerabilities take two forms:

- An attacker can change the name of the library that the program loads: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the first scenario, the possibility that an attacker may be able to control the name of the library that is loaded. Process control vulnerabilities of this type occur when:

1. Data enters the application from an untrusted source.



2. The data is used as or as part of a string representing a library that is loaded by the application.



3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code from a privileged system utility uses the system property APPHOME to determine the directory in which it is installed and then loads a native library based on a relative path from the specified directory.


...
$home = getenv("APPHOME");
$lib = $home + $LIBNAME;
dl($lib);
...


This code allows an attacker to load a library and potentially execute arbitrary code with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of LIBNAME. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system.

Example 2: The following code uses dl() to load code from a library named sockets.dll, which can be loaded from various places depending on your installation and configuration.


...
dl("sockets");
...


The problem here is that dl() accepts a library name, not a path, for the library to be loaded.

If an attacker is able to place a malicious copy of sockets.dll higher in the search order than file the application intends to load, then the application will load the malicious copy instead of the intended file. Because of the nature of the application, it runs with elevated privileges, which means the contents of the attacker's sockets.dll will now be run with elevated privileges, possibly giving them complete control of the system.
References
[1] M. Achour et al. PHP Manual
[2] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[8] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[9] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[10] Standards Mapping - FIPS200 SI
[11] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[16] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[17] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[18] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[19] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[20] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[21] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[22] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[23] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[24] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[26] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[27] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[39] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[40] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[63] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.dataflow.php.process_control
Abstract
Loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands on behalf of an attacker. Within Ruby there are commonly places where both Process Control and Command Injection attacks can occur.
Explanation
Within Ruby, Process Control can commonly occur when a command is being executed, which enables two different attacks:

1. Process Control
Process Control vulnerabilities take two forms:

- An attacker can change the name of the library that the program loads: the attacker explicitly controls what the name of the library is.

- An attacker can change the environment in which the library loads: the attacker implicitly controls what the library name means.

In this case, we are primarily concerned with the second scenario, the possibility that an attacker may be able to control the environment in such a way that the program loads a malicious version of the named library.

1. An attacker provides a malicious library to an application.

2. The application loads the malicious library because it fails to specify an absolute path or verify the file being loaded.

3. By executing code from the library, the application gives the attacker a privilege or capability that the attacker would not otherwise have.

Note that Process Control can occur on Windows platforms when running an external program as the shell used to run the commands is chosen via the environment variables RUBYSHELL or COMSPEC. If an attacker is able to modify either of these environment variables within the current environment, it means that the program pointed by these environment variables will be run with the permission or the running Ruby program.

2. Command Injection
Command injection vulnerabilities take two forms:

- An attacker can change the command that the program executes: the attacker explicitly controls what the command is.

- An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

In this case, we are primarily concerned with the second scenario, the possibility that an attacker may be able to change the meaning of the command by changing an environment variable or by putting a malicious executable early in the search path. Command injection vulnerabilities of this type occur when:

1. An attacker modifies an application's environment.

2. The application executes a command without specifying an absolute path or verifying the binary being executed.

3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

Example 1: The following code runs Kernel.system() to run an executable called program.exe, which is normally found within a standard system directory.


...
system("program.exe")
...


The problem here is twofold:
1. On Windows platforms, Kernel.system() executes something via a shell. If an attacker can manipulate environment variables RUBYSHELL or COMSPEC, they may be able to point to a malicious executable which will be called with the command given to Kernel.system(). Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's program.exe will now be run with these privileges, possibly giving them complete control of the system.
2. On all platforms in this scenario, the problem is that the program does not specify an absolute path and fails to clean its environment prior to executing the call to Kernel.system(). If an attacker can modify the $PATH variable to point to a malicious binary called program.exe and then execute the application in their environment, the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's program.exe will now be run with these privileges, possibly giving them complete control of the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 114, CWE ID 494
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [3] CWE ID 020
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [3] CWE ID 020
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [4] CWE ID 020
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [4] CWE ID 020
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [6] CWE ID 020
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001764, CCI-001774, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-7 Least Functionality (P1), SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-7 Least Functionality, SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.14.2 Configuration Architectural Requirements (L2 L3), 5.1.3 Input Validation Requirements (L1 L2 L3), 5.1.4 Input Validation Requirements (L1 L2 L3), 10.2.3 Malicious Code Search (L3), 10.3.2 Deployed Application Integrity Controls (L1 L2 L3), 12.3.3 File Execution Requirements (L1 L2 L3), 14.2.3 Dependency (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[22] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[23] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[24] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[25] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[26] Standards Mapping - OWASP Top 10 2021 A01 Broken Access Control
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3570 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3570 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3570 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3570 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3570 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3570 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3570 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001480 CAT II, APSC-DV-001490 CAT II, APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[62] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20), Improper Filesystem Permissions (WASC-17)
desc.structural.ruby.process_control
Abstract
The window of time between when a file property is checked and when the file is used can be exploited to launch a privilege escalation attack.
Explanation
File access race conditions, known as time-of-check, time-of-use (TOCTOU) race conditions, occur when:

1. The program checks a property of a file, referencing the file by name.

2. The program later performs a file system operation using the same filename and assumes that the previously-checked property has not changed.
Example 1: The following code is from a program installed setuid root. The program performs certain file operations on behalf of non-privileged users, and uses access checks to ensure that it does not use its root privileges to perform operations that should not be available to the current user. The program uses the access() system call to check if the person running the program has permission to access the specified file before it opens the file and performs the necessary operations.


if (!access(file,W_OK)) {
f = fopen(file,"w+");
operate(f);
...
}
else {
fprintf(stderr,"Unable to open file %s.\n",file);
}


The call to access() behaves as expected, and returns 0 if the user running the program has the necessary permissions to write to the file, and -1 otherwise. However, because both access() and fopen() operate on filenames rather than on file handles, there is no guarantee that the file variable still refers to the same file on disk when it is passed to fopen() that it did when it was passed to access(). If an attacker replaces file after the call to access() with a symbolic link to a different file, the program will use its root privileges to operate on the file even if it is a file that the attacker would otherwise be unable to modify. By tricking the program into performing an operation that would otherwise be impermissible, the attacker has gained elevated privileges.

This type of vulnerability is not limited to programs with root privileges. If the application is capable of performing any operation that the attacker would not otherwise be allowed perform, then it is a possible target.

The window of vulnerability for such an attack is the period of time between when the property is tested and when the file is used. Even if the use immediately follows the check, modern operating systems offer no guarantee about the amount of code that is executed before the process yields the CPU. Attackers have a variety of techniques to expand the length of the window of opportunity in order to make exploits easier. However, even with a small window, an exploit attempt can simply be repeated over and over until it is successful.

Example 2: The following code creates a file and then changes the owner of the file.


fd = creat(FILE, 0644); /* Create file */
if (fd == -1)
return;
if (chown(FILE, UID, -1) < 0) { /* Change file owner */
...
}


The code assumes that the file operated upon by the call to chown() is the same as the file created by the call to creat(), but that is not necessarily the case. Since chown() operates on a file name and not on a file handle, an attacker may be able to replace the file with a link to file the attacker does not own. The call to chown() would then give the attacker ownership of the linked file.
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 362, CWE ID 367
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [22] CWE ID 362
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [21] CWE ID 362
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000366, CCI-003178
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 5.1, Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 6.8.1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), CM-6 Configuration Settings (P1), SA-11 Developer Security Testing and Evaluation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, CM-6 Configuration Settings, SA-11 Developer Testing and Evaluation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.11.2 Business Logic Architectural Requirements (L2 L3), 1.11.3 Business Logic Architectural Requirements (L3), 11.1.6 Business Logic Security Requirements (L2 L3)
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[23] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 362
[24] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 362
[25] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3630.1 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3630.1 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3630.1 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3630.1 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3630.1 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3630.1 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3630.1 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001995 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001995 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001995 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001995 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001995 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001995 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001995 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001995 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001995 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001995 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001995 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001995 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001995 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001995 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001410 CAT II, APSC-DV-001995 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001410 CAT II, APSC-DV-001995 CAT II
desc.controlflow.cpp.race_condition_file_system_access
Abstract
The window of time between when a file property is checked and when the file is used can be exploited to launch a privilege escalation attack.
Explanation
File access race conditions, known as time-of-check, time-of-use (TOCTOU) race conditions, occur when:

1. The program checks a property of a file, referencing the file by name.

2. The program later performs a file system operation using the same filename and assumes that the previously-checked property has not changed.
Example 1: The following program calls the CBL_CHECK_FILE_EXIST routine to check if the file exists before it creates one and performs the necessary operations.


CALL "CBL_CHECK_FILE_EXIST" USING
filename
file-details
RETURNING status-code
END-CALL

IF status-code NOT = 0
MOVE 3 to access-mode
MOVE 0 to deny-mode
MOVE 0 to device

CALL "CBL_CREATE_FILE" USING
filename
access-mode
deny-mode
device
file-handle
RETURNING status-code
END-CALL
END-IF


The call to CBL_CHECK_FILE_EXIST behaves as expected and returns a non-zero value, indicating that the file does not exist. However, because both CBL_CHECK_FILE_EXIST and CBL_CREATE_FILE operate on filenames rather than on file handles, there is no guarantee that the filename variable still refers to the same file on disk when it is passed to CBL_CREATE_FILE that it did when it was passed to CBL_CHECK_FILE_EXIST. If an attacker creates filename after the call to CBL_CHECK_FILE_EXIST, the call to CBL_CREATE_FILE will fail, leading the program to believe that the file is empty, when in fact it contains data controlled by the attacker.

The window of vulnerability for such an attack is the period of time between when the property is tested and when the file is used. Even if the use immediately follows the check, modern operating systems offer no guarantee about the amount of code that is executed before the process yields the CPU. Attackers have a variety of techniques to expand the length of the window of opportunity in order to make exploits easier. However, even with a small window, an exploit attempt can simply be repeated over and over until it is successful.

Furthermore, this type of vulnerability might apply to a program with root privileges that performs certain file operations on behalf of non-privileged users, and uses access checks to ensure that it does not use its root privileges to perform operations that should not be available to the current user. By tricking the program into performing an operation that would otherwise be impermissible, the attacker might gain elevated privileges.
References
[1] J. Viega, G. McGraw Building Secure Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 362, CWE ID 367
[3] Standards Mapping - Common Weakness Enumeration Top 25 2022 [22] CWE ID 362
[4] Standards Mapping - Common Weakness Enumeration Top 25 2023 [21] CWE ID 362
[5] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-000366, CCI-003178
[6] Standards Mapping - General Data Protection Regulation (GDPR) Access Violation
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 5.1, Rule 1.3
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3, Rule 6.8.1
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 CM-5 Access Restrictions for Change (P1), CM-6 Configuration Settings (P1), SA-11 Developer Security Testing and Evaluation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 CM-5 Access Restrictions for Change, CM-6 Configuration Settings, SA-11 Developer Testing and Evaluation
[12] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.11.2 Business Logic Architectural Requirements (L2 L3), 1.11.3 Business Logic Architectural Requirements (L3), 11.1.6 Business Logic Security Requirements (L2 L3)
[13] Standards Mapping - OWASP Top 10 2021 A04 Insecure Design
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[21] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.3 - Terminal Software Attack Mitigation
[23] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 362
[24] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 362
[25] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3630.1 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3630.1 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3630.1 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3630.1 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3630.1 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3630.1 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3630.1 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-001995 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-001995 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-001995 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-001995 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-001995 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-001995 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-001995 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-001995 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-001995 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-001995 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-001995 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-001995 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-001995 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-001410 CAT II, APSC-DV-001995 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-001410 CAT II, APSC-DV-001995 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-001410 CAT II, APSC-DV-001995 CAT II
desc.controlflow.cobol.file_access_race_condition