27 items found
Weaknesses
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a host name read from an HTTP request to create an FTP connection.


...
host_name = request->get_form_field( 'host' ).
CALL FUNCTION 'FTP_CONNECT'
EXPORTING
USER = user
PASSWORD = password
HOST = host_name
RFC_DESTINATION = 'SAPFTP'
IMPORTING
HANDLE = mi_handle
EXCEPTIONS
NOT_CONNECTED = 1
OTHERS = 2.
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.abap.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a port number read from an HTTP request to create a socket.


int rPort = Int32.Parse(Request.Item("rPort"));
...
IPEndPoint endpoint = new IPEndPoint(address,rPort);
socket = new Socket(endpoint.AddressFamily,
SocketType.Stream, ProtocolType.Tcp);
socket.Connect(endpoint);
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a port number read from a CGI request to create a socket.


...
char* rPort = getenv("rPort");
...
serv_addr.sin_port = htons(atoi(rPort));
if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)
error("ERROR connecting");
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cpp.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker might specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses the value read from the terminal to access a record from the CICS queue of that name.


...
ACCEPT QNAME.
EXEC CICS
READQ TD
QUEUE(QNAME)
INTO(DATA)
LENGTH(LDATA)
END-EXEC.
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cobol.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify part of the name of a file to be opened or a port number to be used.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker.

Example 1: The following ColdFusion code creates a Java ServerSocket object and uses a port number read from an HTTP request to create a socket.


<cfobject action="create" type="java" class="java.net.ServerSocket" name="myObj">
<cfset srvr = myObj.init(#url.port#)>
<cfset socket = srvr.accept()>

Passing user input to objects imported from other languages can be very dangerous.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.semantic.cfml.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker can specify the identifier used to access a system resource.

For example, an attacker might be able to specify a port number and use it to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program might give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for additional details of this vulnerability.

Example 1: The following code uses a port number read from an HTTP request to create a socket.


final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final remotePort = headers.value('port');
final serverSocket = await ServerSocket.bind(host, remotePort as int);
final httpServer = HttpServer.listenOn(serverSocket);
});
...


Some think that in the mobile world, classic web application vulnerabilities, such as resource injection, do not make sense -- why would users attack themselves? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 99
[2] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[3] Standards Mapping - FIPS200 SI
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[17] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[18] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[20] Standards Mapping - OWASP Top 10 2021 A03 Injection
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dart.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a device name read from a HTTP request to connect to bind the socket associated with fd to the device.


func someHandler(w http.ResponseWriter, r *http.Request){
r.parseForm()
deviceName := r.FormValue("device")
...
syscall.BindToDevice(fd, deviceName)
}


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections where a user can manipulate the location of resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a port number read from an HTTP request to create a socket.


String remotePort = request.getParameter("remotePort");
...
ServerSocket srvr = new ServerSocket(remotePort);
Socket skt = srvr.accept();
...


Some think that in the mobile world, classic web application vulnerabilities, such as resource injection, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 2: The following code uses a URL read from an Android intent to load the page in WebView.


...
WebView webview = new WebView(this);
setContentView(webview);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a URL read from an HTTP request to create a socket.


var socket = new WebSocket(document.URL.indexOf("url=")+20);


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.resource_injection
Abstract
Attackers are able to control the resource identifier argument which could enable them to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource or source location for input files.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a host read from a request:


...
char* rHost = getenv("host");
...
CFReadStreamRef readStream;
CFWriteStreamRef writeStream;
CFStreamCreatePairWithSocketToHost(NULL, (CFStringRef)rHost, 80, &readStream, &writeStream);
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.objc.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a hostname read from an HTTP request to connect to a database, which determines the price for a ticket.


<?php
$host=$_GET['host'];
$dbconn = pg_connect("host=$host port=1234 dbname=ticketdb");
...
$result = pg_prepare($dbconn, "my_query", 'SELECT * FROM pricelist WHERE name = $1');
$result = pg_execute($dbconn, "my_query", array("ticket"));
?>


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.php.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker may specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example: The following code uses a CGI environment variable as a URL of a document to be downloaded.


...
filename := SUBSTR(OWA_UTIL.get_cgi_env('PATH_INFO'), 2);
WPG_DOCLOAD.download_file(filename);
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in functions that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.sql.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a hostname read from an HTTP request to connect to a database, which determines the price for a ticket.


host=request.GET['host']
dbconn = db.connect(host=host, port=1234, dbname=ticketdb)
c = dbconn.cursor()
...
result = c.execute('SELECT * FROM pricelist')
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a string read from an HTTP request as the key to cache the logged-in user data.


def controllerMethod = Action { request =>
val result = request.getQueryString("key").map { key =>
val user = db.getUser()
cache.set(key, user)
Ok("Cached Request")
}
Ok("Done")
}


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.scala.resource_injection
Abstract
Attackers are able to control the resource identifier argument which could enable them to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource or source location for input files.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third party server.

Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a host read from a request:


...
func application(app: UIApplication, openURL url: NSURL, options: [String : AnyObject]) -> Bool {
var inputStream : NSInputStream?
var outputStream : NSOutputStream?
...
var readStream : Unmanaged<CFReadStream>?
var writeStream : Unmanaged<CFWriteStream>?
let rHost = getQueryStringParameter(url.absoluteString, "host")
CFStreamCreatePairWithSocketToHost(kCFAllocatorDefault, rHost, 80, &readStream, &writeStream);
...
}
func getQueryStringParameter(url: String?, param: String) -> String? {
if let url = url, urlComponents = NSURLComponents(string: url), queryItems = (urlComponents.queryItems as? [NSURLQueryItem]) {
return queryItems.filter({ (item) in item.name == param }).first?.value!
}
return nil
}
...


The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.swift.resource_injection
Abstract
Allowing user input to control resource identifiers could enable an attacker to access or modify otherwise protected system resources.
Explanation
A resource injection issue occurs when the following two conditions are met:

1. An attacker is able to specify the identifier used to access a system resource.

For example, an attacker may be able to specify a port number to be used to connect to a network resource.

2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.

For example, the program may give the attacker the ability to transmit sensitive information to a third-party server.



Note: Resource injections involving resources stored on the file system are reported in a separate category named path manipulation. See the path manipulation description for further details of this vulnerability.

Example 1: The following code uses a port number read from an HTTP request to create a socket.


...
Begin MSWinsockLib.Winsock tcpServer
...
Dim Response As Response
Dim Request As Request
Dim Session As Session
Dim Application As Application
Dim Server As Server
Dim Port As Variant
Set Response = objContext("Response")
Set Request = objContext("Request")
Set Session = objContext("Session")
Set Application = objContext("Application")
Set Server = objContext("Server")
Set Port = Request.Form("port")
...
tcpServer.LocalPort = Port
tcpServer.Accept
...



The kind of resource affected by user input indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash are risky when used in methods that interact with the file system. Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
References
[1] G. Hoglund, G. McGraw Exploiting Software Addison-Wesley
[2] Standards Mapping - Common Weakness Enumeration CWE ID 99
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - FIPS200 SI
[5] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[10] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[11] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[12] Standards Mapping - OWASP API 2023 API1 Broken Object Level Authorization
[13] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[14] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[15] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[16] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[17] Standards Mapping - OWASP Top 10 2007 A4 Insecure Direct Object Reference
[18] Standards Mapping - OWASP Top 10 2010 A4 Insecure Direct Object References
[19] Standards Mapping - OWASP Top 10 2013 A4 Insecure Direct Object References
[20] Standards Mapping - OWASP Top 10 2017 A5 Broken Access Control
[21] Standards Mapping - OWASP Top 10 2021 A03 Injection
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.8
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.8
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.8
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.8
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.8
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[33] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective 5.4 - Authentication and Access Control, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.2.3 - Web Software Access Controls, Control Objective C.3.2 - Web Software Attack Mitigation
[34] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3600 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3600 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3600 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3600 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3600 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3600 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3600 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[57] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.vb.resource_injection
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker must not be allowed to control.

Example 1: The following PHP code snippet reads a parameter from an HTTP request and sets it as the service database connection.


...
taintedConnectionStr = request->get_form_field( 'dbconn_name' ).
TRY.
DATA(con) = cl_sql_connection=>get_connection( `R/3*` && taintedConnectionStr ).
...
con->close( ).
CATCH cx_sql_exception INTO FINAL(exc).
...
ENDTRY.


In this example, an attacker could cause an error by providing a nonexistent database connection in ABAP DBCON table or connect to an unauthorized portion of the database.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.abap.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.

Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.dotnet.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.

Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following C code accepts a number as one of its command line parameters and sets it as the host ID of the current machine.


...
sethostid(argv[1]);
...


Although a process must be privileged to successfully invoke sethostid(), unprivileged users may be able to invoke the program. The code in this example allows user input to directly control the value of a system setting. If an attacker provides a malicious value for host ID, the attacker may misidentify the affected machine on the network or cause other unintended behavior.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cpp.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following COBOL code snippet reads values from the terminal and uses them to compute the options used to establish access to a queue object.


...
ACCEPT OPT1.
ACCEPT OPT2
COMPUTE OPTS = OPT1 + OPT2.
CALL 'MQOPEN' USING HCONN, OBJECTDESC, OPTS, HOBJ, COMPOCODE REASON.
...


In this example, an attacker could supply an option that allows shared rather than exclusive access to the queue.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cobol.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.

Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following code reads a number from a web form and uses it to set the timeout value in an initialization file.


...
<cfset code = SetProfileString(IniPath,
Section, "timeout", Form.newTimeout)>
...


Because the value of Form.newTimeout is used to specify a timeout, an attacker may be able to mount a denial of service (DoS) attack against the application by specifying a sufficiently large number.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.cfml.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following code snippet sets an environment variable with user-controlled data.


...
catalog := request.Form.Get("catalog")
path := request.Form.Get("path")
os.Setenv(catalog, path)
...


In this example, an attacker could set any arbitrary environment variable and affect how other applications work.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.golang.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following Java code snippet reads a string from an HttpServletRequest and sets it as the active catalog for a database Connection.


...
conn.setCatalog(request.getParamter("catalog"));
...


In this example, an attacker could cause an error by providing a nonexistent catalog name or connect to an unauthorized portion of the database.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.java.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following Node.js code snippet reads a string from an http.IncomingMessage request variable and uses it to set additional V8 commnd line flags.


var v8 = require('v8');
...
var flags = url.parse(request.url, true)['query']['flags'];
...
v8.setFlagsFromString(flags);
...


In this example, an attacker could cause various different flags to be set on the VM, which may result in unpredictable behavior including crashing the program and potentially data loss.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.javascript.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following PHP code snippet reads a parameter from an HTTP request and sets it as the active catalog for a database connection.


<?php
...
$table_name=$_GET['catalog'];
$retrieved_array = pg_copy_to($db_connection, $table_name);
...
?>


In this example, an attacker could cause an error by providing a nonexistent catalog name or connect to an unauthorized portion of the database.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.php.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following code snippet sets an environment variable using user-controlled data.


...
catalog = request.GET['catalog']
path = request.GET['path']
os.putenv(catalog, path)
...


In this example, an attacker could set any arbitrary environment variable and affect how other applications work.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.python.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following Scala code snippet reads a string from an Http Request and sets it as the active catalog for a database Connection.


def connect(catalog: String) = Action { request =>
...
conn.setCatalog(catalog)
...
}


In this example, an attacker could cause an error by providing a nonexistent catalog name or connect to an unauthorized portion of the database.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.scala.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.

Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following code configures the SQL log handler and uses a value controllable by the user.


...
sqlite3(SQLITE_CONFIG_LOG, user_controllable);
...


In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.swift.setting_manipulation
Abstract
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected ways.
Explanation
Setting manipulation vulnerabilities occur when an attacker can control values that govern the behavior of the system, manage specific resources, or in some way affect the functionality of the application.



Because setting manipulation covers a diverse set of functions, any attempt to illustrate it will inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions addressed in the setting manipulation category, take a step back and consider the sorts of system values that an attacker should not be allowed to control.

Example 1: The following VB code snippet reads a string from a Request object and sets it as the active catalog for a database Connection.


...
Dim conn As ADODB.Connection
Set conn = New ADODB.Connection
Dim rsTables As ADODB.Recordset
Dim Catalog As New ADOX.Catalog
Set Catalog.ActiveConnection = conn
Catalog.Create Request.Form("catalog")
...


In this example, an attacker could cause an error by providing a nonexistent catalog name or connect to an unauthorized portion of the database.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The leverage that an attacker gains by controlling these values is not always immediately obvious, but do not underestimate the creativity of your attacker.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 15
[2] Standards Mapping - Common Weakness Enumeration Top 25 2024 [12] CWE ID 020
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-002754
[4] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[8] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[9] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[10] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 1.5.4 Input and Output Architectural Requirements (L2 L3), 5.2.1 Sanitization and Sandboxing Requirements (L1 L2 L3), 5.3.1 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 13.1.1 Generic Web Service Security Verification Requirements (L1 L2 L3), 14.4.2 HTTP Security Headers Requirements (L1 L2 L3), 14.4.4 HTTP Security Headers Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M8 Security Decisions Via Untrusted Inputs
[13] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4, MASVS-PLATFORM-1
[15] Standards Mapping - OWASP Top 10 2004 A1 Unvalidated Input
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.1
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002560 CAT I
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002560 CAT I
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002560 CAT I
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002560 CAT I
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002560 CAT I
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002560 CAT I
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002560 CAT I
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002560 CAT I
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002560 CAT I
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002560 CAT I
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002560 CAT I
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002560 CAT I
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002560 CAT I
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002560 CAT I
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Improper Input Handling (WASC-20)
desc.dataflow.vb.setting_manipulation
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data used to dynamically construct a SQL query.
Example 1: The following code dynamically constructs and executes a SQL query designed to search for invoices belonging to a user. The query restricts the items displayed to those where user is equal to the user name of the currently authenticated user.


...
v_account = request->get_form_field( 'account' ).
v_reference = request->get_form_field( 'ref_key' ).

CONCATENATE `user = '` sy-uname `'` INTO cl_where.
IF v_account IS NOT INITIAL.
CONCATENATE cl_where ` AND account = ` v_account INTO cl_where SEPARATED BY SPACE.
ENDIF.
IF v_reference IS NOT INITIAL.
CONCATENATE cl_where "AND ref_key = `" v_reference "`" INTO cl_where.
ENDIF.

SELECT *
FROM invoice_items
INTO CORRESPONDING FIELDS OF TABLE itab_items
WHERE (cl_where).
...


The query this code intends to execute is the following(provided v_account and v_reference are not blanks):


SELECT *
FROM invoice_items
INTO CORRESPONDING FIELDS OF TABLE itab_items
WHERE user = sy-uname
AND account = <account>
AND ref_key = <reference>.


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, it is a candidate for SQL injection attacks. If an attacker enters the string "abc` OR MANDT NE `+" for v_reference and string '1000' for v_account, then the query becomes the following:


SELECT *
FROM invoice_items
INTO CORRESPONDING FIELDS OF TABLE itab_items
WHERE user = sy-uname
AND account = 1000
AND ref_key = `abc` OR MANDT NE `+`.


The addition of the OR MANDT NE `+` condition causes the WHERE clause to always evaluate to true because the client field can never be equal to literal +, so query becomes logically equivalent to the much simpler query:


SELECT * FROM invoice_items
INTO CORRESPONDING FIELDS OF TABLE itab_items.


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the invoice_items table, regardless of the specified user.

Example 2: In this example, we will consider the usage of ADBC API in a program that lets employees update their address.


PARAMETERS: p_street TYPE string,
p_city TYPE string.

Data: v_sql TYPE string,
stmt TYPE REF TO CL_SQL_STATEMENT.

v_sql = "UPDATE EMP_TABLE SET ".

"Update employee address. Build the update statement with changed details
IF street NE p_street.
CONCATENATE v_sql "STREET = `" p_street "`".
ENDIF.
IF city NE p_city.
CONCATENATE v_sql "CITY = `" p_city "`".
ENDIF.

l_upd = stmt->execute_update( v_sql ).



If a disgruntled employee inputs a string like "ABC` SALARY = `1000000" for the parameter p_street, the application lets the database be updated with revised salary!

One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

References
[1] SAP OSS notes 1520356, 1487337, 1502272 and related notes.
[2] S. J. Friedl SQL Injection Attacks by Example
[3] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[4] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[5] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[6] Standards Mapping - Common Weakness Enumeration CWE ID 89
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[20] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[21] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[24] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[26] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[28] Standards Mapping - OWASP Top 10 2010 A1 Injection
[29] Standards Mapping - OWASP Top 10 2013 A1 Injection
[30] Standards Mapping - OWASP Top 10 2017 A1 Injection
[31] Standards Mapping - OWASP Top 10 2021 A03 Injection
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[43] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[44] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[46] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[47] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[70] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[71] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.abap.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
var username:String = String(params["username"]);
var itemName:String = String(params["itemName"]);
var query:String = "SELECT * FROM items WHERE owner = " + username + " AND itemname = " + itemName;

stmt.sqlConnection = conn;
stmt.text = query;
stmt.execute();
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.actionscript.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used to dynamically construct a SQL query.
Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where owner matches the user name of the currently-authenticated user.


...
string userName = ctx.getAuthenticatedUserName();
string query = "SELECT * FROM items WHERE owner = '"
+ userName + "' AND itemname = '"
+ ItemName.Text + "'";
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'); DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.dotnet.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used to dynamically construct a SQL query.
Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
ctx.getAuthUserName(&userName); {
CString query = "SELECT * FROM items WHERE owner = '"
+ userName + "' AND itemname = '"
+ request.Lookup("item") + "'";
dbms.ExecuteSQL(query);
...
Example 2:Alternatively, a similar result could be obtained with SQLite using the following code:


...
sprintf (sql, "SELECT * FROM items WHERE owner='%s' AND itemname='%s'", username, request.Lookup("item"));
printf("SQL to execute is: \n\t\t %s\n", sql);
rc = sqlite3_exec(db,sql, NULL,0, &err);
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 3: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'); DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Parameterized CRecordset and CDatabase for SQL Server
[6] Parameterizing a Recordset Microsoft
[7] ODBC API Reference: SQLNumParams() Microsoft
[8] ODBC API Reference: SQLBindParameter() Microsoft
[9] OLE DB Reference: ICommandWithParameters Microsoft
[10] Standards Mapping - Common Weakness Enumeration CWE ID 89
[11] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[12] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[13] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[14] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[15] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[16] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[18] Standards Mapping - FIPS200 SI
[19] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[21] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[22] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[23] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[24] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[25] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[28] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[30] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[31] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[32] Standards Mapping - OWASP Top 10 2010 A1 Injection
[33] Standards Mapping - OWASP Top 10 2013 A1 Injection
[34] Standards Mapping - OWASP Top 10 2017 A1 Injection
[35] Standards Mapping - OWASP Top 10 2021 A03 Injection
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[42] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[43] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[44] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[45] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[46] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[47] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[48] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[49] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[50] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[51] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[70] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[71] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[72] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[73] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[74] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[75] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.cpp.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data used to dynamically construct a SQL query.
Example 1: The following code dynamically constructs and executes a SQL query designed to search for items matching a specified name. The query restricts the items displayed to those where owner is equal to the user name of the currently authenticated user.


...
ACCEPT USER.
ACCEPT ITM.
MOVE "SELECT * FROM items WHERE owner = '" TO QUERY1.
MOVE "' AND itemname = '" TO QUERY2.
MOVE "'" TO QUERY3.

STRING
QUERY1, USER, QUERY2, ITM, QUERY3 DELIMITED BY SIZE
INTO QUERY
END-STRING.

EXEC SQL
EXECUTE IMMEDIATE :QUERY
END-EXEC.
...


The query this code intends to execute is the following:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itm, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: In this example, we will consider the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string would result in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on supported databases this type of attack will allow the execution of arbitrary commands against the database.

Notice the trailing pair of hyphens (--); these indicate to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comments are used to remove the trailing single-quote leftover from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.cobol.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data used to dynamically construct a SQL query.
Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where owner matches the user name of the currently-authenticated user.


...
<cfquery name="matchingItems" datasource="cfsnippets">
SELECT * FROM items
WHERE owner='#Form.userName#'
AND itemId=#Form.ID#
</cfquery>
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemId = <ID>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if Form.ID does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for Form.ID, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemId = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name hacker enters the string "hacker'); DELETE FROM items; --" for Form.ID, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'hacker'
AND itemId = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'hacker'
AND itemId = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.cfml.sql_injection
Abstract
Using the Java J2EE PersistenceAPI to execute a dynamic SQL statement built with input coming from an untrusted source can enable an attacker to modify the statement's meaning or to execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
final server = await HttpServer.bind('localhost', 18081);
server.listen((request) async {
final headers = request.headers;
final userName = headers.value('userName');
final itemName = headers.value('itemName');
final query = "SELECT * FROM items WHERE owner = '"
+ userName! + "' AND itemname = '"
+ itemName! + "'";
db.query(query);
}
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query enables the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack enables the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case, the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be an effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers might:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed to deal with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some types of exploits, but they will not make your application secure against SQL injection attacks.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 89
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[5] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[6] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[9] Standards Mapping - FIPS200 SI
[10] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[12] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[13] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[14] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[15] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[16] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[17] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[18] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[19] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[20] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[21] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[22] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[23] Standards Mapping - OWASP Top 10 2010 A1 Injection
[24] Standards Mapping - OWASP Top 10 2013 A1 Injection
[25] Standards Mapping - OWASP Top 10 2017 A1 Injection
[26] Standards Mapping - OWASP Top 10 2021 A03 Injection
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[30] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[36] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[37] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[38] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[39] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[40] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[41] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[42] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[50] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[51] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[52] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[53] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[66] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.dart.sql_injection
Abstract
Constructing a dynamic SQL statement with input that comes from an untrusted source enables an attacker to modify the statement's meaning or to execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used to dynamically construct a SQL query.
Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
rawQuery := request.URL.Query()
username := rawQuery.Get("userName")
itemName := rawQuery.Get("itemName")
query := "SELECT * FROM items WHERE owner = " + username + " AND itemname = " + itemName + ";"

db.Exec(query)
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the code dynamically constructs the query by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query enables the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow the simultaneous execution of multiple SQL statements separated by semicolons. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack enables the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers to treat the remainder of the statement as a comment and to not execute it. [4]. In this case, the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements are created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to prevent SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective to prevent SQL injection attacks. For example, attackers can:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it does not make your application secure from SQL injection attacks.

Another solution commonly proposed to deal with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they do not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.golang.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
String userName = ctx.getAuthenticatedUserName();
String itemName = request.getParameter("itemName");
String query = "SELECT * FROM items WHERE owner = '"
+ userName + "' AND itemname = '"
+ itemName + "'";
ResultSet rs = stmt.execute(query);
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


Some think that in the mobile world, classic web application vulnerabilities, such as SQL injection, do not make sense -- why would the user attack themself? However, keep in mind that the essence of mobile platforms is applications that are downloaded from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which necessitates expanding the attack surface of mobile applications to include inter-process communication.

Example 3: The following code adapts Example 1 to the Android platform.


...
PasswordAuthentication pa = authenticator.getPasswordAuthentication();
String userName = pa.getUserName();
String itemName = this.getIntent().getExtras().getString("itemName");
String query = "SELECT * FROM items WHERE owner = '"
+ userName + "' AND itemname = '"
+ itemName + "'";
SQLiteDatabase db = this.openOrCreateDatabase("DB", MODE_PRIVATE, null);
Cursor c = db.rawQuery(query, null);
...


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] IDS00-J. Prevent SQL Injection CERT
[6] INJECT-2: Avoid dynamic SQL Oracle
[7] Standards Mapping - Common Weakness Enumeration CWE ID 89
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[13] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[15] Standards Mapping - FIPS200 SI
[16] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[24] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[25] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[26] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[27] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[28] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[29] Standards Mapping - OWASP Top 10 2010 A1 Injection
[30] Standards Mapping - OWASP Top 10 2013 A1 Injection
[31] Standards Mapping - OWASP Top 10 2017 A1 Injection
[32] Standards Mapping - OWASP Top 10 2021 A03 Injection
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[43] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[44] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[45] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[46] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[47] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[48] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[70] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[71] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[72] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.java.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
var username = document.form.username.value;
var itemName = document.form.itemName.value;
var query = "SELECT * FROM items WHERE owner = " + username + " AND itemname = " + itemName + ";";
db.transaction(function (tx) {
tx.executeSql(query);
}
)
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.javascript.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
$userName = $_SESSION['userName'];
$itemName = $_POST['itemName'];
$query = "SELECT * FROM items WHERE owner = '$userName' AND itemname = '$itemName';";
$result = mysql_query($query);
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.php.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data used to dynamically construct a SQL query.
Example 1: The following code dynamically constructs and executes a SQL query designed to search for items matching a specified name. The query restricts the items displayed to those where owner is equal to the user name of the currently authenticated user.


procedure get_item (
itm_cv IN OUT ItmCurTyp,
usr in varchar2,
itm in varchar2)
is
open itm_cv for ' SELECT * FROM items WHERE ' ||
'owner = '''|| usr || '''' ||
' AND itemname = ''' || itm || '''';
end get_item;


The query this code intends to execute is the following:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itm, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: In this example, we will consider the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string would result in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on supported databases this type of attack will allow the execution of arbitrary commands against the database.

Notice the trailing pair of hyphens (--); these indicate to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comments are used to remove the trailing single-quote leftover from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. As this series of examples has shown, stored procedures can be just as vulnerable as other kinds of code. Stored procedures can help prevent certain types of exploits, but they will not make your application inherently secure from SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] David Litchfield Lateral SQL Injection: A New Class of Vulnerability in Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 89
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[20] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[21] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[24] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[26] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[28] Standards Mapping - OWASP Top 10 2010 A1 Injection
[29] Standards Mapping - OWASP Top 10 2013 A1 Injection
[30] Standards Mapping - OWASP Top 10 2017 A1 Injection
[31] Standards Mapping - OWASP Top 10 2021 A03 Injection
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[43] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[44] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[46] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[47] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[70] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[71] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.sql.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
userName = req.field('userName')
itemName = req.field('itemName')
query = "SELECT * FROM items WHERE owner = ' " + userName +" ' AND itemname = ' " + itemName +"';"
cursor.execute(query)
result = cursor.fetchall()
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] GitHub Advisory Database Django SQL injection in HasKey(lhs, rhs) on Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 89
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[12] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[13] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[14] Standards Mapping - FIPS200 SI
[15] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[20] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[21] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[22] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[23] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[24] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[25] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[26] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[28] Standards Mapping - OWASP Top 10 2010 A1 Injection
[29] Standards Mapping - OWASP Top 10 2013 A1 Injection
[30] Standards Mapping - OWASP Top 10 2017 A1 Injection
[31] Standards Mapping - OWASP Top 10 2021 A03 Injection
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[43] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[44] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[46] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[47] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[70] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[71] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.python.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

In this case, Fortify Static Code Analyzer could not determine that the source of the data is trusted.

2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
userName = getAuthenticatedUserName()
itemName = params[:itemName]
sqlQuery = "SELECT * FROM items WHERE owner = '#{userName}' AND itemname = '#{itemName}'"
rs = conn.query(sqlQuery)
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Due to the fact that Ruby is not statically typed also enables other points of injection into SQL queries that may not be available in statically typed languages.
Example 2: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
id = params[:id]
itemName = Mysql.escape_string(params[:itemName])
sqlQuery = "SELECT * FROM items WHERE id = #{userName} AND itemname = '#{itemName}'"
rs = conn.query(sqlQuery)
...


In this case, the expected SQL query to be run is:


SELECT * FROM items WHERE id=<id> AND itemname = <itemName>;

You can see this time that we've protected against an attacker specifying a single quote inside itemName and seemingly prevented the SQL injection vulnerability. However as Ruby is not a statically typed language, even though we are expecting id to be an integer of some variety, as this is assigned from user input it won't necessarily be a number. If an attacker can instead change the value of id to 1 OR id!=1--, since there is no check that id is in fact numeric, the SQL query now becomes:


SELECT * FROM items WHERE id=1 OR id!=1-- AND itemname = 'anyValue';


Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. Due to this, it's now just running a SQL query consisting of:


SELECT * FROM items WHERE id=1 OR id!=1;


We are now just selecting everything from that table whether the value of id is equal to 1 or not, which of course equates to everything within the table.

Many database servers allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.ruby.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for users matching a specified name. The query restricts the items displayed to those where the owner matches the user name provided as a path parameter.


def doSQLQuery(value:String) = Action.async { implicit request =>
val result: Future[Seq[User]] = db.run {
sql"select * from users where name = '#$value'".as[User]
}
...
}


The query intends to execute the following code:


SELECT * FROM users
WHERE name = <userName>


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if userName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for userName, then the query becomes the following:


SELECT * FROM users
WHERE name = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM users;


This simplification of the query allows the attacker to bypass the requirement that the query must only return users owned by the specified user; the query now returns all entries stored in the users table, regardless of their specified user.

One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] IDS00-J. Prevent SQL Injection CERT
[6] INJECT-2: Avoid dynamic SQL Oracle
[7] Standards Mapping - Common Weakness Enumeration CWE ID 89
[8] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[12] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[13] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[14] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[15] Standards Mapping - FIPS200 SI
[16] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[19] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[21] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[22] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[23] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[24] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[25] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[26] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[27] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[28] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[29] Standards Mapping - OWASP Top 10 2010 A1 Injection
[30] Standards Mapping - OWASP Top 10 2013 A1 Injection
[31] Standards Mapping - OWASP Top 10 2017 A1 Injection
[32] Standards Mapping - OWASP Top 10 2021 A03 Injection
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[43] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[44] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[45] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[46] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[47] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[48] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[70] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[71] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[72] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.scala.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data is used to dynamically construct a SQL query.
Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
let queryStatementString = "SELECT * FROM items WHERE owner='\(username)' AND itemname='\(item)'"
var queryStatement: OpaquePointer? = nil
if sqlite3_prepare_v2(db, queryStatementString, -1, &queryStatement, nil) == SQLITE_OK {
if sqlite3_step(queryStatement) == SQLITE_ROW {
...
}
}
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = '<userName>'
AND itemname = '<itemName>'


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 3: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'); DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Parameterized CRecordset and CDatabase for SQL Server
[6] Parameterizing a Recordset Microsoft
[7] ODBC API Reference: SQLNumParams() Microsoft
[8] ODBC API Reference: SQLBindParameter() Microsoft
[9] OLE DB Reference: ICommandWithParameters Microsoft
[10] Standards Mapping - Common Weakness Enumeration CWE ID 89
[11] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[12] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[13] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[14] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[15] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[16] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[17] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[18] Standards Mapping - FIPS200 SI
[19] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[20] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[21] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[22] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[23] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[24] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[25] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[26] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[27] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[28] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[29] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[30] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[31] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[32] Standards Mapping - OWASP Top 10 2010 A1 Injection
[33] Standards Mapping - OWASP Top 10 2013 A1 Injection
[34] Standards Mapping - OWASP Top 10 2017 A1 Injection
[35] Standards Mapping - OWASP Top 10 2021 A03 Injection
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[40] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[41] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[42] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[43] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[44] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[45] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[46] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[47] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[48] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[49] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[50] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[51] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[56] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[57] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[58] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[70] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[71] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[72] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[73] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[74] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[75] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.swift.sql_injection
Abstract
Constructing a dynamic SQL statement with input from an untrusted source might allow an attacker to modify the statement's meaning or execute arbitrary SQL commands.
Explanation
SQL injection errors occur when:

1. Data enters a program from an untrusted source.



2. The data is used to dynamically construct a SQL query.

Example 1: The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where the owner matches the user name of the currently-authenticated user.


...
username = Session("username")
itemName = Request.Form("itemName")
strSQL = "SELECT * FROM items WHERE owner = '"& userName &"' AND itemname = '" & itemName &"'"
objRecordSet.Open strSQL, strConnect, adOpenDynamic, adLockOptimistic, adCmdText
...


The query intends to execute the following code:


SELECT * FROM items
WHERE owner = <userName>
AND itemname = <itemName>;


However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name' OR 'a'='a';


The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:


SELECT * FROM items;


This simplification of the query allows the attacker to bypass the requirement that the query must only return items owned by the authenticated user. The query now returns all entries stored in the items table, regardless of their specified owner.

Example 2: This example examines the effects of a different malicious value passed to the query constructed and executed in Example 1. If an attacker with the user name wiley enters the string "name'; DELETE FROM items; --" for itemName, then the query becomes the following two queries:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

--'


Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed [4]. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1. If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following three valid statements will be created:


SELECT * FROM items
WHERE owner = 'wiley'
AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';


One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allow list of safe values or identify and escape a list of potentially malicious values (deny list). Checking an allow list can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, implementing a deny list is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers may:

- Target fields that are not quoted
- Find ways to bypass the need for certain escaped metacharacters
- Use stored procedures to hide the injected metacharacters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.
References
[1] S. J. Friedl SQL Injection Attacks by Example
[2] P. Litwin Stop SQL Injection Attacks Before They Stop You MSDN Magazine
[3] P. Finnigan SQL Injection and Oracle, Part One Security Focus
[4] M. Howard, D. LeBlanc Writing Secure Code, Second Edition Microsoft Press
[5] Standards Mapping - Common Weakness Enumeration CWE ID 89
[6] Standards Mapping - Common Weakness Enumeration Top 25 2019 [6] CWE ID 089
[7] Standards Mapping - Common Weakness Enumeration Top 25 2020 [6] CWE ID 089
[8] Standards Mapping - Common Weakness Enumeration Top 25 2021 [6] CWE ID 089
[9] Standards Mapping - Common Weakness Enumeration Top 25 2022 [3] CWE ID 089
[10] Standards Mapping - Common Weakness Enumeration Top 25 2023 [3] CWE ID 089
[11] Standards Mapping - Common Weakness Enumeration Top 25 2024 [3] CWE ID 089
[12] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001310, CCI-002754
[13] Standards Mapping - FIPS200 SI
[14] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[15] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[16] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Directive 4.14, Rule 1.3
[17] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2008 Rule 0-3-1
[18] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[19] Standards Mapping - NIST Special Publication 800-53 Revision 4 SI-10 Information Input Validation (P1)
[20] Standards Mapping - NIST Special Publication 800-53 Revision 5 SI-10 Information Input Validation
[21] Standards Mapping - OWASP Application Security Verification Standard 4.0 5.3.4 Output Encoding and Injection Prevention Requirements (L1 L2 L3), 5.3.5 Output Encoding and Injection Prevention Requirements (L1 L2 L3)
[22] Standards Mapping - OWASP Mobile 2014 M7 Client Side Injection
[23] Standards Mapping - OWASP Mobile 2024 M4 Insufficient Input/Output Validation
[24] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-CODE-4
[25] Standards Mapping - OWASP Top 10 2004 A6 Injection Flaws
[26] Standards Mapping - OWASP Top 10 2007 A2 Injection Flaws
[27] Standards Mapping - OWASP Top 10 2010 A1 Injection
[28] Standards Mapping - OWASP Top 10 2013 A1 Injection
[29] Standards Mapping - OWASP Top 10 2017 A1 Injection
[30] Standards Mapping - OWASP Top 10 2021 A03 Injection
[31] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.6
[32] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.3.1.1, Requirement 6.5.2
[33] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.1
[34] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.1
[35] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.1
[36] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.1
[37] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.1
[38] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[39] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[40] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[41] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation
[42] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective B.3.1 - Terminal Software Attack Mitigation, Control Objective B.3.1.1 - Terminal Software Attack Mitigation, Control Objective C.3.2 - Web Software Attack Mitigation
[43] Standards Mapping - SANS Top 25 2009 Insecure Interaction - CWE ID 089
[44] Standards Mapping - SANS Top 25 2010 Insecure Interaction - CWE ID 089
[45] Standards Mapping - SANS Top 25 2011 Insecure Interaction - CWE ID 089
[46] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3510 CAT I, APP3540.1 CAT I, APP3540.3 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[54] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[55] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[56] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[57] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[58] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[59] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[60] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[61] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[62] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[63] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[64] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[65] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[66] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[67] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[68] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002530 CAT II, APSC-DV-002540 CAT I, APSC-DV-002560 CAT I
[69] Standards Mapping - Web Application Security Consortium Version 2.00 SQL Injection (WASC-19)
[70] Standards Mapping - Web Application Security Consortium 24 + 2 SQL Injection
desc.dataflow.vb.sql_injection
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.
Example 1: The following code prints the SAPFTP version information on the screen:


...
CALL FUNCTION 'FTP_VERSION'
...
IMPORTING
EXEPATH = p
VERSION = v
WORKING_DIR = dir
RFCPATH = rfcp
RFCVERSION = rfcv
TABLES
FTP_TRACE = FTP_TRACE.

WRITE: 'exepath: ', p, 'version: ', v, 'working_dir: ', dir, 'rfcpath: ', rfcp, 'rfcversion: ', rfcv.
...


Depending upon the configuration of the selection screen, this information can be dumped to a screen or sent directly to a printer. In some cases the version information tells the attacker precisely what sort of an attack the system will be vulnerable to. In the same manner, error messages can tell the attacker what attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.abap.system_information_leak_external
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.

Example 1: The following code prints a stack trace to either a "Debug" console or a log file:


try {
...
}
catch(e:Error) {
trace(e.getStackTrace());
}


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. For example, with scripting mechanisms it is trivial to redirect output information from "Standard error" or "Standard output" into a file or another program. Alternatively, the system that the program runs on could have a remote logging mechanism such as a "syslog" server that sends the logs to a remote device. During development, you have no way of knowing where this information might end up being displayed.

In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.actionscript.system_information_leak_external
Abstract
Revealing system data or debugging information enables an adversary to learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debug information leaves the program to a remote machine via a socket or network connection. External leaks can help an attacker by revealing specific data about operating systems, full pathnames, the existence of usernames, or locations of configuration files. External leaks are more serious than internal information leaks, which are more difficult for an attacker to access.

Example 1: The following code leaks Exception information in the <apex:messages/> element of a Visualforce page:


try {
...
} catch (Exception e) {
ApexPages.Message msg = new ApexPages.Message(ApexPages.Severity.FATAL, e.getMessage());
ApexPages.addMessage(msg);
}


This information can be exposed to a remote user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Ernst Haselsteiner and Klemens Breitfuss Security in Near Field Communication (NFC): Strengths and Weaknesses
[2] ERR01-J. Do not allow exceptions to expose sensitive information CERT
[3] ENV02-J. Do not trust the values of environment variables CERT
[4] FUNDAMENTALS-4: Establish trust boundaries Oracle
[5] CONFIDENTIAL-1: Purge sensitive information from exceptions Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[15] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[19] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[20] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.apex.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.
Example 1: The following code leaks Exception information in the HTTP response:


try
{
...
}
catch (Exception e)
{
Response.Write(e.ToString());
}


This information can be exposed to a remote user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.dotnet.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.
Example 1: The following code leaks system information via a socket:


int sockfd;
int flags;
char hostname[1024];
hostname[1023] = '\0';
gethostname(hostname, 1023);
...
sockfd = socket(AF_INET, SOCK_STREAM, 0);
flags = 0;
send(sockfd, hostname, strlen(hostname), flags);


This information can be exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cpp.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.
Example 1: The following code displays the error code SQLCODE and the error message SQlERRMC associated with the SQL command that caused the error to the terminal.


...
EXEC SQL
WHENEVER SQLERROR
PERFORM DEBUG-ERR
SQL-EXEC.
...
DEBUG-ERR.
DISPLAY "Error code is: " SQLCODE.
DISPLAY "Error message is: " SQLERRMC.
...


Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. In Example 1, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cobol.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.
Example 1: The following code catches an exception and prints its message to the page.


<cfcatch type="Any">
<cfset exception=getException(myObj)>
<cfset message=exception.toString()>
<cfoutput>
Exception message: #message#
</cfoutput>
</cfcatch>


Depending on the system configuration, this information can be written to a log file or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cfml.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.

Example 1: The following example leaks system information via an HTTP response.


func handler(w http.ResponseWriter, r *http.Request) {
host, err := os.Hostname()
...
fmt.Fprintf(w, "%s is busy, please try again later.", host)
}


In some cases, the error message tells the attacker to which precise type of attack the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.golang.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debug information leaves the program to a remote machine via a socket or network connection. External leaks can help an attacker by revealing specific data about operating systems, full pathnames, the existence of usernames, or locations of configuration files, and are more serious than internal information leaks, which are more difficult for an attacker to access.

Example 1: The following code leaks Exception information in the HTTP response:


protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
...
PrintWriter out = res.getWriter();
try {
...
} catch (Exception e) {
out.println(e.getMessage());
}
}


This information can be exposed to a remote user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.

Information leaks are also a concern in a mobile computing environment. With mobile platforms, applications are downloaded from various sources and are run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which is why application authors need to be careful about what information they include in messages addressed to other applications running on the device.

Example 2: The following code broadcasts the stack trace of a caught exception to all the registered Android receivers.

...
try {
...
} catch (Exception e) {
String exception = Log.getStackTraceString(e);
Intent i = new Intent();
i.setAction("SEND_EXCEPTION");
i.putExtra("exception", exception);
view.getContext().sendBroadcast(i);
}
...


This is another scenario specific to the mobile environment. Most mobile devices now implement a Near-Field Communication (NFC) protocol for quickly sharing information between devices using radio communication. It works by bringing devices in close proximity or having the devices touch each other. Even though the communication range of NFC is limited to just a few centimeters, eavesdropping, data modification and various other types of attacks are possible, because NFC alone does not ensure secure communication.

Example 3: The Android platform provides support for NFC. The following code creates a message that gets pushed to the other device within range.

...
public static final String TAG = "NfcActivity";
private static final String DATA_SPLITTER = "__:DATA:__";
private static final String MIME_TYPE = "application/my.applications.mimetype";
...
TelephonyManager tm = (TelephonyManager)Context.getSystemService(Context.TELEPHONY_SERVICE);
String VERSION = tm.getDeviceSoftwareVersion();
...
NfcAdapter nfcAdapter = NfcAdapter.getDefaultAdapter(this);
if (nfcAdapter == null)
return;

String text = TAG + DATA_SPLITTER + VERSION;
NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
MIME_TYPE.getBytes(), new byte[0], text.getBytes());
NdefRecord[] records = { record };
NdefMessage msg = new NdefMessage(records);
nfcAdapter.setNdefPushMessage(msg, this);
...


An NFC Data Exchange Format (NDEF) message contains typed data, a URI, or a custom application payload. If the message contains information about the application, such as its name, MIME type, or device software version, this information could be leaked to an eavesdropper.
References
[1] Ernst Haselsteiner and Klemens Breitfuss Security in Near Field Communication (NFC): Strengths and Weaknesses
[2] ERR01-J. Do not allow exceptions to expose sensitive information CERT
[3] ENV02-J. Do not trust the values of environment variables CERT
[4] FUNDAMENTALS-4: Establish trust boundaries Oracle
[5] CONFIDENTIAL-1: Purge sensitive information from exceptions Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[15] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[19] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[20] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.java.system_information_leak_external
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An external information leak occurs when system data or debug information leaves the program to a remote machine via a socket or network connection. External leaks can help an attacker by revealing specific data about operating systems, full pathnames, the existence of usernames, or locations of configuration files, and are more serious than internal information leaks, which are more difficult for an attacker to access.

Example 1: The following code leaks Exception information into a text area within a web page:


...
dirReader.readEntries(function(results){
...
}, function(error){
$("#myTextArea").val('There was a problem: ' + error);
});
...


This information can be exposed to a remote user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.javascript.system_information_leak_external
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An external information leak occurs when system data or debug information leaves the program to a remote machine via a socket or network connection. External leaks can help an attacker by revealing specific data about operating systems, full pathnames, the existence of usernames, or locations of configuration files, and are more serious than internal information leaks, which are more difficult for an attacker to access.

Example 1: The following code leaks Exception information in the HTTP response:


protected fun doPost(req: HttpServletRequest, res: HttpServletResponse) {
...
val out: PrintWriter = res.getWriter()
try {
...
} catch (e: Exception) {
out.println(e.message)
}
}


This information can be exposed to a remote user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.

Information leaks are also a concern in a mobile computing environment. With mobile platforms, applications are downloaded from various sources and are run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which is why developers must be careful about the information included in messages addressed to other applications running on the device.

Example 2: The following code broadcasts the stack trace of a caught exception to all the registered Android receivers.

...
try {
...
} catch (e: Exception) {
val exception = Log.getStackTraceString(e)
val intent = Intent()
intent.action = "SEND_EXCEPTION"
intent.putExtra("exception", exception)
view.context.sendBroadcast(intent)
}
...


This is another scenario specific to the mobile environment. Most mobile devices now implement a Near-Field Communication (NFC) protocol for quickly sharing information between devices using radio communication. It works by bringing devices in close proximity or having the devices touch each other. Even though the communication range of NFC is limited to just a few centimeters, eavesdropping, data modification and various other types of attacks are possible, because NFC alone does not ensure secure communication.

Example 3: The Android platform provides support for NFC. The following code creates a message that gets pushed to the other device within range.

...
companion object {
const val TAG = "NfcActivity"
private const val DATA_SPLITTER = "__:DATA:__"
private const val MIME_TYPE = "application/my.applications.mimetype"
}
...
val tm = Context.getSystemService(Context.TELEPHONY_SERVICE) as TelephonyManager
val VERSION = tm.getDeviceSoftwareVersion();
...
val nfcAdapter = NfcAdapter.getDefaultAdapter(this)

val text: String = "$TAG$DATA_SPLITTER$VERSION"
val record = NdefRecord(NdefRecord.TNF_MIME_MEDIA, MIME_TYPE.getBytes(), ByteArray(0), text.toByteArray())
val records = arrayOf(record)
val msg = NdefMessage(records)
nfcAdapter.setNdefPushMessage(msg, this)
...


An NFC Data Exchange Format (NDEF) message contains typed data, a URI, or a custom application payload. If the message contains information about the application, such as its name, MIME type, or device software version, this information could be leaked to an eavesdropper.
References
[1] Ernst Haselsteiner and Klemens Breitfuss Security in Near Field Communication (NFC): Strengths and Weaknesses
[2] ERR01-J. Do not allow exceptions to expose sensitive information CERT
[3] ENV02-J. Do not trust the values of environment variables CERT
[4] FUNDAMENTALS-4: Establish trust boundaries Oracle
[5] CONFIDENTIAL-1: Purge sensitive information from exceptions Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[15] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[19] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[20] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.kotlin.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.

Example 1: The following code leaks system information via an HTTP request:


NSString *deviceName = [[UIDevice currentDevice] name];
NSString *baseUrl = @"http://myserver.com/?dev=";
NSString *urlString = [baseUrl stringByAppendingString:deviceName];
NSURL *url = [NSURL URLWithString:urlString];
NSURLRequest* request = [NSURLRequest requestWithURL:url cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:60.0];
NSError *err = nil;
NSURLResponse* response = nil;
NSData *data = [NSURLConnection sendSynchronousRequest:request returningResponse:&response error:&err];


This information can be exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.objc.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.

Example 1: The following code writes an exception to the HTTP response:


<?php
...
echo "Server error! Printing the backtrace";
debug_print_backtrace();
...
?>


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. For example, with scripting mechanisms it is trivial to redirect output information from "Standard error" or "Standard output" into a file or another program. Alternatively, the system that the program runs on could have a remote logging mechanism such as a "syslog" server that sends the logs to a remote device. During development, you have no way of knowing where this information might end up being displayed.

In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.php.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.
Example 1: The following code prints the environment variables PATH_INFO and SCRIPT_NAME to the page.


...
HTP.htmlOpen;
HTP.headOpen;
HTP.title ('Environment Information');
HTP.headClose;
HTP.bodyOpen;
HTP.br;
HTP.print('Path Information: ' ||
OWA_UTIL.get_cgi_env('PATH_INFO') || '
');
HTP.print('Script Name: ' ||
OWA_UTIL.get_cgi_env('SCRIPT_NAME') || '
');
HTP.br;
HTP.bodyClose;
HTP.htmlClose;
...
}


Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.sql.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.

Example 1: The following code prints all the system environment variables as part of the HTTP response:


...
import cgi
cgi.print_environ()
...


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. For example, with scripting mechanisms it is trivial to redirect output information from "Standard error" or "Standard output" into a file or another program. Alternatively, the system that the program runs on could have a remote logging mechanism such as a "syslog" server that sends the logs to a remote device. During development, you have no way of knowing where this information might end up being displayed.

In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.structural.python.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.

Example 1: The following code leaks system information via an HTTP response:


response = Rack::Response.new
...
stacktrace = caller # Kernel#caller returns an array of the execution stack
...
response.finish do |res|
res.write "There was a problem: #{stacktrace}"
end


This information can be exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.ruby.system_information_leak_external
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An external information leak occurs when system data or debug information leaves the program to a remote machine via a socket or network connection. External leaks can help an attacker by revealing specific data about operating systems, full pathnames, the existence of usernames, or locations of configuration files, and are more serious than internal information leaks, which are more difficult for an attacker to access.

Example 1: The following code leaks System details in the HTTP response:


def doSomething() = Action { request =>
...
Ok(Html(Properties.osName)) as HTML
}


This information can be exposed to a remote user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Ernst Haselsteiner and Klemens Breitfuss Security in Near Field Communication (NFC): Strengths and Weaknesses
[2] ERR01-J. Do not allow exceptions to expose sensitive information CERT
[3] ENV02-J. Do not trust the values of environment variables CERT
[4] FUNDAMENTALS-4: Establish trust boundaries Oracle
[5] CONFIDENTIAL-1: Purge sensitive information from exceptions Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[15] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[19] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[20] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[55] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[56] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.scala.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.

Example 1: The following code leaks system information via an HTTP request:


let deviceName = UIDevice.currentDevice().name
let urlString : String = "http://myserver.com/?dev=\(deviceName)"
let url : NSURL = NSURL(string:urlString)
let request : NSURLRequest = NSURLRequest(URL:url)
var err : NSError?
var response : NSURLResponse?
var data : NSData = NSURLConnection.sendSynchronousRequest(request, returningResponse: &response, error:&err)


This information can be exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.swift.system_information_leak_external
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a socket or network connection.

Example 1: The following code writes an exception to the Response output stream:


...
If Err.number <>0 then
Response.Write "An Error Has Occurred on this page!<BR>"
Response.Write "The Error Number is: " & Err.number & "<BR>"
Response.Write "The Description given is: " & Err.Description & "<BR>"
End If
...


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. For example, with scripting mechanisms it is trivial to redirect output information from "Standard error" or "Standard output" into a file or another program. Alternatively, the system that the program runs on could have a remote logging mechanism such as a "syslog" server that sends the logs to a remote device. During development, you have no way of knowing where this information might end up being displayed.

In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 215, CWE ID 489, CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-001314, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.2 Unintended Security Disclosure Requirements (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3), 14.2.2 Dependency (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-PLATFORM-2, MASVS-STORAGE-1
[14] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[15] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II, APSC-DV-002580 CAT II
[50] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[51] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.vb.system_information_leak_external
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.
Example 1: The following code prints the SAPFTP version information on the screen:


...
CALL FUNCTION 'FTP_VERSION'
...
IMPORTING
EXEPATH = p
VERSION = v
WORKING_DIR = dir
RFCPATH = rfcp
RFCVERSION = rfcv
TABLES
FTP_TRACE = FTP_TRACE.

WRITE: 'exepath: ', p, 'version: ', v, 'working_dir: ', dir, 'rfcpath: ', rfcp, 'rfcversion: ', rfcv.
...


Depending upon the configuration of the selection screen, this information can be dumped to a screen or sent directly to a printer. In some cases the version information tells the attacker precisely what sort of an attack the system will be vulnerable to. In the same manner, error messages can tell the attacker what attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.abap.system_information_leak_internal
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code prints a stack trace to either a "Debug" console or a log file:


try {
...
}
catch(e:Error) {
trace(e.getStackTrace());
}


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.actionscript.system_information_leak_internal
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code writes an exception message to the debug log:


try {
...
} catch (Exception e) {
System.Debug(LoggingLevel.ERROR, e.getMessage());
}


The error message could enable an adversary to plan an attack. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Ernst Haselsteiner and Klemens Breitfuss Security in Near Field Communication (NFC): Strengths and Weaknesses
[2] ERR01-J. Do not allow exceptions to expose sensitive information CERT
[3] ENV02-J. Do not trust the values of environment variables CERT
[4] FUNDAMENTALS-4: Establish trust boundaries Oracle
[5] CONFIDENTIAL-1: Purge sensitive information from exceptions Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 497
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[15] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[20] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[21] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.apex.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.
Example 1: The following code constructs a database connection string, uses it to create a new connection to the database, and writes it to the console.


string cs="database=northwind;server=mySQLServer...";
SqlConnection conn=new SqlConnection(cs);
...
Console.Writeline(cs);


Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.dotnet.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debugging information is sent via logging or printing to a local file, console, or screen.
Example 1: The following code prints the path environment variable to the standard error stream:


char* path = getenv("PATH");
...
fprintf(stderr, "cannot find exe on path %s\n", path);


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cpp.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debugging information is sent via logging or printing to a local file, console, or screen.
Example 1: The following code requests a transaction dump of all the task-related storage areas, the terminal control table, and a specified data area:


...
EXEC CICS DUMP TRANSACTION
DUMPCODE('name')
FROM (data-area)
LENGTH (data-value)
END-EXEC.
...


Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cobol.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debugging information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code writes to a file on the local file system:


<cfscript>
try {
obj = CreateObject("person");
}
catch(any excpt) {
f = FileOpen("c:\log.txt", "write");
FileWriteLine(f, "#excpt.Message#");
FileClose(f);
}
</cfscript>


This information is written to a log file. In some cases the message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.cfml.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code writes an exception to a local file:


final file = await File('example.txt').create();
final raf = await file.open(mode: FileMode.write);
final data = String.fromEnvironment("PASSWORD");
raf.writeString(data);


Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.

Information leaks are also a concern in a mobile computing environment.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.dart.system_information_leak_internal
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debugging information is sent via logging or printing to a local file, console, or screen.
Example 1: The following code prints the path environment variable to the standard error stream:


path := os.Getenv("PATH")
...
log.Printf("Cannot find exe on path %s\n", path)


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases, the error message tells the attacker to which precise type of attack the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.golang.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An external information leak occurs when system data or debug information leaves the program to a remote machine via a socket or network connection. External leaks can help an attacker by revealing specific data about operating systems, full pathnames, the existence of usernames, or locations of configuration files, and are more serious than internal information leaks, which are more difficult for an attacker to access.

Example 1: The following code leaks Exception information in the HTTP response:


protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
...
PrintWriter out = res.getWriter();
try {
...
} catch (Exception e) {
out.println(e.getMessage());
}
}


This information can be exposed to a remote user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.

Information leaks are also a concern in a mobile computing environment. With mobile platforms, applications are downloaded from various sources and are run alongside each other on the same device. The likelihood of running a piece of malware next to a banking application is high, which is why application authors need to be careful about what information they include in messages addressed to other applications running on the device.

Example 2: The following code broadcasts the stack trace of a caught exception to all the registered Android receivers.

...
try {
...
} catch (Exception e) {
String exception = Log.getStackTraceString(e);
Intent i = new Intent();
i.setAction("SEND_EXCEPTION");
i.putExtra("exception", exception);
view.getContext().sendBroadcast(i);
}
...


This is another scenario specific to the mobile environment. Most mobile devices now implement a Near-Field Communication (NFC) protocol for quickly sharing information between devices using radio communication. It works by bringing devices in close proximity or having the devices touch each other. Even though the communication range of NFC is limited to just a few centimeters, eavesdropping, data modification and various other types of attacks are possible, because NFC alone does not ensure secure communication.

Example 3: The Android platform provides support for NFC. The following code creates a message that gets pushed to the other device within range.

...
public static final String TAG = "NfcActivity";
private static final String DATA_SPLITTER = "__:DATA:__";
private static final String MIME_TYPE = "application/my.applications.mimetype";
...
TelephonyManager tm = (TelephonyManager)Context.getSystemService(Context.TELEPHONY_SERVICE);
String VERSION = tm.getDeviceSoftwareVersion();
...
NfcAdapter nfcAdapter = NfcAdapter.getDefaultAdapter(this);
if (nfcAdapter == null)
return;

String text = TAG + DATA_SPLITTER + VERSION;
NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
MIME_TYPE.getBytes(), new byte[0], text.getBytes());
NdefRecord[] records = { record };
NdefMessage msg = new NdefMessage(records);
nfcAdapter.setNdefPushMessage(msg, this);
...


An NFC Data Exchange Format (NDEF) message contains typed data, a URI, or a custom application payload. If the message contains information about the application, such as its name, MIME type, or device software version, this information could be leaked to an eavesdropper.
References
[1] Ernst Haselsteiner and Klemens Breitfuss Security in Near Field Communication (NFC): Strengths and Weaknesses
[2] ERR01-J. Do not allow exceptions to expose sensitive information CERT
[3] ENV02-J. Do not trust the values of environment variables CERT
[4] FUNDAMENTALS-4: Establish trust boundaries Oracle
[5] CONFIDENTIAL-1: Purge sensitive information from exceptions Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 497
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[15] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[20] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[21] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.java.system_information_leak_external
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code writes an exception to the standard error stream:


var http = require('http');
...

http.request(options, function(res){
...
}).on('error', function(e){
console.log('There was a problem with the request: ' + e);
});
...


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.javascript.system_information_leak_internal
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code writes an exception to the standard error stream:


try {
...
} catch (e: Exception) {
e.printStackTrace()
}


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.

Information leaks are also a concern in a mobile computing environment.

Example 2: The following code logs the stack trace of a caught exception on the Android platform.

...
try {
...
} catch (e: Exception) {
Log.e(TAG, Log.getStackTraceString(e))
}
...
References
[1] Ernst Haselsteiner and Klemens Breitfuss Security in Near Field Communication (NFC): Strengths and Weaknesses
[2] ERR01-J. Do not allow exceptions to expose sensitive information CERT
[3] ENV02-J. Do not trust the values of environment variables CERT
[4] FUNDAMENTALS-4: Establish trust boundaries Oracle
[5] CONFIDENTIAL-1: Purge sensitive information from exceptions Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 497
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[15] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[20] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[21] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.kotlin.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debugging information is sent via logging or printing to a local file, console, or screen.
Example 1: The following code leaks system information to the system log:


...
NSString* deviceID = [[UIDevice currentDevice] name];

NSLog(@"DeviceID: %@", deviceID);
...


In the mobile world, other areas of concern for maintaining system information arise when a device has been lost or stolen. Once in possession of an iOS device, an attacker may access a great deal of data by connecting the device by USB. Files such as iOS Property Lists (plists) and SQLite databases are easily accessed and can disclose personal information. As a general rule, privacy related information should not be stored unprotected on the file system.

Example 2: The following code adds a deviceID entry to the list of user defaults, and stores them immediately to a plist file.


...
NSString* deviceID = [[UIDevice currentDevice] name];

[defaults setObject:deviceID forKey:@"deviceID"];
[defaults synchronize];
...


The code in Example 2 stores system information from the mobile device in an unprotected plist file stored on the device. Although many developers trust plist files as a safe storage location for any and all data, it should not be trusted implicitly particularly when system information and privacy are a concern, since plist files could be read by anyone in possession of the device.

Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.objc.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code writes an exception to the standard error stream:


<?php
...
echo "Server error! Printing the backtrace";
debug_print_backtrace();
...
?>


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.php.system_information_leak_internal
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code writes an exception to the standard output stream:


try:
...
except:
print(sys.exc_info()[2])


This information is dumped to a console. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.python.system_information_leak_internal
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code writes an exception to the standard error stream:


...
begin
log = Logger.new(STDERR)
...
rescue Exception
log.info("Exception: " + $!)
...
end


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program. Of course, another problem with Example 1 is rescuing the root Exception instead of a specific type or error/exception, meaning it will catch all exceptions, potentially causing other unconsidered side effects.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.ruby.system_information_leak_internal
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code prints System information to the standard output stream:


...
println(Properties.osName)
...


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases, the error message provides the attacker with the precise type of attack to which the system is vulnerable. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In Example 1, the leaked information could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Ernst Haselsteiner and Klemens Breitfuss Security in Near Field Communication (NFC): Strengths and Weaknesses
[2] ERR01-J. Do not allow exceptions to expose sensitive information CERT
[3] ENV02-J. Do not trust the values of environment variables CERT
[4] FUNDAMENTALS-4: Establish trust boundaries Oracle
[5] CONFIDENTIAL-1: Purge sensitive information from exceptions Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 497
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[8] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[9] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[10] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[11] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[12] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[13] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[14] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[15] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[16] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[17] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[18] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[19] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[20] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[21] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[25] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[26] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[27] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[28] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[29] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[30] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[31] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[32] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[33] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[52] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[53] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[54] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[55] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[56] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[57] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.scala.system_information_leak_internal
Abstract
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.
Explanation
An internal information leak occurs when system data or debugging information is sent via logging or printing to a local file, console, or screen.



In the mobile world, other areas of concern for maintaining system information arise when a device has been lost or stolen. Once in possession of an iOS device, an attacker may access a great deal of data by connecting the device by USB. Files such as iOS Property Lists (plists) and SQLite databases are easily accessed and can disclose personal information. As a general rule, privacy related information should not be stored unprotected on the file system.

Example 1: The following code prints the device identifier to the system logs:


let deviceName = UIDevice.currentDevice().name
...
NSLog("Device Identifier: %@", deviceName)


Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.dataflow.swift.system_information_leak_internal
Abstract
Revealing system data or debugging information could enable an adversary to use system information to plan an attack.
Explanation
An internal information leak occurs when system data or debug information is sent to a local file, console, or screen via printing or logging.

Example 1: The following code sends an ASPError object to a script debugger, such as the Microsoft Script Debugger:


...
Debug.Write Server.GetLastError()
...


In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system, such as information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 497
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [4] CWE ID 200
[3] Standards Mapping - Common Weakness Enumeration Top 25 2020 [7] CWE ID 200
[4] Standards Mapping - Common Weakness Enumeration Top 25 2021 [20] CWE ID 200
[5] Standards Mapping - Common Weakness Enumeration Top 25 2024 [17] CWE ID 200
[6] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001312, CCI-002420
[7] Standards Mapping - General Data Protection Regulation (GDPR) Indirect Access to Sensitive Data
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 AC-4 Information Flow Enforcement (P1), AC-23 Data Mining Protection (P0), SC-8 Transmission Confidentiality and Integrity (P1), SI-11 Error Handling (P2)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 AC-4 Information Flow Enforcement, AC-23 Data Mining Protection, SC-8 Transmission Confidentiality and Integrity, SI-11 Error Handling
[10] Standards Mapping - OWASP API 2023 API3 Broken Object Property Level Authorization
[11] Standards Mapping - OWASP Application Security Verification Standard 4.0 8.3.2 Sensitive Private Data (L1 L2 L3), 8.3.4 Sensitive Private Data (L1 L2 L3), 14.3.3 Unintended Security Disclosure Requirements (L1 L2 L3)
[12] Standards Mapping - OWASP Mobile 2014 M2 Insecure Data Storage
[13] Standards Mapping - OWASP Mobile 2024 M9 Insecure Data Storage
[14] Standards Mapping - OWASP Mobile Application Security Verification Standard 2.0 MASVS-STORAGE-1
[15] Standards Mapping - OWASP Top 10 2007 A6 Information Leakage and Improper Error Handling
[16] Standards Mapping - OWASP Top 10 2021 A05 Security Misconfiguration
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 1.2 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 2.0 Requirement 6.5.5
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.5
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.5
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.5
[22] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.5
[23] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[24] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[25] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 3.6 - Sensitive Data Retention
[26] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 3.6 - Sensitive Data Retention
[27] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 3.6 - Sensitive Data Retention
[28] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP3620 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP3620 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP3620 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP3620 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP3620 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP3620 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP3620 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[48] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[49] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[50] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-000450 CAT II, APSC-DV-002480 CAT II, APSC-DV-002570 CAT II
[51] Standards Mapping - Web Application Security Consortium Version 2.00 Information Leakage (WASC-13)
[52] Standards Mapping - Web Application Security Consortium 24 + 2 Information Leakage
desc.semantic.vb.system_information_leak_internal
Abstract
The program can potentially fail to release a system resource.
Explanation
The program can potentially fail to release a system resource.

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker may be able to launch a denial of service attack by depleting the resource pool.

Example 1: The following method never closes the file handle it opens. The Finalize() method for StreamReader eventually calls Close(), but there is no guarantee as to how long it will take before the Finalize() method is invoked. In fact, there is no guarantee that Finalize() will ever be invoked. In a busy environment, this can result in the VM using up all of its available file handles.


private void processFile(string fName) {
StreamWriter sw = new StreamWriter(fName);
string line;
while ((line = sr.ReadLine()) != null)
processLine(line);
}
Example 2: Under normal conditions the following code executes a database query, processes the results returned by the database, and closes the allocated SqlConnection object. But if an exception occurs while executing the SQL or processing the results, the SqlConnection object will not be closed. If this happens often enough, the database will run out of available cursors and not be able to execute any more SQL queries.


...
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();
...
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 22.1
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 22.1
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 6.8.1
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1), SC-24 Fail in Known State (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection, SC-24 Fail in Known State
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 404
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[44] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[45] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.dotnet.unreleased_resource
Abstract
The program can potentially fail to release a system resource.
Explanation
The program can potentially fail to release a system resource.

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker may be able to launch a denial of service by depleting the resource pool.

Example 1: The following function does not close the file handle it opens if an error occurs. If the process is long-lived, the process can run out of file handles.


int decodeFile(char* fName)
{
char buf[BUF_SZ];
FILE* f = fopen(fName, "r");

if (!f) {
printf("cannot open %s\n", fName);
return DECODE_FAIL;
} else {
while (fgets(buf, BUF_SZ, f)) {
if (!checkChecksum(buf)) {
return DECODE_FAIL;
} else {
decodeBlock(buf);
}
}
}
fclose(f);
return DECODE_SUCCESS;
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 22.1
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 22.1
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 6.8.1
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1), SC-24 Fail in Known State (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection, SC-24 Fail in Known State
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 404
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[44] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[45] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.unreleased_resource
Abstract
The program can potentially fail to release a system resource.
Explanation
The program can potentially fail to release a system resource.

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion about which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker might launch a denial of service by depleting the resource pool.

Example 1: The following program does not close the file handle it opens if an error occurs. If the process is long-lived, the process can run out of file handles.


CALL "CBL_CREATE_FILE"
USING filename
access-mode
deny-mode
device
file-handle
END-CALL

IF return-code NOT = 0
DISPLAY "Error!"
GOBACK
ELSE
PERFORM write-data
IF ws-status-code NOT = 0
DISPLAY "Error!"
GOBACK
ELSE
DISPLAY "Success!"
END-IF
END-IF

CALL "CBL_CLOSE_FILE"
USING file-handle
END-CALL

GOBACK
.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 22.1
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 22.1
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 6.8.1
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1), SC-24 Fail in Known State (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection, SC-24 Fail in Known State
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 404
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[44] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[45] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cobol.unreleased_resource
Abstract
The program can potentially fail to release a system resource.
Explanation

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker might be able to launch a denial of service attack by depleting the resource pool.

Example 1: The following method never closes the socket it opens. The New() function establishes a new connection to the system log daemon. It is part of the log.syslog package. Each write to the returned writer sends a log message with the given priority (a combination of the syslog facility and severity) and prefix tag. In a busy environment, this can result in the system using up all of its sockets.


func TestNew() {

s, err := New(syslog.LOG_INFO|syslog.LOG_USER, "the_tag")
if err != nil {
if err.Error() == "Unix syslog delivery error" {
fmt.Println("skipping: syslogd not running")
}
fmt.Println("New() failed: %s", err)
}
}
Example 2: In this example, the Dial() method of the net/smtp package returns a new client connected to an SMTP server at localhost. The connection resources are allocated but are never released by calling the Close() function.


func testDial() {
client, _ := smtp.Dial("127.0.0.1")
client.Hello("")
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 22.1
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 22.1
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 6.8.1
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1), SC-24 Fail in Known State (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection, SC-24 Fail in Known State
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 404
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[44] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[45] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.golang.unreleased_resource
Abstract
A function fails to release a system resource.
Explanation
The code fails to release a system resource.


Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker can potentially launch a denial of service attack by depleting the resource pool.

Example 1: In the following example, the resource created by Arena.ofConfined() is not closed.

...
Arena offHeap = Arena.ofConfined()
MemorySegment str = offHeap.allocateUtf8String("data");
...
//offHeap is never closed
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 22.1
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 22.1
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 6.8.1
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1), SC-24 Fail in Known State (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection, SC-24 Fail in Known State
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 404
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[44] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[45] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.unreleased_resource_ffm
Abstract
The program can potentially fail to release a system resource.
Explanation
The program can potentially fail to release a system resource.

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker may be able to launch a denial of service by depleting the resource pool.

Example 1: The following function does not close the file handle it opens. If the process is long-lived, it may run out of file handles.


BEGIN
...
F1 := UTL_FILE.FOPEN('user_dir','u12345.tmp','R',256);
UTL_FILE.GET_LINE(F1,V1,32767);
...
END;
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 22.1
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 22.1
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 6.8.1
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1), SC-24 Fail in Known State (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection, SC-24 Fail in Known State
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - SANS Top 25 2009 Risky Resource Management - CWE ID 404
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002310 CAT I, APSC-DV-002400 CAT II
[44] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[45] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.sql.unreleased_resource
Abstract
The program fails to release a lock it holds, which might lead to deadlock.
Explanation
The program can potentially fail to release a system resource.

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker may be able to launch a denial of service by depleting the resource pool.

Example 1: The following code establishes a lock before performOperationInCriticalSection(), but fails to release the lock if an exception is thrown in that method.


Object synchronizationObject = new Object ();

System.Threading.Monitor.Enter(synchronizationObject);
performOperationInCriticalSection();
System.Threading.Monitor.Exit(synchronizationObject);
References
[1] Microsoft MSDN - Programming Guide - Thread Synchronization
[2] Standards Mapping - Common Weakness Enumeration CWE ID 772
[3] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[4] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[7] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[8] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[9] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[10] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[20] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[21] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[44] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[45] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.dotnet.unreleased_resource_synchronization
Abstract
The program fails to release a lock it holds, which might lead to deadlock.
Explanation
The program can potentially fail to release a system resource.

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker may be able to launch a denial of service by depleting the resource pool.

Example 1: The following function does destroy the condition variable it allocates if an error occurs. If the process is long-lived, the process can run out of file handles.


int helper(char* fName)
{
int status;
...
pthread_cond_init (&count_threshold_cv, NULL);
pthread_mutex_init(&count_mutex, NULL);

status = perform_operation();
if (status) {
printf("%s", "cannot perform operation");
return OPERATION_FAIL;
}

pthread_mutex_destroy(&count_mutex);
pthread_cond_destroy(&count_threshold_cv);

return OPERATION_SUCCESS;
}
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cpp.unreleased_resource_synchronization
Abstract
The program fails to release a lock it holds, which might lead to deadlock.
Explanation
The program can potentially fail to release a lock.

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion about which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker might launch a denial of service by depleting the resource pool or causing a deadlock.

Example 1: The following program does not release a record lock on a file if an error occurs.


CALL "CBL_GET_RECORD_LOCK"
USING file-handle
record-offset
record-length
reserved
END-CALL

IF return-code NOT = 0
DISPLAY "Error!"
GOBACK
ELSE
PERFORM write-data
IF ws-status-code NOT = 0
DISPLAY "Error!"
GOBACK
ELSE
DISPLAY "Success!"
END-IF
END-IF

CALL "CBL_FREE_RECORD_LOCK"
USING file-handle
record-offset
record-length
reserved
END-CALL

GOBACK
.
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.cobol.unreleased_resource_synchronization
Abstract
The program fails to release a lock it holds, which might lead to deadlock.
Explanation
The program can potentially fail to release a system resource.

Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker may be able to launch a denial of service by depleting the resource pool.

Example 1: The following code establishes a lock before performOperationInCriticalSection(), but fails to release the lock if an exception is thrown in that method.


ReentrantLock myLock = new ReentrantLock();

myLock.lock();
performOperationInCriticalSection();
myLock.unlock();
References
[1] Sun Microsystems, Inc. Java Sun Tutorial - JavaDoc - Class ReentrantLock
[2] CERT LCK07-J. Avoid deadlock by requesting and releasing locks in the same order
[3] CERT LCK08-J. Ensure actively held locks are released on exceptional conditions
[4] FIO04-J. Release resources when they are no longer needed CERT
[5] DOS-2: Release resources in all cases Oracle
[6] Standards Mapping - Common Weakness Enumeration CWE ID 772
[7] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[8] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[9] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[10] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[11] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[12] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[13] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[14] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[17] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[18] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[19] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[20] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[21] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[22] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[23] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[24] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[25] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[43] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[44] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[45] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[46] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[47] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[48] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[49] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.java.unreleased_resource_synchronization
Abstract
The program fails to release a lock it holds, which might lead to deadlock.
Explanation
Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker can launch a denial of service by depleting the resource pool.

Example 1: The following code establishes a lock before performOperationInCriticalSection() but never releases it.


os_unfair_lock lock1 = OS_UNFAIR_LOCK_INIT;
os_unfair_lock_lock(&lock1);
performOperationInCriticalSection();
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.objc.unreleased_resource_synchronization
Abstract
The program fails to release a lock it holds, which might lead to deadlock.
Explanation
Resource leaks have at least two common causes:

- Error conditions and other exceptional circumstances.

- Confusion over which part of the program is responsible for releasing the resource.

Most unreleased resource issues result in general software reliability problems. However, if an attacker can intentionally trigger a resource leak, the attacker can launch a denial of service by depleting the resource pool.

Example 1: The following code establishes a lock before performOperationInCriticalSection() but never releases it.


let lock1 = OSAllocatedUnfairLock()
lock1.lock()
performOperationInCriticalSection();
References
[1] Standards Mapping - Common Weakness Enumeration CWE ID 772
[2] Standards Mapping - Common Weakness Enumeration Top 25 2019 [21] CWE ID 772
[3] Standards Mapping - DISA Control Correlation Identifier Version 2 CCI-001094
[4] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2012 Rule 1.3
[5] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C Guidelines 2023 Rule 1.3
[6] Standards Mapping - Motor Industry Software Reliability Association (MISRA) C++ Guidelines 2023 Rule 4.1.3
[7] Standards Mapping - NIST Special Publication 800-53 Revision 4 SC-5 Denial of Service Protection (P1)
[8] Standards Mapping - NIST Special Publication 800-53 Revision 5 SC-5 Denial of Service Protection
[9] Standards Mapping - OWASP Top 10 2004 A9 Application Denial of Service
[10] Standards Mapping - Payment Card Industry Data Security Standard Version 1.1 Requirement 6.5.9
[11] Standards Mapping - Payment Card Industry Data Security Standard Version 3.0 Requirement 6.5.6
[12] Standards Mapping - Payment Card Industry Data Security Standard Version 3.1 Requirement 6.5.6
[13] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2 Requirement 6.5.6
[14] Standards Mapping - Payment Card Industry Data Security Standard Version 3.2.1 Requirement 6.5.6
[15] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0 Requirement 6.2.4
[16] Standards Mapping - Payment Card Industry Data Security Standard Version 4.0.1 Requirement 6.2.4
[17] Standards Mapping - Payment Card Industry Software Security Framework 1.0 Control Objective 4.2 - Critical Asset Protection
[18] Standards Mapping - Payment Card Industry Software Security Framework 1.1 Control Objective 4.2 - Critical Asset Protection
[19] Standards Mapping - Payment Card Industry Software Security Framework 1.2 Control Objective 4.2 - Critical Asset Protection, Control Objective C.3.3 - Web Software Attack Mitigation
[20] Standards Mapping - Security Technical Implementation Guide Version 3.1 APP6080 CAT II
[21] Standards Mapping - Security Technical Implementation Guide Version 3.4 APP6080 CAT II
[22] Standards Mapping - Security Technical Implementation Guide Version 3.5 APP6080 CAT II
[23] Standards Mapping - Security Technical Implementation Guide Version 3.6 APP6080 CAT II
[24] Standards Mapping - Security Technical Implementation Guide Version 3.7 APP6080 CAT II
[25] Standards Mapping - Security Technical Implementation Guide Version 3.9 APP6080 CAT II
[26] Standards Mapping - Security Technical Implementation Guide Version 3.10 APP6080 CAT II
[27] Standards Mapping - Security Technical Implementation Guide Version 4.2 APSC-DV-002400 CAT II
[28] Standards Mapping - Security Technical Implementation Guide Version 4.3 APSC-DV-002400 CAT II
[29] Standards Mapping - Security Technical Implementation Guide Version 4.4 APSC-DV-002400 CAT II
[30] Standards Mapping - Security Technical Implementation Guide Version 4.5 APSC-DV-002400 CAT II
[31] Standards Mapping - Security Technical Implementation Guide Version 4.6 APSC-DV-002400 CAT II
[32] Standards Mapping - Security Technical Implementation Guide Version 4.7 APSC-DV-002400 CAT II
[33] Standards Mapping - Security Technical Implementation Guide Version 4.8 APSC-DV-002400 CAT II
[34] Standards Mapping - Security Technical Implementation Guide Version 4.9 APSC-DV-002400 CAT II
[35] Standards Mapping - Security Technical Implementation Guide Version 4.10 APSC-DV-002400 CAT II
[36] Standards Mapping - Security Technical Implementation Guide Version 4.11 APSC-DV-002400 CAT II
[37] Standards Mapping - Security Technical Implementation Guide Version 4.1 APSC-DV-002400 CAT II
[38] Standards Mapping - Security Technical Implementation Guide Version 5.1 APSC-DV-002400 CAT II
[39] Standards Mapping - Security Technical Implementation Guide Version 5.2 APSC-DV-002400 CAT II
[40] Standards Mapping - Security Technical Implementation Guide Version 5.3 APSC-DV-002400 CAT II
[41] Standards Mapping - Security Technical Implementation Guide Version 6.1 APSC-DV-002400 CAT II
[42] Standards Mapping - Security Technical Implementation Guide Version 6.2 APSC-DV-002400 CAT II
[43] Standards Mapping - Web Application Security Consortium Version 2.00 Denial of Service (WASC-10)
[44] Standards Mapping - Web Application Security Consortium 24 + 2 Denial of Service
desc.controlflow.swift.unreleased_resource_synchronization